黃晶晶 張洪海* 祝前進 鄒依原
(南京航空航天大學民航學院1) 南京 211106) (中國人民解放軍32145部隊飛行管制室2) 新鄉 453000)
隨著我國經濟的快速發展,對低空空域資源及通航的需求越來越大.對復雜低空飛行安全態勢進行評估不僅能科學監控復雜低空混合飛行,促進通用航空安全運行管理,還能在低空需求日趨旺盛的未來確保低空資源的充分利用.而對復雜低空飛行安全態勢進行評估則需要建立相應的關鍵指標,國內外學者對此有眾多研究.在低空通航領域,張洪海等[1-4]提出了代表航空器發生沖突的次數的“沖突數”,代表進行沖突避讓行為的航空器數量比以衡量該類航空器群體飛行活動所受影響程度的“沖突避讓行為比”,代表沖突解脫持續時間均值的“飛行沖突平均持續時間”,代表航空器間危險迫近程度的“匯聚迫近程度”和“碰撞風險強度”以及同解脫行為相關的“調高度/速度/航向數”、“平均高度/航向/速度改變量”等指標對復雜低空飛行態勢進行了特性分析.在公共運輸航空領域,更多的是與空中交通擁堵、復雜性及飛行事故相關的評估指標,Klein等[5-6]為支持扇區動態劃分提出了七個簡化的動態密度指標,如“航空器密度”“速度變化”“高度變化”等.張晨[7]將代表同高度航空器間間隔均值以衡量航空器的分布情況及密集程度的“平均間隔”,代表不同航空器混合比的“交通混合程度”等指標用于研究空中交通行為復雜性.蔣京芩等[8]提出了區分點線體的“飛行密度”指標,用于評價終端區進場交通流空中交通擁擠狀態.Gano[9]提出了針對某時刻扇區內所有不重復的水平間距小于標準值的航空器對安全性的“碰撞風險指數”等指標用于評估管制員的負荷.在道路交通領域,項喬君等[10]提出了小時沖突數與小時交通量比值的“時均沖突率”指標評價了交叉口交通安全狀況.侯琳等[11]提出了“擁堵擴散/消散時間”兩個時間指標和“最大擁堵半徑”、“最大排隊長度”兩個空間指標分別從時間和空間上反映交通事件對交通造成的影響.由此可知,上述研究綜述提到的評估指標雖然可以作為復雜低空飛行安全態勢評估指標來源參考,但這些研究未對指標的重要程度和重復性進行判斷,低空飛行態勢評估指標較為混雜不成體系,存在信息冗余.因此,還需要對評估指標進行篩選.
國內外對于指標篩選主要采用定性分析或是定量分析的方法,趙桂紅等[12]通過德爾菲法對機場停機坪安全指標進行篩選;石寶峰等[13]通過R型聚類和變異系數法構建了綠色產業指標篩選模型;王芳榮等[14]基于灰色粗糙集理論對次任務安全評價指標進行了篩選.這些研究主要存在的問題是考慮均較為單一,單從定性層面篩選指標主觀性太大;對于比較新的研究課題而言,單從定量方法上篩選指標則過于依賴數據,忽略了指標內涵和研究背景[15].
針對上述問題,文中基于現有低空飛行態勢評估指標,借鑒其他領域的研究,建立復雜低空飛行安全態勢評估指標體系,從主客觀相結合的角度出發,利用變異系數-重要程度-相關系數篩選復雜低空飛行安全態勢評估關鍵指標,通過仿真實驗對關鍵指標進行驗證分析.
1) 信息含量最大原則 指標的信息含量反映了指標數據差異對復雜低空飛行安全態勢評估的鑒別能力,信息含量越大表明該指標對安全態勢評估的鑒別能力越強.
2) 冗余信息最小原則 指標間的相關性越大,所含信息重疊程度越高,而過多的冗余信息會使評估結果反映的信息混亂,因此指標間應有所區分.
3) 有效性原則 篩選所得指標不超過原始指標的30%,所含信息應至少占原始指標信息的95%以上.
4) 普適性原則 每個指標數值雖不同,但其數據走向若均具有明顯的規律性,則可以稱其具有普適性.篩選后的指標應適用于絕大多數的場景,不隨仿真參數的變化發生較大的波動,具有一定的穩定性和規律性.
文中基于指標篩選原則,依據復雜低空飛行安全態勢運行特性從沖突風險和解脫行為兩個層面將復雜低空飛行安全態勢評估指標分為兩大類,根據現有文獻綜述進行整理和完善,得到復雜低空飛行安全態勢評估關鍵指標篩選原理,見圖1.

