杜宇佳,高廣磊*,陳麗華,丁國棟,張 英,曹紅雨
呼倫貝爾沙區土壤細菌群落結構與功能預測
杜宇佳1,2,高廣磊1,2*,陳麗華1,丁國棟1,2,張 英1,曹紅雨1,2
(1.北京林業大學水土保持學院,水土保持國家林業與草原局重點實驗室,北京 100083;2.寧夏鹽池毛烏素沙地生態系統國家定位觀測研究站,寧夏 鹽池 751500)
以呼倫貝爾沙區裸沙地、草地、沙地樟子松(var.)人工林和沙地樟子松天然林四種生境土壤為研究對象,采用野外調查、16S rRNA基因高通量測序和PICRUSt功能預測相結合的研究方法比較分析不同生境土壤細菌群落結構和潛在功能組成特征.結果顯示:呼倫貝爾沙區沙地樟子松天然林土壤細菌多樣性最高,人工林土壤細菌多樣性最低,Shannon指數分別為(8.623±0.193)和(7.432±0.028),不同生境土壤細菌alpha和beta多樣性存在顯著差異.草地、沙地樟子松人工林和天然林土壤中變形菌門(Proteobacteria)相對豐度最高,均值分別為29.83%±1.14%、34.73%±1.99%、31.95%±0.21%,裸沙地土壤放線菌門(Actinobacteria)相對豐度最高,均值為26.13%±0.43%.不同生境土壤細菌主要優勢屬為慢生根瘤菌屬()、RB41,其相對豐度在四種生境中的均值分別為5.29%±2.24%、4.22%±1.23%.PICRUSt功能預測共得到6個一級功能層,40個二級功能層,土壤細菌功能較為豐富,土壤細菌群落在環境信息處理、代謝、遺傳信息處理和有機系統方面功能活躍.沙地樟子松天然林核苷酸代謝、酶家族、氨基酸代謝、碳水化合物代謝功能基因較為豐富,保證了沙地樟子松天然林土壤細菌的存活,使其具有較高的多樣性.呼倫貝爾沙區不同生境土壤細菌功能基因豐度波動,反映了四種生境的土壤細菌群落組成及多樣性的變化,指示了不同生境功能基因對土壤細菌群落的影響規律,可為預測和理解沙區土壤細菌代謝潛力和功能提供參考借鑒.
呼倫貝爾沙區;生境;細菌群落結構;16S rRNA;功能預測
土壤細菌是土壤微生物中種類最多、數量最大、功能最豐富的類群[1],是陸地生態系統的重要組成部分.土壤細菌驅動地球生物化學循環,是生態系統物質循環和能量流動的關鍵環節,對于穩定、調節和修復陸地生態系統發揮著重要作用[2].土壤細菌的空間分布格局存在顯著的生境依賴性特征[3],受土壤性質、植被、氣候等多種環境因素的綜合影響.在早期研究中,相關學者主要關注土壤細菌的群落結構與多樣性[4-5],而后聚焦于土壤細菌群落結構與分布的影響因素與驅動過程[6].近年來,隨著分子生物學技術與方法的不斷發展,土壤細菌相關研究開始由結構向功能轉變[7-8].各國學者共同致力于土壤細菌功能預測與分析,并試圖通過土壤細菌功能研究,揭示土壤細菌在陸地生態系統過程中發揮的重要作用[9-11].
目前,生物信息技術發展迅速.PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), Tax4Fun和FAPROTAX (Functional Annotation of Prokaryotic Taxa)等方法基于系統發育與功能充分聯系的假設,根據16S rRNA測序基因與參考基因組數據庫的相似性,進而判斷和預測標記基因的功能組成,為我們深入理解微生物功能提供了新途徑[12-13].其中,FAPROTAX依據物種名進行功能預測,但僅涉及元素循環相關功能,無法對整體功能進行預測,算法存在明顯的局限性;Tax4Fun基于SILVA數據庫進行基因功能預測,雖然該數據庫擁有細菌、真菌、古菌rRNA基因序列,但數據庫剛剛建立,尚不完善,應用仍處于起步階段;PICRUSt的比對數據庫為Greengenes,該數據庫涵蓋細菌、古菌基因序列,數據庫相對完善,具有預測準確,功能先進,方便快捷,成本低廉的鮮明特點.目前,PICRUSt算法已在土壤、海洋和湖泊細菌功能分析得到應用[14-15],為土壤微生物群落結構與功能研究提供了新途徑[16-17].
呼倫貝爾沙區是我國防沙治沙的重點地區之一,也是構建“兩屏三帶”國家生態格局“北方防沙帶”的核心地區.相關學者已對呼倫貝爾沙區土壤微生物數量、多樣性、群落結構進行了大量的研究探索,取得了豐碩的研究成果[18-19].隨著研究的不斷深入,相關研究重點已由土壤微生物群落結構向功能轉移.鑒于此,本研究以呼倫貝爾沙區裸沙地、草地、樟子松天然林、樟子松人工林四種典型生境為研究對象,采用PICRUSt方法分析土壤細菌群落結構與功能特征,以期研究揭示不同生境土壤微生物群落結構與功能的相互關系,為預測和理解沙區土壤細菌代謝潛力和功能提供參考借鑒.
