章寶繁 吳圣豪



[摘要] 目的 分析EZH2在慢性髓細胞性白血病大鼠中調控機制。 方法 選取SPF級Wistar雌性大鼠60只,制備慢性髓細胞性白血?。–ML)模型,shEZH2(EZH2敲低)組和shEZH2+IM組大鼠行EZH2敲低實驗,移植第2天,IM組、shEZH2+IM組灌胃劑量為100 mg/kg的伊馬替尼(IM)藥液,shEZH2組、溶劑組灌胃20%磺丁基-β-環糊精(Captisol)。末次給藥后解剖觀察各組大鼠脾臟腫大和結節情況,檢測大鼠髓系細胞與白血病細胞比例、白血病祖細胞比例、白血病干細胞比例情況和骨髓內mTOR、Akt及PI3K蛋白表達量。 結果 shEZH2組及shEZH2+IM組大鼠脾臟和骨髓內髓系細胞與白血病細胞比例較溶劑組顯著降低,差異有統計學意義(P<0.05);shEZH2組及shEZH2+IM組大鼠脾臟和骨髓內中粒細胞巨噬細胞祖細胞、共同淋巴系祖細胞比例較溶劑組顯著降低,差異有統計學意義(P<0.05);shEZH2組及shEZH2+IM組大鼠骨髓內mTOR、Akt及PI3K蛋白表達較溶劑組升高,差異有統計學意義(P<0.05)。 結論 敲低CML大鼠移植細胞內EZH2,可有效降低骨髓和脾臟內CML細胞不同亞群細胞比例,其作用機制可能和上調PI3K/AKT/mTOR信號通路內各蛋白表達有關。
[關鍵詞] 慢性髓細胞性白血病;組蛋白賴氨酸甲基轉移酶EZH2;造血干細胞;白血病干細胞
[中圖分類號] R739.2 ? ? ? ? ?[文獻標識碼] A ? ? ? ? ?[文章編號] 1673-9701(2019)31-0034-04
Analysis of the regulation mechanism of EZH2 in chronic myeloid leukemia rats
ZHANG Baofan ? WU Shenghao
Department of Chemotherapy, Wenzhou Central Hospital in Zhejiang Province, Wenzhou ? 325000, China
[Abstract] Objective To analyze the regulation mechanism of EZH2 in chronic myeloid leukemia rats. Methods 60 SPF-derived Wistar female rats were selected to prepare chronic myeloid leukemia (CML) model. The shEZH2 (EZH2 knockdown) group and the shEZH2+IM group were subjected to EZH2 knockdown test. On the second day of transplantation, IM group and shEZH2+IM group received 100 mg/kg imatinib (IM) solution, shEZH2 group and solvent group received 20% sulfobutyl-β-cyclodextrin (Captisol). After the last administration, the spleen enlargement and nodules of the rats in each group were observed by anatomy. The ratio of myeloid cells to leukemia cells, the proportion of leukemia progenitor cells, the proportion of leukemia stem cells and the expression of mTOR, Akt and PI3K protein in bone marrow were detected. Results The ratio of spleen and bone marrow mesangial cells to leukemia cells in shEZH2 group and shEZH2+IM group was significantly lower than that in the solvent group(P<0.05). The proportion of neutrophil macrophage progenitor cells and common lymphoid progenitor cells in spleen and bone marrow of shEZH2 group and shEZH2+IM group was significantly lower than that in the solvent group (P<0.05). The protein expression of mTOR, Akt and PI3K proteins in rat bone marrow of shEZH2 group and shEZH2+IM group was higher than that in the solvent group, and the difference was statistically significant(P<0.05). Conclusion The knockdown of EZH2 in the transplanted cells of CML rats can effectively reduce the proportion of different subpopulations of CML cells in bone marrow and spleen. The mechanism may be related to the up-regulation of the expression of various proteins in PI3K/AKT/mTOR signaling pathway.
