徐雪萌 李飛翔 李永祥 申長璞 孟坤鵬 陳 靜
(河南工業大學機電工程學院, 鄭州 450001)
自動包裝生產線上粉體及顆粒物料的供送與定量大多采用螺旋輸送設備,螺旋輸送裝置的合理設計是提高物料輸送效率及包裝精度的關鍵因素[1-5]。國內外學者在改進與優化螺旋體結構方面做了大量研究[6-9]。但對于定量變距螺旋結構參數的相關研究較少,本文針對等徑變距螺旋喂料結構出料量不穩的問題,提出一種定量變距螺旋參數確定方法。
首先,在等距螺旋結構流量計算式的基礎上,提出一種針對變距螺旋結構流量的計算方法,并推導出變距流量式;然后,根據流量計算式,以流量作為響應值,應用Design-Expert軟件,采用響應面法[10-12]對變距螺旋結構進行螺距設計,得到最佳螺距組合;最后進行仿真分析。為提高仿真精度,以小米為物料、小米休止角為響應值對離散元仿真參數進行標定,得到最佳仿真參數組合;根據所得最佳螺距組合與仿真參數組合,建立三維模型,導入EDEM軟件進行離散元分析,驗證變距流量式可靠性及螺旋參數正確性。
定量變距螺旋結構工作時,其物料在料筒內的運動狀態非常復雜,為分析料筒內物料運動變化規律,在建立變距螺旋軸參數化模型前需做合理假設。結合相關文獻假設條件[13-15],本文作以下假設:不考慮物料在螺旋內的壓縮情況;假設螺旋內物料軸向運動速度等于葉片軸向推移速度,不考慮螺旋面與物料間摩擦情況。
為保證物料在螺旋葉片內全面流動,防止“死區”及料倉“結拱”現象出現,須保證螺旋軸在整個下料段單位長度的下料量相等,即每個螺距的體積應等于本螺距前面螺距體積與料倉進入本螺距下料量之和[15],可表達為
(1)

圖1 變距轉換等距圖Fig.1 Variable distance conversion isometric map
式中V1——進料口第1個螺距的體積,mm3
V2——進料口第2個螺距的體積,mm3
V3——進料口第3個螺距的體積,mm3
Vn——進料口第n個螺距的體積,mm3
E——單位長度每轉下料體積,mm3/mm
S1——螺旋進料口第1個螺距,mm
S2——螺旋進料口第2個螺距,mm
S3——螺旋進料口第3個螺距,mm
Sn——螺旋進料口第n個螺距,mm
L——螺旋進料口長度,mm
由相關文獻可知[15],單位長度每轉下料體積計算式為
(2)
式中Q——生產率,kg/h
n——轉速,r/min
ρ——物料密度,kg/m3
φ——填充率
變距螺旋流量計算與等距螺旋流量計算的不同點主要在進料口螺距的變化,等距螺旋的流量計算公式為[16-17]
Q=47D2ρφSnCK
(3)
式中D——螺旋葉片外徑,m
S——螺距,m
C——傾斜輸送修正系數
K——螺旋葉片影響系數
針對變距螺旋結構,對于進料段的每個螺距,將其看作是針對變距螺旋結構的等距延伸,如圖1所示,以進料段4圈螺距為例進行說明。螺旋結構轉速、葉片外徑及進料段總長度保持不變,對變距螺旋進料段的各圈螺距分別看作等螺距螺桿進行分析。圖1b為進料段首圈螺距S1與其螺距對應的等距螺桿;圖1c、1d、1e分別為與進料段螺距S2、S3、S4對應的等距螺桿;以此類推,對于變距螺旋結構進料段的第n圈螺距延伸為與其螺距Sn相等的等距螺桿。在單位長度下料量相等的理想假設條件下,針對延伸后的等距螺桿結構,對其進料段單位長度上每轉的下料量進行分析求解,以此看作與其螺距值對應的變距螺旋結構進料段各圈螺距的單位長度每轉的下料量,如將延伸的螺距S1的等距螺桿結構進料段的單位長度每轉下料量作為首圈螺距S1進行分析。根據延伸前后單圈螺距料槽體積的不變性,延伸后各個等距單圈料槽體積之和即為變距螺旋結構進料段料槽體積的總和,由此對變距螺旋結構的流量計算式進行推導。
由圖1可知,針對進料段各圈螺距所延伸的等距螺旋結構,同樣基于與變距結構相同的假定條件,管徑、填充率、密度的不變性,由式(3)可知各個等距螺旋結構的質量流量為
(4)
式中Q1、Q2、Qn——變距螺旋第1圈、第2圈、第n圈螺距等距轉換后的流量,kg/h
由式(2)可知
(5)
式中E1、E2、En——第1圈、第2圈、第n圈螺距等距轉換后的單位長度每轉下料體積,mm3/mm
由式(5)可知,變距螺旋進料段的下料總體積可表示為
(6)
由變距螺旋的基本理論可知