呼倫貝爾沙區位于內蒙古自治區東北部(115°31′~126°04′E,47°05′~53°20′N),屬半濕潤大陸性季風氣候區.年均氣溫-0.3℃,年均降水量280~ 355mm,年均蒸發量1400~1900mm,無霜期121d.地帶性土壤主要由黑鈣土和栗鈣土組成,風沙土則多分布于沙帶沙丘及沙質草原沙區,境內包括海拉爾河流域和伊敏河流域.研究區喬木植被主要有沙地樟子松(var)、白樺()等,灌木植被主要有小葉錦雞兒()、黃柳()和沙蒿()等,草本植被主要有羊草()、針茅()和沙蓬()等.
2017年7月,在裸沙地、草地、沙地樟子松人工林和沙地樟子松天然林4種典型生境地勢平坦地段分別布設3個20×20m的樣地(表1),開展土壤樣品采集工作,樣品采集深度為0~10和10~20cm.其中,沙地樟子松天然林和人工林樣地內分別選取3株長勢相當的標準木,在樹冠投影處采集土壤樣品,草地和裸沙地則在樣地內隨機選取3個采樣點采集土壤樣品.新鮮土壤樣品去除石子、根系和碎草等雜質后裝入無菌袋,置于4 ℃便攜式保溫箱中冷凍保存,運回實驗室后采用-80 ℃的冰箱保存.

表1 樣地基本概況
注:HLB:bare sandy land,裸沙地;HLG:grass land,草地;HLN:natural forest,樟子松天然林;HLP:plantation,樟子松人工林.
1.3.1 土壤樣品處理及理化性質分析 將土壤樣品風干后,過2mm篩后進行樣品理化性質的分析.土壤含水量采用烘干測定法;土壤pH值采用電位法使用便攜式pH計測定;土壤有機質采用稀釋熱法測定;土壤全氮含量、速效氮含量采用靛酚藍比色法測定;土壤全磷含量、速效磷含量采用鉬銻抗比色法測定[20].
1.3.2 土壤細菌的分離鑒定 取5g采集的土壤樣品于加入液氮的研缽中研磨,使用Power Soil DNA Kit(MoBio,USA)試劑盒提取土壤微生物基因組DNA,置-20 ℃的冰箱中保存.對16S rRNA基因的V3-V4區域進行擴增,引物序列為338F(ACTCCT- ACGGGAGGCAGCAG)、806R(GGACTACHVGG- GTWTCTAAT).PCR采用25mL反應體系:1mL× Forward Primer(5mmol/L),1mL×Reverse Primer (5mmol/L),3mL BSA(2ng/mL),12.5mL 2×Taq PCR MasterMix,30ng DNA模板,最后用7.5mL ddH2O補足至總體積25mL.PCR擴增程序為:95℃預變性300s; 95℃變性45s,55℃退火50s,72℃延伸45s,持續28個循環周期;最后72℃延伸10min.將樣本PCR產物混合后用2%瓊脂糖凝膠電泳檢測,使用AxyPrepDNA凝膠回收試劑盒(AXYGEN公司)切膠回收PCR產物,Tris-HCl洗脫;2%瓊脂糖電泳檢測.合格的PCR之后進行MiSeq文庫構建并測序.本研究涉及的所有測序數據可在NCBI Sequence Read Archive下載(PRJNA551926).
1.3.3 測序數據處理 Miseq測序得到的序列利用Trimmomatic對雙端序列數據進行過濾處理,過濾read尾部質量值20以下的堿基,設置50bp的窗口,如果窗口內的平均質量值低于20,從窗口開始截去后端堿基,過濾質控后50bp以下的read;利用Pear對含有barcode的數據進行質控過濾(根據-value和-value校正,-value值0.0001);然后根據PE測序的overlap關系,利用FLASH將成對的序列拼接(merge)成一條序列,拼接序列的overlap區允許的最大錯配比率為0.1.根據序列首尾兩端的barcode和引物區分樣品,并調整序列方向,barcode允許的錯配數為0;利用usearch軟件去除嵌合體.下機數據在去除barcode和primer并拼接后得到raw tags,raw tags經進一步去除嵌合體、短序列后得到優質序列clean tags,共得到優質序列1472261條.其中,裸沙地、草地、沙地樟子松天然林和人工林優質序列分別有303383、353675、422576、392627條.為最小化樣本變化對測序效率的影響[21],根據優質序列進一步去除singlton序列,得樣本最低序列數99173條,按此樣本進行隨機抽平.利用QIIME v.1.8軟件對優質序列進行質控,通常對97%的相似水平的物種分類單元(OTU)進行信息統計分析[22].