1.5 統計學方法
采用SPSS19.0統計軟件進行數據分析,計量資料用(x±s)表示,兩組間比較采用t檢驗,多組間計量資料比較采用方差分析,P<0.05為差異有統計學意義。
2 結果
2.1 敲低EZH2對大鼠脾臟和骨髓內髓系細胞與白血病細胞比例影響情況比較
shEZH2組及shEZH2+IM組大鼠脾臟和骨髓內髓系細胞與白血病細胞比例較溶劑組顯著降低,差異有統計學意義(P<0.05)。見表1。
2.2 敲低EZH2對大鼠骨髓和脾臟內白血病干細胞比例影響情況比較
shEZH2組及shEZH2+IM組大鼠脾臟和骨髓內GFP+LSK、GFP+LT-SHCs及GFP+ST-HSCs細胞含量較溶劑組顯著降低,差異有統計學意義(P<0.05)。見表2。
2.3 敲低EZH2對大鼠骨髓和脾臟內白血病祖細胞比例影響情況比較
shEZH2組及shEZH2+IM組大鼠脾臟和骨髓內中粒細胞巨噬細胞祖細胞、共同淋巴系祖細胞比例較溶劑組顯著降低,差異有統計學意義(P<0.05)。見表3。
2.4 各組大鼠骨髓內mTOR、Akt及PI3K蛋白表達狀況比較
shEZH2組及shEZH2+IM組大鼠骨髓內mTOR、Akt及PI3K蛋白表達較溶劑組升高,差異有統計學意義(P<0.05)。見表4。
3 討論
白血病干細胞(LSCs)為CML患者出現TKIs耐藥根源,其一般被定義成BCR-ABL+CD34+CD38-原始祖細胞[8-9]。目前,越來越多研究顯示,即便在獲得完全分子生物學緩解CML患者機體內依然能夠檢測到BCR-ABL+LSCs,并最終會造成CML復發,所以將LSCs靶向清除可能為治愈CML有效策略之一[10-12]。盡管LSCs存活對BCR-ABL激酶活性無依賴性,但會受到多條信號路徑的調節,包含TGF-β、Notch及Wnt/β-catenin等。許多腫瘤細胞內EZH2表現為功能性獲得性突變或者高表達,同時上述變化和患者的不良預后聯系緊密。EZH2為保持很多CSCs功能必需的(包含急性髓細胞性白血病、乳腺癌、神經膠質瘤及胰腺癌等)。EZH2還能夠調控很多條對CSCs有關鍵作用的信號路徑,包含STAT3、Notch及Wnt/β-catenin等。近期有研究顯示,EZH2敲除能夠對LSCs自我更新和存活抑制,增大了LSCs對IM敏感性[13-15]。
CML大鼠體內祖細胞和GFP-HSCs含量能夠反映正常造血細胞含量,本文研究顯示,shEZH2組及shEZH2+IM組大鼠脾臟和骨髓內髓系細胞與白血病細胞比例較溶劑組顯著降低,shEZH2組及shEZH2+IM組大鼠脾臟和骨髓內GFP+LSK、GFP+LT-SHCs及GFP+ST-HSCs細胞含量較溶劑組顯著降低,shEZH2組及shEZH2+IM組大鼠脾臟和骨髓內中粒細胞巨噬細胞祖細胞、共同淋巴系祖細胞比例較溶劑組顯著降低,差異有統計學意義,說明敲低EZH2可顯著抑制白血病HSCs含量。CML細胞內,BCR-ABL可連續激活PI3K/AKT/mTOR信號路徑,并在CML細胞增殖和存活中有重要影響。雖然IM敏感CML細胞內PI3K/AKT/mTOR能夠被IM抑制,但IM長期處理所形成IM耐藥內PI3K/AKT/mTOR路徑則被明顯激活[16]。同時,激活PI3K/AKT/mTOR信號路徑還會受到其他一些信號路徑的控制,BCR-ABL非依賴性PI3K/AKT/mTOR路徑激活可能為CML細胞對于IM天然耐藥主要因素。相關研究顯示,CML細胞內對PI3K/AKT/mTOR信號路徑抑制則可使耐藥細胞對IM敏感性增大。本文研究顯示,將EZH2敲低可抑制PI3K/AKT/mTOR信號路徑,說明敲低EZH2降低CML大鼠骨髓及脾臟內各項細胞比例可能和PI3K/AKT/mTOR信號路徑被抑制有聯系。由于時間和人力等條件限制,本研究中部分數據難免存在偏頗,今后還需進一步學習相關理論知識,進行更深入分析。
綜上所述,敲低CML大鼠移植細胞內EZH2,可有效降低骨髓和脾臟內CML細胞不同亞群細胞比例,其作用機制可能和上調PI3K/AKT/mTOR信號通路內各蛋白表達有關。
[參考文獻]
[1] 黎韻瑤,陳純.急性髓細胞白血病甲基化改變及臨床治療的研究進展[J].國際輸血及血液學雜志,2018,41(1):30-36.
