邵園園,王永賢,玄冠濤,3,高宗梅,劉 藝,韓 翔,高 沖
高光譜成像快速檢測殼聚糖涂膜草莓可溶性固形物
邵園園1,2,王永賢1,玄冠濤1,3※,高宗梅4,劉 藝1,韓 翔1,高 沖1
(1. 山東農業大學機械與電子工程學院,泰安 271018;2. 農業部南京農業機械化研究所,南京 210014;3. 密蘇里大學農業與食品工程學院,哥倫比亞 65211;4. 華盛頓州立大學精細與自動化農業研究中心,華盛頓 99350)
為了對殼聚糖涂膜草莓可溶性固形物含量(soluble solids content, SSC)進行快速檢測,該文采用高光譜成像儀(400~1 000 nm)對0,0.5%,1% 濃度的殼聚糖(chitosan, CTS)涂膜草莓分別儲藏1,2,4 d后進行成像,并測量樣本SSC。通過分析SSC發現,0.5%和1%殼聚糖涂膜草莓,其SSC隨著儲藏天數的增加均高于0濃度殼聚糖涂膜草莓,說明了0.5% 和1% 殼聚糖涂層抑制了草莓中SSC的降低,能夠延長草莓的新鮮口味。隨后采用蒙特卡羅-偏最小二乘法(monte carlo-partial least squares, MCPLS)對異常樣本進行剔除。對剔除異常樣本后的光譜數據進行不同預處理,以確定最優的預處理方法。為提高運行速度和降低數據維數,采用競爭性自適應權重取樣法(competitive adaptive reweighted sampling, CARS)和連續投影算法(successive projections algorithm, SPA)進行特征波段選擇。最后,采用偏最小二乘回歸(partial least square regression, PLSR)和支持向量回歸(support vector regression, SVR)法建立回歸模型。最終結果表明:SPA-SVR模型效果最佳,0濃度的殼聚糖涂膜的草莓,建模集精度2為0.865,預測集精度2為0.835;0.5%濃度的殼聚糖涂膜的草莓,建模集精度2為0.808,預測集精度2為0.799;1% 濃度的殼聚糖涂膜的草莓,建模集精度2為0.834,預測集精度2為0.875。對儲藏第4天的部分樣本圖像進行主成分分析(principal component analysis, PCA),結果顯示除第二主成分圖像(PC2)中有部分噪聲影響外,PC1和PC3均能完整反映草莓信息,且PC3圖像明顯呈現出不同濃度殼聚糖涂膜草莓的褐變程度,說明不同濃度的殼聚糖涂膜也會對草莓貨架期產生不同影響。綜上說明利用高光譜成像技術可以實現殼聚糖涂膜草莓SSC快速檢測,有效指導草莓保鮮處理。
農產品;無損檢測;高光譜;殼聚糖涂膜;草莓;SSC
草莓富含氨基酸、果糖、胡蘿卜素和維生素等多種營養成分,被認為是生物活性化合物的重要來源,具有特有的外觀和香甜的味道[1-3],一直以來深受廣大消費者的喜愛。可溶性固形物含量(soluble solids content, SSC)是一種綜合參數,主要由糖,酸,維生素,礦物質等成分組成,對果實品質的評價具有重要意義[4]。但草莓采摘時極易造成機械損傷,在貯藏過程中也容易出現腐爛,干癟和生理性病變等現象[5],給草莓SSC造成影響的同時,也給市場營銷帶來一定的挑戰。因此,在草莓儲藏,配送和零售過程中,需要有效的方法來保持草莓的品質屬性。
目前存在的研究[2,6]通過改變儲藏環境的溫度和相對濕度來提高草莓品質,然而草莓作為一種大多在常溫下儲藏和銷售的水果,其溫度控制和濕度控制策略受到一定的限制[7]。在過去的十幾年中,人們對開發和使用生物基包裝材料以延長保質期和提高新鮮、冷凍和配方食品質量的興趣迅速增長[8]。其中,殼聚糖是一種從甲殼類動物外殼中提取的無毒高分子聚合物[9],由于殼聚糖涂層(chitosan, CTS)的可食用性和良好的成膜性[10],已經廣泛應用在草莓保鮮和提高品質方面[11-13]。
雖然研究證實了殼聚糖或者殼聚糖中加入不同溶液涂膜可以提高草莓品質,但涂膜后都是通過物理或者化學方法對草莓SSC及其他理化性質進行測定。由于物理或者化學方法需要對樣本進行大量處理,耗時費力,破壞性大,且對涂膜后的果實無法實現快速檢測[14]。所以尋找一種無損、便捷、快速的檢測方法是非常必要的。
高光譜成像技術作為一種無損,簡便,準確的成像技術,融合了樣本的空間和光譜信息[15],能夠快速和無損的通過光譜信息獲取水果的內部信息,已經廣泛應用在水果品質測定等方面。ElMasry等[16]采用高光譜成像技術檢測了草莓含水量、總可溶性固形物和酸度,基于全光譜建立的偏最小二乘模型,其預測相關系數分別達到0.9,0.8,0.87,基于特征波長建立的多元線性回歸模型,其預測相關系數分別達到0.87,0.8,0.92。李瑞等[17]采用近紅外光譜儀(900~1 700 nm)對藍莓果實的糖度和酸度進行了無損檢測,應用偏最小二乘回歸法對整個果實的平均光譜建立硬度和糖度預測模型。結果表明硬度的校正集相關系數2和驗證集相關系數2達到0.911和 0.871,糖度的為 0.891和0.774。王世芳等[4]利用JDSU便攜式近紅外光譜儀采集了西瓜樣品瓜梗、瓜臍、赤道部位和整果的近紅外反射光譜,采用SPXY算法對樣品集進行劃分,并且建立了西瓜各部位和SSC含量定量分析模型,結果表明赤道部位反射光譜和可溶性固形物含量相關性較高,經標準歸一化預處理后,建立的偏最小二乘回歸預測模型,預測集相關系數為0.864,預測集均方根誤差為0.33%。高俊峰等[18]利用高光譜成像系統對3個品種240個甘蔗節進行了光譜信息采集。結果表明通過無信息變量消除(UVE)算法提取的特征波長與SSC含量建立的偏最小二乘回歸模型預測效果最佳,其預測集的相關系數和均方根誤差分別為0.813和0.810。Mo等[19]利用可見/近紅外高光譜成像系統(400~1 000 nm)對蘋果內部SSC進行了預測,采集了3種情況下的蘋果切片的光譜信息與SSC建立了偏最小二乘回歸模型,實驗表明高光譜成像技術可以用于蘋果內部SSC預測,并且繪制了SSC分布圖,呈現了蘋果內部SSC含量的分布情況。
因此,本研究的目的是探討高光譜成像技術(400~1 000 nm)對不同濃度殼聚糖涂膜的草莓樣本SSC快速和無損檢測的可行性。
試驗研究的草莓品種為章姬,種植于山東省泰安市新綠蔬菜合作社果園,采摘于2019年3月22日上午,由有經驗的果農隨機選取成熟草莓進行采摘。草莓采摘后立即放入保鮮裝置,運回實驗室并進行殼聚糖涂膜。殼聚糖濃度不宜過高,否則溶液會變得黏稠,影響草莓外觀,不利于貨架期延長,一般選擇0.5%、1%濃度殼聚糖溶液涂膜草莓[20-25]。涂膜后共得到360個形狀大小均勻、無腐爛、無疤痕的草莓樣本(圖1)。