將QIIME軟件得到的biom文件上傳到Galaxy網站進行PICRUSt功能基因預測分析,得到土壤細菌功能基因組成.采用mothur軟件計算細菌群落Chao1豐富度指數、Shannon-Wiener多樣性指數、Simpson優勢度指數.采用SPSS 24.0進行單因素方差分析(ANOVA)、最小顯著差異法(LSD)比較、Pearson相關性分析.weighted Nearest Sequenced Taxon Index(weighted NSTI)是將樣本中的每個OTU與已知數據庫中參考細菌基因組分開的平均分支長度,通過樣本中OTU的豐度加權得到,使用predict_metagenomes.py命令-a選項計算NSTI.采用Excel 2010繪制相對豐度圖.采用Origin 2018繪制土壤細菌群落組成與功能熱圖.采用Canoco for Windows進行土壤細菌PCA與RDA分析.

圖1 不同生境土壤細菌群落多樣性指數
不同大小寫字母分別表示0~10cm、10~20cm土層不同生境土壤細菌多樣性差異顯著(<0.05).橫坐標中a為0~10cm土層深度,b為10~20cm 土層深度,下同

呼倫貝爾沙區不同生境土壤細菌的Chao1豐富度指數、Shannon多樣性指數、Simpson優勢度指數組內和組間差異顯著(<0.05)(圖1).草地和沙地樟子松天然林的土壤細菌多樣性指數較高,分別為8.60±0.06和8.62±0.19,其次是裸沙地為8.52±0.26,沙地樟子松人工林土壤細菌多樣性指數最低為7.43±0.03.草地和沙地樟子松天然林土壤細菌群落豐富度指數無顯著性差異(0.05),且明顯高于裸沙地與沙地樟子松人工林.裸沙地、草地、沙地樟子松天然林土壤細菌多樣性指數和優勢度指數均無顯著性差異(0.05),均高于沙地樟子松人工林.由四種生境土壤細菌分布的垂直空間分析,裸沙地、草地、沙地樟子松人工林,土壤細菌群落豐富度指數和多樣性指數均隨著土層深度的增加而增加,而沙地樟子松天然林變化規律與之相反.
不同生境土壤細菌類群主要優勢細菌門(圖2)是變形菌門(Proteobacteria)、放線菌門(Actinobacteria)、酸桿菌門(Acidobacteria),其在四種生境中的均值分別為29.76%±4.43%、22.11%±4.46%、18.71%±4.62%,主要優勢細菌屬是慢生根瘤菌屬()、RB41,其相對豐度的均值分別為5.29%±2.24%、4.22%±1.23%.草地、沙地樟子松人工林、沙地樟子松天然林中變形菌門的相對豐度最高,其均值分別為29.83%±1.14%、34.73%±1.99%和31.95%±0.21%,裸沙地中放線菌門的相對豐度最高,為26.13%±0.43%.酸桿菌門在沙地樟子松天然林中相對豐度最高,為25.80%±4.33%.變形菌門的相對豐度在不同土層分布無差異,放線菌門和酸桿菌門在不同土層深度其相對豐度表現出波動.
PC1軸的可信度是27.50%,PC2軸的可信度為17.40%(圖3).同一生境樣點相對聚集,不同生境樣點相對分開,表明四種生境細菌群落組成存在明顯差異.草地、沙地樟子松人工林和天然林3種生境內樣點相對聚集,表明這3種生境不同土層細菌群落組成較為接近.裸沙地內樣點距離其他3種生境最遠,由此推斷,裸沙地中土壤細菌群落結構與其他3種生境相比存在較大差異.裸沙地0~10和10~20cm兩個土層中,各有一個點與樣地內其他樣點距離較遠,表明裸沙地0~10和10~20cm土層細菌群落組成存在變異性

圖2 不同生境土壤細菌群落組成(門水平)
圖中僅列出相對豐度大于1%的細菌門,小于此值則計為other

圖3 不同生境土壤細菌群落組成主成分分析
土壤理化性質見表2.由圖4可見,第一排序軸解釋了不同生境土壤理化性質與細菌群落關系的63.7%,第二排序軸解釋了18.6%的變異,2個排序軸累計貢獻率為82.3%.不同生境樣本點分布相對離散且距離原點較遠,說明不同生境細菌群落結構特征存在差異且受土壤理化性質影響較大.裸沙地土壤細菌群落結構與土壤含水量有相關性(<0.05);沙地樟子松人工林土壤細菌群落結構與土壤有機質含量、土壤速效磷含量有顯著的相關性(<0.05);沙地樟子松天然林土壤細菌群落結構主要受到土壤pH值的影響.土壤理化性質與土壤細菌群落多樣性指數有相關關系(表3),其中,土壤細菌群落豐富度指數與土壤速效氮含量達到顯著相關(<0.05),與土壤速效磷含量達到極顯著相關(<0.01),土壤細菌群落Shannon指數與土壤速效磷含量達到顯著負相關(<0.05),表現為沙地樟子松人工林土壤細菌多樣性在4種生境中最低且土壤速效磷含量最高.