(7)
由式(6)、(7)等價,可知變距螺旋單位每轉下料體積E為
(8)
由此可得變距螺旋結構流量計算式為

(9)
本文根據推導的變距螺旋流量計算式,以螺旋喂料結構的流量作為響應值對螺旋結構進行響應面設計。考慮到變距螺旋結構的復雜性以及正交試驗組合的多樣性,若進行實際試驗設計,會耗費大量的時間及成本,本文以實際定量變距螺旋流量需求為響應,以變距螺旋流量計算式結果作為預測值進行試驗設計分析。
輸送物料為小米,物料密度ρ=780 kg/mm3,物料綜合特性系數A=65,物料填充率φ=0.4,螺旋給料裝置生產率Q=1 200 kg/h,螺旋總長度L=650 mm,螺旋轉速n=150 r/min,傾斜輸送修正系數C=1,螺旋葉片影響系數K=1[17-20]。結合國內外文獻以及實際變距設計,本文采用四段式進行分析[21]。
根據推導的變距螺旋結構流量計算式,在實際葉片直徑、填充率、密度、轉速一定的情況下,主要考慮進料段變螺距對流量的影響,選定各段螺距進行相關試驗設計,根據實際首圈螺距要求及等差級數設計原則[22-24],選定各圈螺距變化范圍,采用3水平進行Box-Behnken試驗設計,因素編碼如表1所示。

表1 Box-Behnken 試驗因素編碼Tab.1 Factors and codes of Box-Behnken test mm
選取X1、X2、X3、X4為因素編碼值進行試驗設計,選3 個中心點對誤差進行評估。Box-Behnken試驗結果如表2所示,應用Design-Expert建立進料段4圈螺距與流量的二階回歸方程為

(10)
Box-Behnken試驗模型方差分析結果如表3

表2 Box-Behnken試驗設計與結果Tab.2 Design and results of Box-Behnken test

表3 Box-Behnken試驗設計二次多項式模型方差分析Tab.3 ANOVA of quadratic polynomial model of Box-Behnken test



Q=949-13X1+19X2+118X3+212X4+46X1X3+ (11)
根據優化回歸模型方差分析結果,可知螺旋結構進料段第1和第3圈螺距間交互項P<0.05,表明其對螺旋結構流量影響極顯著。應用Design-Expert軟件對第1與第3圈螺距間交互作用的三維響應曲面進行繪制,如圖2所示,可以直觀地反映交互項對響應值流量的影響。由響應曲面可知,相對于螺距S1(X1),螺距S3(X3)的響應面曲線比較陡,表明其對螺旋結構流量的影響較為顯著。