注:CTS為殼聚糖。 Note: CTS is chitosan.
乙酸和氫氧化鈉(粒狀)購買于天津市巴斯夫化工有限公司,殼聚糖(脫乙酰化≥90%)購買于上海藍季科技發展有限公司,為了制備1L的0.5%和1%殼聚糖水溶液,把2組10 mL乙酸分別加入到2組900 mL蒸餾水中制成酸溶液,將5 g和10 g殼聚糖分別加入到酸溶液中。用1 mol/L的氫氧化鈉溶液將溶液的pH值調整為6,體積調整為1 L。以pH值為6.0,0%殼聚糖的1 L水溶液作為對照[7]。
將挑選的360個草莓隨機分成3組,每組120個樣本。分別做以下處理:將3組草莓分別浸泡在0%,0.5%,1%殼聚糖水溶液1 min。將樣本取出后在相對濕度50%,溫度為20 ℃的環境中干燥3 h,隨后將樣本儲藏在超市常用的聚對苯二甲酸類塑料(PET)保鮮盒中,儲藏溫度18±2 ℃,相對濕度50%。分別在儲藏1,2,4 d隨機選取3組中各40個草莓樣本進行光譜數據采集。
采用GaiaField 便攜式高光譜系統(雙利合譜,四川,中國)采集草莓高光譜信息,系統組成主要包括高光譜成像儀(GaiaField-V10E)成像鏡頭(HSIA-OL23)、專用光源(HSIA-LS-T-200W)、標準白板(HSIA-CT-150×150)、三腳架(HSIA-TP-S)及裝有高光譜數據采集軟件(SpecView)的專用計算機等。光譜范圍為400~1 000 nm,光譜分辨率2.8 nm,入射狹縫寬30m,視場角22°,CCD像素1 394×1 040,光源對稱分布,入射角度45°。
為了獲取清晰不失真的樣本圖像,數據采集系統參數設置為:相機曝光時間15 ms,鏡頭與樣本間距離46 cm。為了消除相機暗電流、光照不均等對圖像的影響,需要對高光譜成像系統進行黑白校正。通過遮蓋鏡頭、掃描標準白板分別獲得全黑標定圖像I和全白圖像I,根據公式(1)獲得校正圖像[26]。