表2 不同生境土壤理化性質

圖4 不同生境土壤細菌群落結構與環境因子的冗余分析(RDA)
SWC:土壤含水量,pH:土壤pH值,SOM:土壤有機質含量,TN:土壤全氮含量,TP:土壤全磷含量,AN:土壤速效氮含量,AP:土壤速效磷含量

表3 土壤理化性質與土壤細菌多樣性指數之間的相關關系
注:**:相關性顯著(<0.01),*:相關性顯著(<0.05).
2.4.1 功能基因家族組成 Weighted NSTI是用來評估給定樣品中微生物與測序基因組相關的程度.裸沙地、草地、沙地樟子松天然林和人工林NSTI指數分別為0.202~0.223、0.184~0.187、0.172~0.182、0.171~0.172(表4).NSTI指數的數值越小,說明樣品功能預測與已知數據庫的匹配度越高.

表4 不同生境土壤細菌NSTI指數
呼倫貝爾沙區不同生境中獲得的一級生物代謝功能通路分析相對豐度大于1%的功能基因包括4種(圖5):環境信息處理(Environmental Information Processing)、代謝(Metabolism)、遺傳信息處理(Genetic Information Processing)、有機系統(Organismal Systems).每種功能基因在不同生境中相對豐度基本一致,除沙地樟子松天然林功能基因相對豐度隨土層深度的變化而改變,其他3種生境在不同土層功能基因的相對豐度沒有改變.且呼倫貝爾沙區不同生境中樟子松天然林0~10cm土層功能基因與其他3種生境0~10cm土層功能基因存在顯著差異(<0.05).沙地樟子松天然林中代謝、遺傳信息處理、有機系統功能基因的相對豐度顯著高于其他生境,環境信息處理功能基因的相對豐度顯著低于其他生境.

圖5 不同生境土壤細菌功能預測(一級功能層)
以代謝通路相對豐度大于1%作圖
2.4.2 功能基因家族差異分析 6個一級功能層預測得到40個二級功能層中,其中相對豐度在0.1%以上的二級功能層有13個(圖6).4種生境的功能基因在二級功能層存在差異.其中,0~10cm土層中沙地樟子松天然林膜運輸(Membrane Transport)的功能基因豐度顯著低于其他生境,核苷酸代謝(Nucleotide Metabolism)、酶家族(Enzyme Families)、氨基酸代謝(Amino Acid Metabolism)、碳水化合物代謝(Carbohydrate Metabolism)的功能基因豐度顯著高于其他生境.10~20cm土層中裸沙地中核苷酸代謝與酶家族的功能基因豐度顯著高于其他生境,草地和沙地樟子松天然林在該土層中氨基酸代謝的功能基因豐度偏低.
PC1軸的可信度是72.1%,PC2軸的可信度是19.7%(圖7).草地與沙地樟子松人工林兩種生境樣點相對聚集,表明兩種生境內土壤細菌功能組成情況較為相似.裸沙地與沙地樟子松天然林內樣點與另兩種生境距離較遠,由此推斷,這兩種生境與草地和沙地樟子松人工林土壤細菌功能組成存在較大差異.沙地樟子松天然林10~20cm土層中,有一個點與樣地內其他樣點距離較遠,表明該生境10~20cm土層細菌功能組成情況存在變異性.同一生境距離之間的歐幾里得距離較同一土層之間的歐幾里得距離較近,因此,不同生境對細菌功能組成情況影響大于不同土層深度對細菌功能組成情況的影響.

圖6 不同生境土壤細菌功能預測熱圖(二級功能層)
僅展示代謝通路相對豐度大于0.1%功能

圖7 不同生境土壤細菌功能組成主成分分析
呼倫貝爾沙區不同生境土壤細菌多樣性存在差異,這與前人研究結果一致.主要是因為不同生境土壤中所含的凋落物數量、有機質含量、根系分泌物均存在差異,這使得每種生境有其特定的微環境,從而影響細菌多樣性[23-24],土壤細菌多樣性與土壤理化性質有關,沙地樟子松人工林土壤含水量最低,pH值酸性最強,全磷、速效磷含量顯著降低,從而使得該生境土壤細菌多樣性最低[25].不同生境土壤細菌群落多樣性隨土層深度的變化而改變,這與前人研究結果一致,裸沙地、草地、沙地樟子松人工林3種生境中10~20cm土層土壤含水量高于0~10cm土層土壤含水量,該生境土壤細菌多樣性隨土層深度增加而增加.但在沙地樟子松天然林中卻出現了相反的趨勢,由于天然林表層土壤有良好的營養和通氣條件,土壤結構疏松,細菌群落結構與土壤孔隙顯著相關,天然林土壤的孔隙度不同于其他3種生境,細菌在表層土壤生長迅速,從而提高了0~10cm土層的細菌多樣性[26-27].磷元素是植物生長過程中所需要的最重要元素之一,植物對土壤中相對較高含量的磷元素有相對較低的吸收率[28],土壤速效磷含量與變形菌門、酸桿菌門存在相關性[29-30],土壤中存在的這些微生物能夠幫助植物吸收磷元素[31].