[2] 程艷紅,徐修才.慢性髓細胞性白血病耐藥機制的研究進展[J].實用醫學雜志,2018,34(11):521-524.
[3] Zhou J,Nie D,Li J,et al. PTEN is fundamental for elimination of leukemia stem cells mediated by GSK126 targeting EZH2 in chronic myelogenous leukemia[J]. Clinical Cancer Research,2018,24(1):17-22.
[4] 劉楊,余康捷,王哲,等.組蛋白甲基轉移酶EZH2和MLL2在彌漫大B細胞淋巴瘤中的最新研究進展[J].現代腫瘤醫學,2018,26(10):1634-1638.
[5] G?llner S,Oellerich T,Agrawalsingh S,et al.Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia[J]. Nature Medi-cine,2017,23(1):69-78.
[6] 吳家林,陳香宇,田欽.急性病毒感染條件下組蛋白甲基化轉移酶EZH2對CD4+T細胞mTOR信號通路的影響[J].免疫學雜志,2019,7(4):304-308.
[7] Min C,Moore N,Shearstone JR,et al. Selective inhibitors of histone deacetylases 1 and 2 synergize with azacitidine in acute myeloid leukemia[J]. Plos One,2017,12(1):128-132.
[8] 徐金升,高少輝,白亞玲,等.干擾組蛋白賴氨酸甲基轉移酶SET8對腎透明細胞癌786-O細胞增殖的影響[J].中華腫瘤防治雜志,2017,24(8):524-528.
[9] Zhang G,Zhang L,Yang X,et al. High ETS2 expression predicts poor prognosis in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation[J].Annals of Hematology,2018,11(8):1-7.
[10] Fujita S,Honma D,Adachi N,et al.Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia[J].Leukemia,2018,32(4):855-859.
[11] 王珍珍,邱少偉,王建祥.治療急性髓細胞白血病新藥的研究進展[J].國際輸血及血液學雜志,2017,40(2):169-173.
[12] Bapat A,Keita N,Martelly W,et al. Myeloid disease mutations of splicing factor SRSF2 cause G2-M arrest and skewed differentiation of human hematopoietic stem and progenitor cells[J]. Stem Cells,2018,36(11):204-208.
[13] 李正發,劉偉,杜云云,等.異基因造血干細胞移植治療慢性髓細胞性白血病監測染色體核型及融合基因表達[J].中國組織工程研究,2017,21(29):4691-4696.
[14] Kandarpa M,Wu YM,Dan R,et al. Clinical characteristics and whole exome/transcriptome sequencing of coexisting chronic myeloid leukemia and myelofibrosis[J]. American Journal of Hematology,2017,92(6):555-559.
[15] 宋磊,徐鑫,趙瑤,等.組蛋白去甲基化酶KDM3B在急性髓系白血病中的靶基因鑒定[J].現代腫瘤醫學,2018, 26(8):307-311.
[16] 張玉峰,劉紅玉.藥物基因組學在慢性髓細胞白血病靶向治療中的研究進展[J].國際輸血及血液學雜志,2017, 40(40):425-428.
[17] Najafabadi MM,Shamsasenjan K,Akbarzadehalaleh P. Angiogenesis status in patients with acute myeloid leukemia:From diagnosis to post-hematopoietic stem cell transplantation[J]. International Journal of Organ Tran-splantation Medicine,2017,8(2):57-67.
[18] Yu T,Wang Y,Hu Q,et al. The EZH2 inhibitor GSK343 suppresses cancer stem-like phenotypes and reverses mesenchymal transition in glioma cells[J]. Oncotarget, 2017, 8(58):98348-98359.
[19] Razmkhah F,Soleimani M,Mehrabani D,et al. Leukemia microvesicles affect healthy hematopoietic stem cells[J]. Tumour Biol,2017,39(2):2234-2238.
[20] Xu DD,Ying W,Zhou P J,et al. The IGF2/IGF1R/Nanog signaling pathway regulates the proliferation of acute myeloid leukemia stem cells[J]. Frontiers in Pharmacology,2018,9(5):687-690.
(收稿日期:2019-05-27)