式中0為校準后圖像,I為原始高光譜圖像。
整個草莓樣本作為其感興趣區域,利用軟件ENVI4.6(Environment for Visualizing Images software, Research Systems Inc., Boulder, Co, USA)手工提取校正圖像感興趣區域(region of interest,ROI)的高光譜數據,并計算ROI內光譜反射率的平均值。
草莓樣本高光譜圖像采集完成后,用榨汁機獲取每個樣本的草莓汁,用吸管吸取草莓汁,將果汁滴于數顯折射儀(PAL-1,Atago Co,Tokyo,Japan)鏡面窗口,讀取折射儀SSC并記錄,每個樣本重復進行3次試驗,以SSC平均值作為單個樣本的SSC真實值。
1.5.1 蒙特卡羅偏最小二乘法剔除異常值
由于樣本光譜數據采集和SSC測定時,環境或者儀器本身不穩定性等其他因素會產生數據誤差,所以首先對異常值進行剔除。蒙特卡羅偏最小二乘法(monte carlo-partial least squares, MCPLS)以蒙特卡羅交互驗證為基礎,隨機選擇一定量的樣本作為建模集和預測集以建立PLS模型,根據多次運行PLS模型預測結果的統計信息篩選異常樣本[27],具有同時檢測光譜值和理化值中異常值的優點。通過計算每一個樣本在預測集中的預測殘差平均值(Mean)和預測殘差方差(standard deviation, STD),并且制作預測殘差平均值和方差的散點圖,具有較高預測殘差平均值和方差的樣本為異常樣本[28]。
1.5.2 樣本劃分和光譜數據預處理
對剔除異常值之后的光譜數據和理化值采用光譜-理化值共生距離(samples set partitioning based on joint X-Y distances, SPXY)算法[4]對樣本集進行劃分,分別計算建模集、預測集樣本的最大值、最小值、平均值和標準偏差,評估樣本劃分是否合理[29]。在獲取光譜數據時,由于人為操作或環境等影響,易造成光譜曲線中包含大量噪聲和其他干擾信息,所以對數據采用卷積平滑(Savitzky-Golay),基線校正(baseline correction),去趨勢算法(de-trending),移動平滑(moving average smoothing, MA),多元散射校正(multiplicative scatter correction, MSC),變量標準化(standard normal variate, SNV)[30-33]進行預處理。采用留一交叉驗證法(leave-one-out cross validation, LOOCV)進行內部交互驗證,以交互驗證的均方根誤差(root mean square error of cross validation, RMSECV)和決定系數2選擇預處理方法。
1.5.3 特征波長選取
由于高光譜波段之間高度相關的性質,導致了共線性和大量的冗余信息。為了提高運行速度,同時降低數據維數,本研究采用競爭性自適應權重取樣(CARS)法和連續投影算法(SPA)進行特征波長選取。
競爭性自適應權重取樣(competitive adaptive reweighted sampling, CARS)是一種基于適者生存和回歸系數進行波長點選擇的簡單有效方法。利用回歸系數絕對值的大小作為衡量波長重要性的指標,引入指數衰減函數對波長的保留率進行控制,根據交叉驗證方法,選取交互驗證最小均方根誤差子集,其中包含的變量為最佳波長組合[34]。
連續投影算法(successive projections algorithm, SPA)是一種特征波段前向選擇算法,通過比較波段投影向量大小,將最大投影量波段列為有效波段,并根據校正模型確定最佳的特征波段[35]。以建模集光譜數據為輸入,均方根誤差(root mean square error, RMSE)最小時,特征波段選取效果最優。
1.5.4 回歸模型的建立與模型評價
偏最小二乘回歸(partial least square regression, PLSR)法是一種多元數據分析方法,在光譜數據的建模中得到廣泛應用,可解決變量之間多重相關性的問題。PLSR對光譜反射值矩陣和SSC矩陣同時進行分解,同時考慮光譜值信息和對應的理化性質信息,探究兩者的對應關系,從而保證獲得最佳的校正模型[36]。
支持向量回歸(support vector regression, SVR)法是基于支持向量機的函數逼近回歸問題的學習方法,主要思想是將原問題通過非線性變換轉化為某個高維空間的線性問題,并在高維空間中進行線性求解。其優點是得到現有信息下的最優解,而不僅僅是樣本趨于無窮大時的最優值[37]。
回歸模型建立之后,通過以下參數衡量模型預測效果。以建模集精度2(determination coefficient of calibration set)和建模集均方根誤差RMSEC(root mean square error of calibration)作為模型性能的輔助評價指標,以預測集精度2(determination coefficient of validation set)和預測集均方根誤差 RMSEV(root mean square error of validation)作為主要評價指標[23]。2和2越大,RMSEC和RMSEV越小,模型的預測能力越強[38]。
草莓樣本的SSC隨著儲藏天數的增加,其變化趨勢如圖2所示。0%殼聚糖涂膜樣本在3個儲藏時間均保持較低SSC水平。隨著天數的增加,1%殼聚糖涂膜樣本SSC水平最高,儲藏4 d時SSC仍然能達到8.57°Brix,這也說明了1%殼聚糖水溶液能夠更加有效的抑制SSC的降低,保持草莓本身的新鮮口味。通過單因素方差分析(analysis of variance, ANOVA)發現,儲藏1 d時,0與0.5% 以及0與1%殼聚糖涂膜樣本間存在顯著性差異(<0.05),儲藏2 d時,3個濃度樣本兩兩之間無顯著性差異。而儲藏4 d時,3個濃度涂膜樣本兩兩之間有顯著性差異(<0.05)。