呼倫貝爾沙區土壤細菌優勢門與陜北沙化區、黃土高原區、內蒙荒漠草原的細菌優勢門類別一致[32-34].不同生境中土壤優勢細菌門的相對豐度不同是由各生境環境狀況的不同引起的,不同生境會影響土壤氮、磷含量,導致細菌群落結構發生變化[35].由于變形菌門是營養性的,對碳有很高的利用率[36],草地、沙地樟子松人工林和天然林中相對較高的土壤有機質含量保證了沙地地區細菌的生長.由于放線菌門除對干旱有很強的耐受性外,還可以產生刺激促進植物生長的物質[37].酸桿菌門在沙地樟子松天然林中相對豐度最高,這與前人研究不一致[38-39].沙地樟子松天然林與土壤pH值有顯著相關性,且該生境土壤pH值在4種生境中酸性最強,多數研究認為酸桿菌是一種土壤寡營養菌,其生長與土壤酸堿性密切相關[40-41].沙地樟子松天然林中土壤細菌群落豐富度和多樣性指數最高,且表層土有較高的營養性,酸桿菌門起到降解植物纖維素的作用[42].不同生境土壤理化性質與土壤細菌群落結構有顯著的相關性[43-44],其中,裸沙地細菌群落結構與土壤含水量有極強的相關性,土壤含水量影響土壤微生物呼吸,細菌群落結構對土壤含水量變化敏感[45-46].
在呼倫貝爾沙區四種典型生境的一級功能層中,因為細菌群落的功能特征會影響細菌群落結構與多樣性,沙地樟子松天然林中較高豐度的的代謝、遺傳信息處理、有機系統3類功能基因使土壤細菌代謝旺盛,生長力好,從而提高了細菌群落結構的多樣性[47].二級功能層的功能基因存在差異性,表現為樟子松天然林0~10cm土層中核苷酸代謝、酶家族、氨基酸代謝、膜運輸的功能基因豐度顯著高于其他樣本.功能基因代謝主要作用是從土壤中吸收營養物質,通過攝取氨基酸、能量、碳水化合物等來保證細菌的存活,膜運輸的功能基因可以溶解鐵和小分子,保證細菌快速成活[48].樟子松天然林通過這些功能基因從土壤中攝取更多的核苷酸、氨基酸,提高了細菌多樣性.功能基因的豐度通過影響微生物過程進而影響生態過程的轉化[49].
4.1 呼倫貝爾沙區不同生境土壤細菌多樣性指數存在顯著性差異,且沙地樟子松天然林土壤細菌多樣性最高,沙地樟子松人工林中土壤細菌多樣性最低.其Shannon指數分別為8.623±0.193、7.432±0.028.
4.2 呼倫貝爾沙區不同生境土壤細菌群落組成及優勢細菌門的豐度存在差異.草地、沙地樟子松人工林、沙地樟子松天然林3種生境中變形菌門相對豐度最高,其均值分別為29.83%±1.14%、34.73%±1.99%、31.95%±0.21%,裸沙地的主要優勢細菌門為放線菌門,其相對豐度的均值為26.13%±0.43%.
4.3 呼倫貝爾沙區不同生境土壤細菌功能較為豐富.四種生境中土壤細菌群落在環境信息處理、代謝、遺傳信息處理、有機系統方面表現活躍.
[1] 厲桂香,馬克明.北京東靈山樹線處土壤細菌的PICRUSt基因預測分析[J]. 生態學報, 2018,38(6):2180-2186.Li G X, Ma K M. PICRUSt-based predicted metagenomic analysis of treeline soil bacteria on Mount Dongling, Beijing [J]. Acta Ecologica Sinica, 2018,38(6):2180-2186.
[2] 李 婷,張 威,劉光琇,等.荒漠土壤微生物群落結構特征研究進展[J]. 中國沙漠, 2018,38(2):329-338. Li T, Zhang W, Liu G Y, et al. Advances in the study of microbial ecology in desert soil [J]. Desert of China, 2018,38(2):329-338.
[3] 黃 藝,黃木柯,柴立偉,等.干旱半干旱區土壤微生物空間分布格局的成因[J]. 生態環境學報, 2018,27(1):191-198. Huang Y, Huang M K, Chai L W, et al. Drivers of the spatial patterns of soil microbial communities in arid and semi-arid regions [J]. Ecology and Environmental Sciences, 2018,27(1):191-198.