圖2 螺距S1與螺距S3交互效應Fig.2 Interaction diagram between pitch S1 and pitch S3
應用Design-Expert軟件以螺旋喂料結構的質量流量為目標,對優化后的回歸方程進行尋優求解可知,欲使與實際需求流量誤差最小,則最佳的螺距組合為S1=0.346D,S2=0.589D,S3=0.865D,S4=1.03D。考慮螺距的等差變化,對數據進行圓整可知,S1=0.35D,S2=0.60D,S3=0.85D,S4=D。
考慮到仿真時間的局限性,本文采用小米物料進行仿真驗證試驗。為提高仿真試驗的精確性,以休止角作為響應值對小米物料的仿真接觸參數進行標定,以使得仿真所得結果更加符合實際[25-27]。
原材料為山東老鄉生態農業有限公司生產的小米:蛋白質質量分數17%,脂肪質量分數6%,含水率12.7%,平均粒徑為1.5 mm。

圖3 小米顆粒堆積試驗Fig.3 Millet particle accumulation experiment
為盡量減少因人為而導致的測量誤差,利用Matlab 對采集圖像進行處理,如圖3所示。在 Matlab讀取試驗圖像后,依次對圖像進行灰度處理、二值化處理、邊緣檢測,最后提取邊界點,以高斯函數進行擬合,通過計算高斯曲線拐點處的斜率來得到休止角[25],測量重復5次取其平均值,測得小米休止角為31.15°。
3.3.1仿真參數
結合國內外文獻對小米顆粒與不銹鋼離散元仿真參數的設置及軟件內置GEMM 數據庫[28-32],本研究中各仿真參數的變化范圍如表5所示。模擬所需本征參數設定為小米密度800 kg/m3,小米泊松比0.25,小米剪切模量5.2×107Pa。材料的接觸參數隨材料密度、形狀、粒徑等不同變化較大,無法通過查閱物性手冊或文獻資料獲取,采用虛擬試驗進行標定。

表5 離散元仿真參數Tab.5 Discrete element simulation parameter
3.3.2仿真模型
本模擬參照GB-T 11986—98《表面活性劑粉體和顆粒休止角的測量》標準,采用注入法,漏斗出口內徑為10 mm,接收圓柱底面直徑為100 mm,漏斗下端口與圓柱底盤上表面距離75 mm,仿真模型如圖4所示。

圖4 小米顆粒堆積的模擬仿真Fig.4 Simulation of millet particle accumulation
3.3.3正交試驗
為得到小米的最優接觸參數,應用Minitab軟件設計六因素兩水平的正交試驗,考慮到因素較多,采用部分試驗設計,試驗結果如表6所示,應用Minitab建立6個仿真參數與休止角的回歸方程為

Q=19.16+2.26F+2.74G+3.18H+1.82I + 0.91J+1.12K-0.49JK (12)
應用Minitab軟件以小米實際休止角為目標,對正交試驗所得回歸方程進行尋優求解可知,欲使仿真與試驗所得休止角誤差最小,小米-小米恢復系數為0.25,小米-小米靜摩擦因數為0.65,小米-小米滾動摩擦因數為0.01,小米-不銹鋼恢復系數為0.3,小米-不銹鋼靜摩擦因數為0.6,小米-不銹鋼滾動摩擦因數為0.05。
根據小米離散元參數標定結果,本研究中各仿真參數的取值如表5所示。
利用SolidWorks軟件建立變距螺旋結構三維模型,導入EDEM軟件進行仿真。結合相關文獻[33-36],料筒內徑與葉片外徑間隔3 mm,料斗高距料筒中心線300 mm,料斗上口徑長300 mm,寬200 mm,螺旋進料段螺距為S1=35 mm,S2=60 mm,S3=85 mm,S4=100 mm。料斗下口邊線與料筒端線切線方向夾角為30°。顆粒仿真采用軟球模型,顆粒生成方式為 Dynamic,先以快速填充方式使物料充滿料斗,靜止1 s,待物料處于靜止狀態,對螺旋體轉速進行設置,步長設為0.05 s,仿真時間設為15 s,待仿真結束后,通過后處理中Geometry Bin對輸送的顆粒速度、質量流量進行采集,仿真模型如圖5所示。