注:每個值為平均值±標準偏差。
圖3和圖4分別為0,0.5%,1%殼聚糖涂膜后的草莓樣本分別儲藏1,2,4 d的全樣本光譜反射曲線和平均光譜曲線,曲線總趨勢基本一致,但第2天的平均光譜曲線相對反射率明顯下降,結合SSC含量變化初步分析,0殼聚糖涂膜的樣本平均光譜曲線相對反射率的下降與其SSC含量明顯上升有關,而0.5%和1%濃度涂膜的樣本平均光譜曲線相對反射率的下降,與殼聚糖涂層有密切的聯系。進一步分析,400~490 nm為類胡蘿卜素的強吸收帶,所以在400~550 nm之間,平均光譜曲線反射率很低,形狀也很平緩。550~800 nm平均光譜曲線快速增加,這與草莓表面為紅色,對紅光反射有關。在800和970 nm附近出現的光譜吸收峰或反射谷,分別為水的O-H三級和二級吸收倍頻[37,39]。

圖3 草霉樣本全樣本光譜反射曲線

圖4 草莓樣本平均光譜曲線
試驗樣本處理過程中異常樣本影響預處理過程的同時也會影響建模精度,所以對異常樣本進行剔除來提高真實值與預測值的相關性[40]。采用MCPLS算法對異常樣本進行剔除,隨機選取樣本中的75%為建模集,25%為預測集,設置重復次數=5000,盡量保證更多的樣本有機會進入預測集。計算每個樣本的均值和方差,以均值為橫坐標,方差為縱坐標建立坐標系,均值和方差較大的為異常值。
蒙特卡洛檢測結果如圖5所示,圖5a為0%殼聚糖涂膜樣本檢測結果,以Mean=0.82,STD=0.175為界限共剔除異常樣本10個,分別為11,26,31,48,59,75,78,89,103,105號。圖5b為0.5%殼聚糖涂膜樣本檢測結果,以Mean=0.64,STD=0.175為界限共剔除異常樣本13個,分為別2,13,16,17,28,30,35,40,46,47,71,80,102號。圖5c為1%殼聚糖涂膜樣本檢測結果,以Mean=0.9,STD=0.168為界限共剔除異常樣本5個,分別為15,19,25,27,62號。因此,3組分別以110個,107個,115個樣本用于SSC含量檢測。

圖5 剔除異常值的蒙特卡羅偏最小二乘法檢測
如表1所示,采用SPXY對剔除樣本后的數據進行劃分,3種濃度涂膜樣本中的建模集均包含SSC最大值和最小值,且建模集和預測集包含較大范圍的SSC值,因此,劃分合理。為驗證不同預處理方法的效果,分別建立不同預處理方法處理后的光譜與SSC值的PLSR模型,結果如表2所示。0濃度的殼聚糖涂膜的樣本經MSC預處理的數據,0.5%和0.1濃度的殼聚糖涂膜的樣本未經預處理的數據2最大,RMSECV最小,故分別使用其數據進行后續分析。

表1 建模集和預測集的SSC的統計分析
全光譜模型建立共有256個光譜變量,大量的數據會降低運算速度,并且會導致信息冗余。為了提高速度和降低冗余,采用CARS和SPA挑選特征波長,CARS挑選特征波長過程如圖6所示,SPA挑選特征波長如圖7所示。圖6中,3種濃度下的樣本數據運行次數分別為155,151,165時,RMSECV最低,選取的特征波段數分別為32,30,20個,各占總波長變量的12.5%,11.7%,7.8%。圖7中,3種濃度下的樣本數據通過SPA挑選的特征波段分別為11,8,16個,各占總波長變量的4.3%,3.1%,6.3%。具體數值如表3所示。