[4] 李 新,焦 燕,代 鋼,等.內蒙古河套灌區不同鹽堿程度的土壤細菌群落多樣性[J]. 中國環境科學, 2016,36(1):249-260. Li X, Jiao Y, Dai G, et al. Soil bacterial community diversity under different degrees of saline-alkaline in the Hetao Area of Inner Mongolia [J]. China Environmental Science, 2016,36(1):249-260.
[5] Suleiman A A, Tojo Soler C M, Hoogenboom G. Determining FAO- 56 crop coefficients for peanut under different water stress levels [J]. Irrigation Science, 2013,31(2):169-178.
[6] 程 亮,王 信,郭青云.青藏高原不同生境土壤細菌群落結構特征及其與環境的關系[J]. 干旱地區農業研究, 2019,37(1):18-26. Cheng L, Wang X, Guo Q Y. Relationship of soil bacterial community composition from different ecosystems on Qinghai-Tibet Plateau with environment factors [J]. Agricultural Research in the Arid Areas, 2019,37(1):18-26.
[7] Peter H, Sommaruga R. Shift in diversity and function of lake bacteria communities upon glacier retreat [J]. The ISME Journal, 2016,10(7): 1545-1554.
[8] Mohammad B, Falk H, Forslund S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018,560:233-237.
[9] Wei H, Peng C H, Yang B, et al. Contrasting soil bacterial community, diversity, and function in two forests in China [J]. Frontiers in Microbiology, 2018,9:1693.
[10] Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands [J]. Proceedings of the National Academy of Sciences, 2015,112(51):15684-15689.
[11] Langille M G, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA 15marker gene sequences [J]. Nature Biotechnology, 2013,31(9):814-821.
[12] Asshauer K P, Wemheuer B, Daniel R, et al. Tax4 Fun: Predicting functional profiles from metagenomic 16S rRNA data [J]. Bioinformatics, 2015,31(17):2882-2884.
[13] Louca S, Jacques S M S, Pires A P F, et al. High taxonomic variability despite stable functional structure across microbial communities [J]. Nature Ecology & Evolution, 2016,1(1):0015.
[14] 董志穎,洪 慢,胡晗靜,等.過量氮輸入對寡營養海水細菌群落代謝潛力的影響[J]. 環境科學學報, 2018,38(2):457-466. Dong Z Y, Hong M, Hu H J, et al. Effect of excess nitrogen loading on the metabolic potential of the bacteria community in oligotrophic coastal water [J]. Acta Scientiae Circumstantiae, 2018,38(2):457-466.
[15] 孫 峰,田 偉,張 菲,等.丹江口庫區庫濱帶植被土壤細菌群落多樣性及PICRUSt功能預測分析[J]. 環境科學, 2019,40(1):421-429. Sun F, Tian W, Zhang F, et al. Composition and predictive functional analysis of rhizosphere bacterial communities in riparian buffer strips in the Danjiangkou reservoir, China [J]. Environmental Science, 2019,40(1):421-429.
[16] Langille M G I, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences [J]. Nature Biotechnology, 2013,31(9):814-821.
[17] Chu H, Sun H, Tripathi B M, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau [J]. Environmental Microbiology, 2016,18(5):1523-1533.
[18] Wendu R L, Li G, Zhang J N, et al. The study of soil microbial biomass and soil enzyme avtivity on different grassland in Hulunbeier, Inner Mongolia [J]. Acta Prataculturae Sinica, 2010,19(5):94-102.
[19] Zhang H F, Song X L, Wang C L, et al. The effects of different vegetation restoration patterns on soil bacterial diversity for sandy land in Hulunbeier [J]. Acta Ecologica Sinica, 2013,33(4):211-216.
[20] 查同剛.土壤理化分析[M]. 北京:中國林業出版社, 2017:18-50. Zha T G. Soil physicochemical analysis [M]. Beijing: China Forestry Publishing House, 2017:18-50.
[21] Rintala A, Pietil? S, Munukka E, et al. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor [J]. Biomol Tech, 2017,28(1): 19-30.
[22] Kuczynski J, Stombaugh J, Walters W A, et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities [J]. Current Protocols in Bioinformatics, 2011,Chapter 10(7):Unit 10.7.
[23] 武志華,夏冬雙,王雪寒,等.利用PCR-DGGE技術分析內蒙古西部地區土壤細菌的多樣性[J]. 生態學報, 2019,39(7):2545-2557. Wu Z H, Xia D S, Wang X H, et al. Analysis of bacterial diversity of soil in western Inner Mongolia using PCR-DGGE [J]. Acta Ecologica Sinica, 2019,33(7):2545-2557.
[24] Martirosyan V, Unc A, Miller G, et al. Desert perennial shrubs shape the microbial-community miscellany in laimosphere and phyllosphere Space [J]. Microbial Ecology, 2016,72(3):659-668.