圖5 仿真模型Fig.5 Simulation model diagram
待仿真結束后,采用后處理中上色功能對物料顆粒速度大小進行標記,較大值標記為紅色,中間值標記為藍色,較小值標記為黃色。仿真時間為15 s,本文采用4個時間節點對物料顆粒運動速度進行分析,速度仿真如圖6所示。

圖6 螺旋結構速度仿真Fig.6 Spiral structure velocity simulation
如圖6所示,在3、4 s時,物料剛剛被輸送出料筒,料筒的末端填充還未達到穩定階段,料斗中物料速度較小且處于相對穩定趨勢,在螺旋料筒中,藍色物料大多處在螺旋葉片附近,螺旋進料段的首圈螺距處有少許紅色物料,表明分布在螺旋葉片附近的物料因葉片推力呈現較大速度;螺旋進料段處,料斗中的物料更多地趨向首圈螺距,因此此處物料顆粒速度最大。在7、8 s時,物料已開始穩定被輸送出料筒,料筒的末端填充已達到穩定階段,料斗中部物料運動趨勢更加明顯,速度有所提升;進料段的各個螺旋處,葉片附近的藍色物料隨著輸送的穩定其速度分布也較為均勻;在料筒的末端,因采用無葉片螺旋,物料在出口處因后面物料推力而呈現較大速度。
質量流量是評價螺旋輸送裝置性能的重要指標,質量流量的穩定保證了計量精度。待仿真結束后,去除物料充填時間段,采用兩個輸送穩定段對料筒末端質量流量進行采集。采用后處理工具質量流量傳感器Mass Flow Sensor對質量流量進行檢測,觀察變距螺旋結構質量流量的變化趨勢,檢測結果如圖7所示。

圖7 質量流量檢測結果Fig.7 Mass flow detection charts
由圖7可知,質量流量隨時間呈現波浪狀,這主要由于單位螺距送料中,受螺旋葉片終止端面影響,螺旋葉片轉到不同位置時,葉片與料筒形成不同的存料空間,在螺旋轉一圈的時間里,單位轉角呈現不同下料量。質量流量的波動范圍較小,平均值為0.321 kg/s,與變距計算流量值0.319 kg/s的誤差為0.627%,進一步表明了定量變距螺旋流量計算式的可行性以及所設計螺旋結構的穩定性。
為進一步驗證質量流量的穩定性,以失重式原則對質量流量進行分析。采用后處理Geometry Bin對整個料筒中物料顆粒質量進行采集,結果如圖8所示。

圖8 質量-時間變化曲線Fig.8 Quality-time curve
由圖8可知,料筒中物料顆粒的總質量隨時間變化趨勢基本呈線性遞減變化,其斜率的絕對值即為料筒末端的平均質量流量。測得料筒末端平均質量流量為0.325 kg/s。與最佳參數計算值0.319 kg/s誤差為1.89%,進一步驗證了變距流量公式的可靠性及響應面法尋優求解的可行性。
(1)針對定量變距螺旋喂料結構流量計算以經驗為主、缺乏系統的計算方法的問題,在等距螺旋結構流量計算式的基礎上,根據變距向等距轉換的思想,提出一種變距螺旋結構流量的計算方法,并推導出流量計算式。
(2)根據推導的變距螺旋流量計算式,采用響應面法對變距螺旋結構進行螺距設計,以流量作為響應值,應用Design-Expert軟件,得到進料段螺距最佳組合為S1=0.35D,S2=0.60D,S3=0.85D,S4=D。
(3)根據響應面設計所得最佳參數以及標定所得仿真參數結果,用SolidWorks軟件建立螺旋結構三維模型并導入EDEM軟件,以小米物料進行離散元仿真分析,發現仿真質量流量平均值為0.321 kg/s,與變距計算流量值0.319 kg/s的誤差為0.627%,與實際要求流量值誤差為3.7%。驗證了流量公式的可靠性,以及響應面法設計螺旋結構的可行性。