表2 不同預處理方法的草莓SSC PLSR模型
注:‘2’表示校正集決定系數,‘RMSEC’表示校正集均方根誤差,‘RMSECV’表示交互驗證的校正集均方根誤差,‘PCs’表示主成分數。
Note: ‘2’means determination coefficient of calibration set, ‘RMSEC’ means root mean square error of calibration set, ‘RMSECV’means root mean square error of cross validation, ‘PCs’means number of principal components.

圖6 CARS挑選特征波長過程

圖7 SPA挑選特征波長過程

表3 通過CARS,SPA挑選的特征波長
分別建立全光譜和特征波長的PLSR,SVR模型。其模型回歸效果和模型參數如表4和表5所示。0殼聚糖涂膜的樣本全光譜數據建立的PLSR模型2和2略高于SVR模型,效果較好。而挑選的特征波長建立的回歸模型中,SPA-SVR效果最好,2和2值分別為0.865和0.835,RMSEC和RMSEV值分別為0.251和0.286。0.5%殼聚糖涂膜的樣本全光譜數據建立的SVR模型2高于PLSR模型,而PLSR模型的2高于SVR模型。特征波長中,SPA-SVR的2和2值分別為0.808和0.799,RMSEC和RMSEV值分別為0.216和0.203,效果最佳。1%殼聚糖涂膜的樣本全光譜數據建立的PLSR模型效果較好,特征波長中,SPA-SVR的2和2值分別為0.834和0.875,RMSEC和RMSEV值分別為0.334和0.170,預測效果最佳。每個濃度下的全光譜數據建立的PLSR和SVR模型2和2值均低于SPA-SVR模型,因此,SPA-SVR模型可以較好地預測0,0.5%,1%殼聚糖涂膜的草莓樣本SSC含量。圖8為3種濃度涂膜的草莓樣本SPA-SVR模型建模與預測結果散點圖。
進一步分析殼聚糖涂膜草莓的形態變化,選取儲藏第4天的部分樣本進行主成分分析,如圖9所示。從圖中可以看出,除PC2中有部分噪聲影響外,PC1和PC3均能完整反映草莓樣本信息。其中,PC3圖像反映草莓樣本信息最明顯,0殼聚糖涂膜樣本白色區域為褐變區域,主要由果實組織中的酚類物質氧化成醌類物質導致。0.5%殼聚糖涂膜樣本外表形態較完整,未出現嚴重的褐變現象。1%殼聚糖涂膜樣本表明出現了較多的黑色變化區域,出現了部分褐變。這也說明了隨著儲藏天數的增加,0.5%濃度的殼聚糖涂層對于草莓樣本表面形態保存比較完整,對草莓貨架期的延長有較好的效果。

圖8 SPA-SVR模型的預測結果

表4 不同特征波長下的SSC PLSR模型

表5 不同特征波長下的SSC SVR模型
注:‘’表示懲罰系數,‘’表示不敏感損失系數,‘’表示寬度系數,‘2’表示建模集精度,‘2’表示預測集精度。
Note: ‘’ means Punishment coefficient, ‘’ means Insensitive loss coefficient, ‘’ means width coefficient, ‘2’means determination coefficient of calibration set, ‘2’ means determination coefficient of validation set.