[25] 劉 洋,曾全超,黃懿梅.基于454高通量測序的黃土高原不同喬木林土壤細菌群落特征[J]. 中國環境科學, 2016,36(11):3487-3494. Liu Y, Zeng Q C, Huang Y M. Soil microbial communities by 454 prosequencing under different arbor forests on the Loess Plateau [J]. China Environmental Science, 2016,36(11):3487-3494.
[26] 張博文,楊彥明,李金龍,等.連續深松對黑土水熱酶特性及細菌群落的影響[J]. 生態學雜志, 2018,37(11):3323-3332. Zhang B W, Yang Y M, Li J L, et al. Effects of continuous subsoiling on temperature, water content, enzyme activity and bacterial community in black soil [J]. Chinese Journal of Ecology, 2018,37(11): 3323-3332.
[27] 韓世忠,高 人,李愛萍,等.中亞熱帶地區兩種森林植被類型土壤微生物群落結構[J]. 應用生態學報, 2015,26(7):2151-2158. Han S Z, Gao R, Li A P, et al. Soil microbial community structure of two types of forests in the mid-subtropics of China [J]. Chinese Journal of Applied Ecology, 2015,26(7):2151-2158.
[28] Mackay J E, Macdonald L M, Smernik R J, et al. Organic amendments as phosphorus fertilisers: chemical analyses, biological processes and plant puptake [J]. Soil Biology and Biochemistry, 2017,107:50-59.
[29] 納小凡,鄭國琦,彭 勵,等.不同種植年限寧夏枸杞根際微生物多樣性變化[J]. 土壤學報, 2016,53(1):241-252. Na X F, Zhen G Q, Peng L, et al. Microbial biodiversity in rhizosphere ofL. relative to cultivation history [J]. Acta Pedologica Sinica, 2016,53(1):241-252.
[30] 張凱煜,谷 潔,王小娟,等.微生物有機肥對櫻桃園土壤細菌群落的影響[J]. 中國環境科學, 2019,39(3):1245-1252. Zhang K Y, Gu J, Wang X J, et al. Effects of bio-organic fertilizer on the soil bacterial community in a cherry orchard [J]. China Environmental Science, 2019,39(3):1245-1252.
[31] Saleemi M, Kiani M Z, Sultan T, et al. Integrated efect of plant growth-promoting rhizobacteria and phosphate-solubilizing microorganisms on growth of wheat (L.) under rainfed condition [J]. Agriculture and Food Security, 2017,6(1):46.
[32] 羅 旦,陳吉祥,程 琳,等.陜北沙區3種主要植物根際土壤細菌多樣性與土壤理化性質相關性分析[J]. 干旱區資源與環境, 2019, 33(3):151-157. Luo D, Chen J X, Cheng L, et al. Analysis of bacteria diversity in the rhizosphere soil of three main plants and its correlation with the soil physical and chemical properties in the desertification area of northern Shanxi [J]. Journal of Arid Land Resources and Environment, 2019,33(3):151-157.
[33] 劉 洋,黃懿梅,曾全超.黃土高原不同植被類型下土壤細菌群落特征研究[J]. 環境科學, 2016,37(10):3931-3938. Liu Y, Huang Y M, Zeng Q C. Soil bacterial communities under different vegetation types in the Loess Plateau [J]. Environmental Science, 2016,37(10):3931-3938.
[34] 高雪峰,韓國棟,張國剛.短花針茅荒漠草原土壤微生物群落組成及結構[J]. 生態學報, 2017,37(15):5129-5136. Gao X F, Han G D, Zhang G G. Soil microbial community structure and composition of Stipa Breiflora on the desert steppe [J]. Acta Ecologica Sinica, 2017,37(15):5129-5136.
[35] 劉 睿,周孝德.水沙環境變化對季節性多沙河流沉積物菌群特征的影響[J]. 中國環境科學, 2017,37(11):4342-4352. Liu R, Zhou X D. Influence of sediment characteristics and overlying water quality on sediment bacterial communities in a seasonal sandy river [J]. China Environmental Science, 2017,37(11):4342-4352.
[36] Lin Y T, Jangid K, Whitman W B, et al. Soil bacterial communities in native and regenerated perhumid montane forests [J]. Applied Soil Ecology, 2011,47(2):111-118.
[37] Stevenson A, Hallsworth J E. Water and temperature relations of soil Actinobacteria [J]. Environmental Microbiology Reports, 2014,6(6): 744-755.
[38] 楊安娜,陸云峰,張俊紅,等.杉木人工林土壤養分及酸桿菌群落結構變化[J]. 林業科學, 2019,55(1):119-127. Yang A N, Lu Y F, Zhang J H, et al. Changes in soil nutrients and Acidobacteria Community Structure in Cunninghamia lanceolata Plantations [J]. Scientia Silvae Sinicae, 2019,55(1):119-127.