圖1 復雜低空飛行安全態勢評估關鍵指標篩選原理
1) 沖突數 某時段特定低空空域內通用航空器發生飛行沖突的總次數,反映低空空域的整體沖突狀態,表示為
(1)
式中:n為統計時段內的飛行量;t0~t1為統計時段;conflicti,t0~t1為通用航空器i在時段t0~t1發生的飛行沖突次數,若通用航空器i在時刻t∈[t0,t1]存在飛行沖突則conflicti,t=1,否則conflicti,t=0.
2) 沖突發生率 同時考慮沖突數和飛行量的影響,表示為
(2)
3) 沖突時長 某時段特定低空空域內所有通用航空器從探測到沖突至沖突解脫所用的時間,用以衡量沖突強度,表市為
(3)
式中:timei,t0~t1為通用航空器在時段的沖突解脫時間.
4) 碰撞風險強度 基于人工勢場法的通用航空器之間或者通用航空器與障礙物之間的斥力大小即危險貼近程度,表示為
式中:η為正比例位置增益系數;Di(t)為通用航空器i在時刻t與最近的航空器或障礙物之間的距離;Rs為通用航空器i的最小水平安全間隔要求.
5) 匯聚迫近程度 某時段特定低空空域內通用航空器i與通用航空器j或與障礙物之間的距相撞剩余時間的倒數,用來反映通用航空器匯聚的緊迫程度,表示為
(5)
設通用航空器位置和速度矢量為P和V,則任意兩架通用航空器i和j的相對位置和相對速度可以表示為Dij=Pi-Pj,Vij=Vi-Vj.當(Dij,Vij)>0時,通用航空器間呈匯聚態勢.
6) 沖突解脫行為比 某時段特定空域內飛行沖突解脫行為次數與飛行量的比值,值越小說明解脫越容易,表示為
CRt0~t1=
(6)
式中:headingi,t,altitudei,t,velocityi,t分別為通用航空器i在時刻t的調航向、調高度、調速度次數.若進行了調航向、調高度、調速度行為,則headingi,t=1,altitudei,t=1,velocityi,t=1否則均為0.
7) 調航向數 某時段特定低空空域內通用航空器發生調航向行為的總次數,表示為
(7)
8) 調向行為比 某時段特定低空空域內通用航空器發生調航向行為的總次數與沖突數的比值,表示為
(8)
9) 平均航向改變量 某時段特定低空空域內所有調航向航空器的航向改變量的平均值,反映航空器沖突解脫的難度,表示為
(9)

10) 調高度數 某時段特定低空空域內通用航空器發生調高度行為的總次數,表示為
(10)
11) 調高行為比 某時段特定低空空域內通用航空器發生調高度行為的總次數與沖突數的比值,表示為
(11)
12) 平均高度改變量 某時段特定低空空域內所有調高度航空器的高度改變量的平均值,反映航空器沖突解脫的難度,表示為
(12)
13) 調速度數 某時段特定低空空域內通用航空器發生調速度行為的總次數,表示為
(13)
14) 調速行為比 某時段特定低空空域內通用航空器發生調速度行為的總次數與沖突數的比值,表示為
(14)
15) 平均速度改變量 某時段特定低空空域內所有調速航空器的速度改變量的平均值,反映航空器沖突解脫的難度,表示為
(15)

步驟1數據獲取及處理 設計多個不同仿真場景并進行多次實驗,獲取原始數據,通過MATLAB計算各個指標值.為消除不同指標量綱和數量級影響的同時保留各指標原始變異程度信息,保證數據的可比性問題采用均值化法對數據進行標準化處理為
(16)

步驟2指標重要程度打分 通過專家討論會,請5個專家按照“非常重要、重要、一般、較不重要、不重要”對應“5,4,3,2,1”對各個指標的重要程度進行打分,去掉一個最高分,一個最低分,取平均值作為各指標最后的重要程度分值.本文各指標重要程度打分結果見表1.