圖9 草莓圖像主成分分析
采用高光譜成像儀(400~1 000 nm)對殼聚糖涂膜的草莓樣本可溶性固形物含量(soluble solids content, SSC)進行預測,研究主要結論如下:
1)采用蒙特卡羅-偏最小二乘法算法對0,0.5%,1%濃度殼聚糖涂膜的草莓光譜數據和SSC值的異常值進行了剔除,剔除個數分別為10個,13個,5個。
2)分析比較了剔除異常樣本后不同的光譜數據預處理,建模及特征波段提取方法,建立了光譜與草莓SSC值的回歸模型。
3)對全光譜以及提取的特征波長建立偏最小二乘回歸和支持向量回歸模型。結果表明,SPA-SVR建立的SSC含量模型最優,0殼聚糖涂膜的樣本建立的SPA-SVR模型2和2分別為0.865,0.835,RMSEC和RMSEV分別為0.251,0.286。0.5%殼聚糖涂膜的樣本建立的SPA-SVR模型2和2分別為0.808, 0.799,RMSEC和RMSEV分別為0.216,0.203。1%殼聚糖涂膜的樣本建立的SPA-SVR模型2和2分別為0.834,0.875,RMSEC和RMSEV分別為0.334,0.170。
4)通過比較涂膜樣本的形態變化,選取儲藏第4天的部分樣本圖像進行主成分分析,PC3中可以清晰的看到草莓樣本表面形態的變化,0.5%濃度的殼聚糖涂層的保鮮效果更好,對延長草莓貨架期具有較好的效果。
[1] Campaniello D, Bevilacqua A, Sinigaglia M, et al. Chitosan: Antimicrobial activity and potential applications for preserving minimally processed strawberries[J]. Food Microbiology, 2008, 25(8): 992-1000.
[2] Ktenioudaki A, O’Donnell C P, do Nascimento Nunes M C. Modelling the biochemical and sensory changes of strawberries during storage under diverse relative humidity conditions[J]. Postharvest Biology and Technology, 2019, 154: 148-158.
[3] Dhital R, Mora N B, Watson D G. Efficacy of limonene nano coatings on post-harvest shelf life of strawberries[J]. LWT 2018, 97: 124-134.
[4] 王世芳,韓平,崔廣祿,等. SPXY算法的西瓜可溶性固形物近紅外光譜檢測[J]. 光譜學與光譜分析,2019, 39(3):738-742.
Wang Shifang, Han Ping, Cui Guanglu, et al. The NIR detection research of soluble solid in watermelon based on SPXY algorithm[J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 738-742. (in Chinese with English abstract)
[5] Reddy M V B, Belkacemi K, Corcuff R, et al. Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea quality of strawberry fruit[J]. Postharvest Biology and Technology, 2000, 20(1): 39-51.
[6] Octavia L, Choo W S. Folate, ascorbic acid, anthocyanin and colour changes in strawberry () during refrigerated storage[J]. LWT-Food Science and Technology, 2017, 86: 652-659.
[7] Han C, Zuo J, Wang Q, et al. Effects of chitosan coating on postharvest quality and shelf life of sponge gourd () during storage[J]. Scientia Horticulturae, 2014, 166: 1-8.
[8] Diab T, Biliaderis C G, Gerasopoulos D. Physicochemical properties and application of pullulan edible films and coatings in fruit preservation[J]. Journal of the Science of Food and Agriculture, 2001, 81(10): 988-1000.
[9] Muzzarelli R A A, Boudrant J, Meyer D, et al. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial[J]. Carbohydrate Polymers, 2012, 87(2): 995-1012.
[10] Gol N B, Patel P R, Rao T V R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan[J]. Postharvest Biology and Technology, 2013, 85: 185-195.
[11] Almenar E, Hernández-menoz P, Gavara R. Evolution of selected volatiles in chitosan-coated strawberries () during refrigerated storage[J]. Journal of Agricultural and Food Chemistry, 2009, 57(3): 974-980.
[12] Perdones A L, Sánchez-González, Chiralt A, et al. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry[J]. Postharvest Biology and Technology, 2012, 70: 32-41.
[13] Khalifa I, Barakat H, El-Mansy H A, et al. Enhancing the keeping quality of fresh strawberry using chitosan- incorporated olive processing wastes[J]. Food Bioscience, 2016, 13(1): 69-75.
[14] 趙蕓,張初,劉飛,等. 采用可見/近紅外光譜檢測大麥葉片過氧化氫酶與過氧化物酶含量的研究[J]. 光譜學與光譜分析,2014,34(9):2382-2386.
Zhao Yun, Zhang Chu, Liu Fei, et al. Application of visible/near-infrared spectroscopy of catalase and peroxidase content in barley leaves[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2382-2386. (in Chinese with English abstract)
[15] 李鴻強,孫紅,李民贊. 基于可見/短波近紅外光譜檢測結球甘藍維生素C含量[J]. 農業工程學報,2018,34(8):269-275.
Li Hongqiang, Sun Hong, Li Minzan, et al. Detection of vitamin C content in head cabbage based on visible/near-infrared spectroscopy [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 269-275. (in Chinese with English abstract)
[16] ElMasry G, Wang Ning, ElSayed Adel, et al. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry[J]. Journal of Food Engineering,2007,81(1):98-107.
[17] 李瑞,傅隆生. 基于高光譜圖像的藍莓糖度和硬度無損測量[J]. 農業工程學報,2017,33(增刊1):362-366.
Li Rui, Fu Longsheng. Nondestructive measurement of firmness and sugar content of blueberries based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 362-366. (in Chinese with English abstract)
[18] 高俊峰,張初,謝傳奇,等. 應用近紅外高光譜成像技術預測甘蔗可溶性固形物含量[J]. 光譜學與光譜分析,2015,35(8):2154-2158.