[39] Bachar A, Soares M I M, Gillor O. The effect of resource islands on abundance and diversity of bacteria in arid soils [J]. Microbial Ecology, 2012,63(3):694-700.
[40] Nie M, Meng H, Li K, et al. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China [J]. Current Microbiology, 2012,64(1):34-42.
[41] 王光華,劉俊杰,于鎮華,等.土壤酸桿菌門細菌生態學研究進展[J]. 生物技術通報, 2016,32(2):14-20. Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils [J]. Biotechnology Bulletin, 2016,32(2):14-20.
[42] Xiong J B, Liu Y Q, Lin X G, et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau [J]. Environmental Microbiology, 2012,14(9):2457-2466.
[43] Liu G Z, Jin M, Cai C T, et al. Soil microbial community structure and physicochemical properties in amomum tsaoko -based agroforestry systems in the Gaoligong Mountains, Southwest China [J]. Sustainability, 2019,11(2):1-14.
[44] 劉旻霞,李 瑞,張 燦,等.蘭州市南山季節性土壤微生物特征及影響因素[J]. 中國環境科學, 2018,38(7):2722-2730. Liu M X, Li R, Zhang C, et al. Seasonal characteristics and influencing factors of soil microbial in Nanshan, Lanzhou [J]. China Environmental Science, 2018,38(7):2722-2730.
[45] Beth F T, Brockett, Cindy E, et al. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada [J]. Soil Biology and Biochemistry, 2012,44(1):9-20.
[46] 白玉濤,周 玉,趙 吉.內蒙古高原干涸湖泊反硝化及甲烷氧化細菌的群落分析[J]. 中國環境科學, 2012,32(7):1293-1301. Bai Y T, Zhou Y, Zhao J. community structures of denitrifying bacteria and methanotrophs in wetland soils of dry-up lake in the Inner Mongolia Plateau [J]. China Environmental Science, 2012,32(7): 1293-1301.
[47] Kanokratana P, Uengwetwanit T, Rattanachomsri U, et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis [J]. Microbial Ecology, 2011,61(3):518-528.
[48] Wu Z X, Hao Z P, Sun Y Q, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng [J]. Applied Soil Ecology, 2016,107:99- 107.
[49] Fabina S, Paula Jorge L M, Rodrigues Jizhong Z, et al. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities [J]. Molecular Ecology, 2014,23(12):2988-2999.
Soil bacteria community structure and function prediction in the Hulun Buir Sandy Area.
DU Yu-jia1,2,GAO Guang-lei1,2*, CHEN Li-hua1, DING Guo-dong1,2, ZHANG Ying1, CAO Hong-yu1,2
(1.Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;2.Yanchi Ecology Research Station of the Mu Us Desert, Yanchi 751500, China)., 2019,39(11):4840~4848
Soil samples were collected from four habitats in the Hulun Buir sandy area including bare sandland, grassland,varplantation andnatural forest. Subsequently, 16S rRNA genes high-throughput sequencing and PICRUSt-based functional prediction were performed to detect soil bacterial community structure and potential functional component. The results indicated that in the Hulun Buir sandy area, the natural forest and plantation had the highest and lowest soil bacterial Shannon Index (8.623±0.193 and 7.432±0.028), respectively. There were significant differences in alpha and beta diversity of soil bacteria in different habitats. The relative abundance of Proteobacteria was the highest in the grassland (29.83%±1.14%),plantation (34.73%±1.99%) and natural forest (31.95%±0.21%).The relative abundance of Actinobacteriawas the highest in the bare sand (26.13%±0.43%). The dominant soil bacteria genera with highest relative abundance were, RB41with the mean values of 5.29%±2.24% and 4.22%±1.23%, respectively. Soil bacterial functions were classified into 6 and 40 functional categories at hierarchy level 1and 2,which implied the abundant soil bacteria functions. Soil bacteria was active in environmental information processing, metabolism, genetic information processing and organic systems. Further, the functional genes of soil bacterial from the natural forest was abundant in nucleotide metabolism, enzyme family, amino acid metabolism and carbohydrate metabolism, which ensured soil bacteria survival with higher diversity. Conclusively, the functional genes fluctuation of soil bacteria associated with different habitats in the Hulun Buir sandy area reflected the changes of soil bacterial community structure and diversity, and indicated the effects of functional genes on soil bacterial community. Our study will provide a firm basis for better prediction and understanding of soil bacteirial metabolic potential and functions in sandy area.
Hulun Buir sandy area;habitat;community structure;16S rRNA;functional prediction
X172
A
1000-6923(2019)11-4840-09
杜宇佳(1996-),女,山西忻州人,北京林業大學碩士研究生,主要從事荒漠生態學研究.
2019-04-25
國家重點研發計劃項目(2018YFC0507101);國家自然科學基金項目(31600583);中央高?;究蒲袠I務費專項資金項目(2017PT03, 2015ZCQ-SB-02)
* 責任作者, 副教授, gaoguanglei@bjfu.edu.cn