表1 指標重要程度分值
步驟3變異系數-重要程度篩選 通常使用變異系數來判斷某個指標的差異程度,差異程度越大,差異信息越顯著,對評估結果影響越大.為防止因差異系數極差過大而誤刪部分重要指標,避免定量分析對指標內涵的完全忽視,還需結合指標的重要程度進行定性分析判斷.
通過式(17)計算指標的變異系數,由于數據集中難免有個別極端數據,但這些極端值一般不會引起中位數的變化,因此,以變異系數均值和重要程度中位數作為參考線,繪制變異系數-重要程度四分圖,刪除低變異系數-低重要程度象限的指標.
(17)

步驟4相關性篩選 根據皮爾遜相關系數式(18)計算指標間的相關性,并對同一類指標進行相關性的統計檢驗.查皮爾遜積差相關性臨界值表可知置信水平為0.01的雙尾檢驗的臨界值,在數軸上臨界值和絕對相關值1之間將其平均分為前、中、后三段,分別稱為相關、中度相關、高度相關區域,據此,對同一類指標中高度相關的指標進行篩選取舍,之后再對類間指標進行相關性分析篩選最終指標.
(18)
式中:rij為i個指標和第j個指標的相關系數;yik為第k個評價對象第i個指標標準化后的值(k=1,2,…,n).
步驟5普適性分析 將各個實驗篩選得到的指標進行橫向對比,篩選保留共同的穩定性較高的指標作為復雜低空飛行安全態勢評估關鍵指標.
步驟6合理性判定 設S為指標數據的協方差矩陣;trS為協方差矩陣的跡,表示協方差矩陣的主對角線上各指標的方差之和;m為經過篩選之后的指標個數;n為原始指標的個數,則篩選后的指標對初選指標的信息貢獻In即篩選后的m個指標能夠反映n個原始指標的信息為
(19)

以美國洛杉磯城市信息為依據,基于復雜低空飛行態勢仿真系統設計三類復雜低空繁忙空域環境,仿真區域面積為70 km×50 km,以300 m為垂直間隔單位將低空空域劃分為10個高度層.圖2a)為場景A,包括一個管制機場和相應的終端區,直徑為40 km,兩個通航機場和相應的報告空域,直徑為10 km,一個農林作業點,兩個搶險救援點,一條觀光旅游航線;圖2b)為場景B,在場景A的基礎上修改了通航活動任務混合比及其對應的航線;在圖2a)場景A的基礎上增加了固定障礙物和雷暴天氣的隨機影響作為場景C.假設:航空器的最小安全間隔要求為1 km,沖突探測距離為5 km.通過設置不同的參數和場景設計6組實驗,見表2,每組實驗仿真40次,每次仿真2 200 tick,其中tick為仿真平臺時間單位,1 tick=3 min,表3為通用航空器參數.

圖2 仿真實驗場景

表2 仿真實驗參數設置

表3 通用航空器參數
以實驗一為例,基于“變異系數-重要程度-相關系數”對指標數據進行篩選.
通過SPSS繪制變異系數-重要程度四分圖(見圖3),剔除落在第三象限即低重要程度-低變異系數(包含中位數參考線)上的指標,剩余以下10個指標:沖突數、沖突發生率、沖突時長、碰撞風險強度、匯聚迫近程度、沖突解脫行為比、調高行為比、調速度數、調速行為比、平均速度改變量.

圖3 變異系數-重要程度四分圖
通過式(18)計算person相關系數即r值,見表4~5,因實驗一樣本容量為76,查person積差相關性臨界值表可知當置信水平為0.01時的雙尾檢驗臨界值為0.290,故當兩個指標的r值落在高度相關區間[0.763,1]內時應刪去其中一個.

表4 實驗一沖突風險類指標間person相關系數
注:**在0.01水平(雙側)上顯著相關;*在0.05水平(雙側)上顯著相關;陰影為高度相關.

表5 實驗一解脫行為類指標間person相關系數
注:**在0.01水平(雙側)上顯著相關;*在0.05水平(雙側)上顯著相關;陰影為高度相關.
由表4可知,沖突數和沖突發生率及沖突時長的相關系數分別為0.975和0.890,沖突發生率和沖突時長的相關系數為0.804,均呈現高度相關,考慮沖突發生率的意義比沖突數好,沖突時長具有滯后性不適用于實時評估,因此,沖突風險類指標保留沖突發生率、碰撞風險強度、匯聚迫近程度3個指標;解脫行為類指標中,調速度數和平均速度改變量、沖突解脫行為比的相關系數分別為0.770和0.767,呈高度相關,而由圖3可知,調速度數信息含量比平均速度改變量、沖突解脫行為比大,因此保留調速度數、調速行為比、調高行為比3個指標.
對暫時保留的6個指標進行類間相關性分析,見圖4.由圖4可知,沖突發生率和調速度數的相關性大于0.763,呈高度相關,考慮指標的意義,選擇保留沖突發生率指標.