Gao Junfeng, Zhang Chu, Xie Chuanqi, et al. Prediction the soluble solid content in sugarcanes by using near infrared hyperspectral imaging system[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2154-2158. (in Chinese with English abstract)
[19] Mo C, Kim M S, Kim G , et al. Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging[J]. Biosystems Engineering, 2017, 159: 10-21.
[20] Tezotto-Uliana J V, Fargoni G P, Geerdink G M, et al. Chitosan applications pre-or postharvest prolong raspberry shelf-life quality[J]. Postharvest Biology and Technology, 2014, 91: 72-77.
[21] Kerch G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review[J]. Trends in Food Science and Technology, 2015, 46(2): 159-166.
[22] Romanazzi G, Feliziani E. Use of chitosan to control postharvest decay of temperate fruit: Effectiveness and mechanisms of action[M]. Chitosan in the Preservation of Agricultural Commodities. Salt Lake City Academic Press, 2016: 155-177.
[23] Han C, Zuo J, Wang Q, et al. Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage[J]. Scientia horticulturae, 2014, 166: 1-8.
[24] 王哲,史紅梅,任鳳山,等.殼聚糖涂膜對‘紅寶石無核’葡萄保鮮效果的影響[J]. 中外葡萄與葡萄酒,2019(3):25-28.
Wang Zhe, Shi Hongmei, Ren Fengshan, et al. Effect of chitosan coating on the preservation of ‘Ruby Seedless’ grape[J]. Chinese and Foreign Grapes and Wine, 2019(3): 25-28. (in Chinese with English abstract)
[25] 路志芳,陳現臣,袁超,等. 殼聚糖涂膜對鮮黃瓜的保鮮作用[J]. 江蘇農業科學,2018,46(14):177-180.
Lu Zhifang, Chen Xianchen, Yuan Chao, et al. Fresh-keeping effect of chitosan coating on fresh cucumber[J]. Jiangsu Agricultural Science, 2018, 46(14): 177-180. (in Chinese with English abstract)
[26] 潘冉冉,駱一凡,王昌,等. 高光譜成像的油菜和雜草分類方法[J]. 光譜學與光譜分析,2017(11):252-257.
Pan Ranran, Luo Yifan, Wang Chang, et al. Classifications of oilseed rape and weeds based on hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2017(11): 252-257. (in Chinese with English abstract)
[27] Guo W L, Du Y P, Zhou Y C, et al. At-line monitoring of key parameters of nisin fermentation by near infrared spectroscopy, chemometric modeling and model improvement[J]. World Journal of Microbiology and Biotechnology, 2012, 28(3): 993-1002.
[28] 何勇. 光譜及成像技術在農業中的應用[M]. 北京:科學出版社,2016.
[29] 李曉麗,魏玉震,徐劼,等. 基于高光譜成像的茶葉中EGCG分布可視化[J]. 農業工程學報,2018,34(7):180-186.
Li Xiaoli, Wei Yuzhen, Xu Jie, et al. EGCG distribution visualization in tea leaves based on hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 180-186. (in Chinese with English abstract)
[30] 褚小立. 近紅外光譜分析技術實用手冊[M]. 北京:機械工業出版社, 2016.
[31] Wu D, He Y, Nie P, et al. Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice[J]. Analytica Chimica Acta, 2010, 659(1/2): 229-237.
[32] Kong W, Zhao Y, Liu F, et al. Fast Analysis of Superoxide Dismutase (SOD) Activity in Barley Leaves Using Visible and Near Infrared Spectroscopy[J]. Sensors, 2012, 12(8): 10871-10880.
[33] Wang H, Peng J, Xie C, et al. Fruit quality evaluation using spectroscopy technology: A review[J]. Sensors, 2015, 15(5): 11889-11927.
[34] Li H, Liang Y, Xu Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
[35] 高攀,張初,呂新,等.近紅外高光譜成像的微破損棉種可視化識別含量[J]. 光譜學與光譜分析,2018,38(6):58-64.
Gao Pan, Zhang Chu, Lü Xin, et al. Visual identification of slight-damaged cotton seeds based on near infrared hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 58-64. (in Chinese with English abstract)
[36] 孫紅,鄭濤,劉寧,等. 高光譜圖像檢測馬鈴薯植株葉綠素含量垂直分布[J]. 農業工程學報,2018,34(1):149-156.
Sun Hong, Zheng Tao, Liu Ning, et al. Vertical distribution of chlorophyll in potato plants based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 149-156. (in Chinese with English abstract)
[37] 褚小立. 化學計量學方法與分子光譜分析技術[M]. 北京:化學工業出版社, 2011.
[38] 單佳佳,吳建虎,陳菁菁,等. 基于高光譜成像的蘋果多品質參數同時檢測[J]. 光譜學與光譜分析,2010, 30(10):2729-2733.
Shan Jiajia, Wu Jianhu, Chen Jingjing, et al. Rapid nondestructive detection of apple quality attributes using hyperspectral scattering images[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2729-2733. (in Chinese with English abstract)
[39] Zhang C, Guo C, Liu F, et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine[J]. Journal of Food Engineering, 2016, 179:11-18.
[40] 小波,趙文杰. 農產品無損檢測技術與數據分析方法[M]. 北京:中國輕工業出版社,2008.
Rapid detection of soluble solids content in strawberry coated with chitosan based on hyperspectral imaging
Shao Yuanyuan1,2, Wang Yongxian1, Xuan Guantao1,3※, Gao Zongmei4, Liu Yi1, Han Xiang1, Gao Chong1
(1.,271018,; 2.,210014,; 3.,65211; 4.)
Strawberries are popular fruit for their tender texture, juice and sweet taste. Prior on shelves, the harvesting and storage have always been the problems due to its fragility as well as susceptibility to rot. Chitosan coating has been widely used in fruit preservation, which can delay the storage time of fruits and has good preservation effect. The quality of chitosan-coated fruits is mostly detected by the typical conventional methods of physical or chemical testing. Since such methods need to deal with a large number of samples, which are time-consuming, laborious and destructive for detecting coated fruits. Therefore, in order to explore the possibility of detecting the soluble solids content (SSC) of strawberry coated with chitosan nondestructively and rapidly, hyperspectral imaging technology was employed to estimate the SSC of strawberry coated with chitosan in this study. Strawberry samples coated with 0, 0.5% and 1% chitosan acetic acid which were stored in 3 periods (1, 2 , 4 d). Outliers were eliminated by monte carlo-partial least squares (MCPLS) method, and the number of outliers was 10, 3 and 5 for the above respect treatments. Sample partitioning based on joint X-Y distance (SPXY) was used to split the data after eliminating outliers. After the partition of sample set, the modeling set contains the maximum and minimum SSC values in the three-concentration data, and the range of SSC values in the calibration set and validation set is large and the partition is reasonable. To find out the best model effect, Savitzky-Golay, baseline correction, De-trending, moving average smoothing (MA), multiplicative scatter correction (MSC) and standard normal variate (SNV) were used to pre-process the spectral data after eliminating the outliers. It was found that the strawberry sample data coated with 0 chitosan acetic acid solution pretreated by MSC had the best effect, while the strawberry sample data coated with 0.5% and 1% chitosan acetic acid solution without pretreatment had the best effect.2was the largest and RMSECV was the smallest. Competitive adaptive reweighted sampling (CARS) and successive projection algorithm (SPA) method were applied to select the effective wavelengths, which were helpful for enhancing computer velocity and reducing data dimension. The number of effective wavelengths selected by CARS and SPA for the three concentrations was 32, 30, 20 and 11, 8, 16, respectively. Finally, partial least square method (PLS) and support vector regression (SVR) were used to build regression models. The final results showed that the PLS regression model was less effective than the SVR model, while the full spectrum data and the data of characteristic bands selected by CARS are less effective in the SVR model, and the SPA-SVR model was the best. The value of2reached to 0.865 for strawberry samples coated with 0 chitosan acetic acid solution, and value of2reached to 0.835; for the strawberries coated with 0.5% chitosan acetic acid solution2was 0.808 and2was 0.799; and the2and2were 0.834 and 0.875 for strawberries coated with 1% chitosan acetic acid solution, respectively. These results validated the applicability of hyperspectral imaging technology on rapid detection of SSC in strawberry coated with chitosan.
agricultural products; non-destructive inspection; hyperspectral; coated with chitosan; strawberry; SSC
邵園園,王永賢,玄冠濤,高宗梅,劉 藝,韓 翔,高 沖. 高光譜成像快速檢測殼聚糖涂膜草莓可溶性固形物[J]. 農業工程學報,2019,35(18):245-254.doi:10.11975/j.issn.1002-6819.2019.18.030 http://www.tcsae.org
Shao Yuanyuan, Wang Yongxian, Xuan Guantao, Gao Zongmei, Liu Yi, Han Xiang, Gao Chong. Rapid detection of soluble solids content in strawberry coated with chitosan based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 245-254. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.030 http://www.tcsae.org
2019-06-16
2019-07-19
國家自然科學基金(31701325,31671632)
邵園園,博士,副教授,主要從事高光譜農業應用及農業智能裝備研究。Email:syy007@sdau.edu.cn
玄冠濤,博士,副教授,主要從事農業智能裝備研究。Email:xuangt@sina.com
10.11975/j.issn.1002-6819.2019.18.030
TP391.4
A
1002-6819(2019)-18-0245-10