圖4 類間各指標person相關系數
因此,實驗一篩選得到的指標為沖突發生率、碰撞風險強度、匯聚迫近程度、調高行為比、調速行為比5個指標.同理可得到其余實驗的指標篩選結果見表5.

表5 各實驗關鍵指標篩選結果
在3.2篩選結果的基礎上分析出現3次及以上指標在各個實驗中呈現的特性,見圖5.

圖5 沖突風險類指標穩定性圖
由圖5a)可知,實驗一至六的沖突發生率隨飛行量的增加,其變化趨勢較為一致.隨著飛行量的增長,沖突發生率一直處于波動上升的趨勢,說明沖突數增長的速度越來越快,當飛行量為55~70架次時,沖突發生率均趨于一個穩定值,說明此時沖突數在以一個穩定的速度增長,在75架次之后,不論沖突數還是沖突發生率都出現了混亂的走向,這是由于仿真平臺已經達到其承受的仿真能力,因此之后的數據不建議考慮.
由圖5b)~d)各指標的穩定性上看,各個實驗的匯聚迫近程度異常值較多且出現時機相隔甚遠,波動趨勢雜亂無章;在沖突時長被作為篩選后的指標保留的實驗二、三、五中,該指標在50架次之后表現混亂,毫無規律可言,反觀各個實驗的碰撞風險強度指標隨著飛行量的變化趨勢在不同實驗場景下較為一致,由圖5b)可知隨著飛行量的增加,碰撞風險強度出現波動式上升,在40~45架次時保持穩定,說明該飛行量對應的低空空域飛行安全態勢較為安全穩定,在飛行量為52~75架次時出現了較大起伏的波動,說明此時空域飛行安全態勢不夠穩定,容易發生危險.因此沖突風險類指標中采用沖突發生率和碰撞風險強度作為關鍵評估指標.
圖6為解脫行為類指標穩定性圖,由圖6可知,當飛行量在26架次時,實驗一至六的調高行為比均突增,說明26架次的飛行量有可能是空域安全態勢變化的一個轉折點;飛行量為55~70架次時,實驗一至六調高行為比趨于穩定,說明此時空域趨于飽和,70架次之后的調高行為比均出現波動,說明此時空域有可能已超出了承載能力,飛行安全態勢不容樂觀.從指標的穩定性而言,調高行為比指標隨著飛行量的變化趨勢不隨實驗場景參數規則的調整而發生較大波動,而調速行為比的數據走向毫無規律可循,因此解脫行為類指標中采用調高行為比作為關鍵評估指標.

圖6 解脫行為類指標穩定性圖
由上述分析可知六個實驗經過有效性篩選和普適性驗證最終得到三個關鍵指標:沖突發生率、碰撞風險強度、調高行為比.通過式(19)分別對這三個指標在各實驗中的合理性進行判定得到各個實驗的信息貢獻值均達到99%.鑒于此,篩選得到的三個關鍵指標占原始指標的20%,均反映各實驗原始指標95%以上的信息,證明該篩選模型篩選出的關鍵指標是合理的.
綜上,復雜低空飛行安全態勢評估關鍵指標為沖突發生率、碰撞風險強度、調高行為比.
1) 文中借鑒各領域關于態勢安全評估指標的定義,結合復雜低空飛行態勢運行特性,從沖突風險和解脫行為兩個維度給出了復雜低空飛行安全態勢評估指標體系.
2) 采用主客觀相結合的方法構建了關鍵指標篩選模型,通過變異系數-重要程度四分圖篩選對評估結果影響弱的指標,克服了指標因變異系數極差過大而被刪除的問題,既避免了定量分析過于依賴數據而完全忽視指標內涵,又降低了主觀判斷出錯的可能性,同時保證了被保留下來的關鍵指標對評估結果具有顯著的影響;通過相關性分析保證了指標間信息的不重疊性,避免因信息冗余導致評估結果準確度的損失,相關性分析僅在指標的兩兩之間作出選擇,高度相關的指標之間互有替代性,因此,評估結果不會有太大的偏差.
3) 通過設置不同的實驗場景,對篩選的指標進行穩定性和規律性分析,最終得到了沖突發生率、碰撞風險強度、調高行為比三個復雜低空飛行安全態勢評估關鍵指標,保證了用20%的指標反映了99%的原始信息,驗證了文中提出的篩選模型是高效且合理的.