999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具平坦歐氏邊界的局部凸浸入超曲面

2020-01-10 03:29:48王寶富
四川大學學報(自然科學版) 2020年1期
關鍵詞:數學

王寶富

(四川大學數學學院, 成都 610064)

1 Introduction

Firstly, we recall some notions on an immersed hypersurface in differential geometry. An immersed hypersurface M is defined asx:M→Rn+1, whereMis ann-dimensional differential manifold.

(i) If for eachp∈M, there is a neighborhood Up?Msuch thatx(Up) lies on one side of the tangent hyperplaneπatx(p), then we callx(M) a locally convex hypersurface.

(ii) For a locally convex surfacex(M), ifπ∩x(Up)={x(p)} for eachp∈M, then we callx(M) the locally strongly (strictly) convex hypersurface.

Ifx(M) isC2, the definition “locally strongly convex” is equivalent to “locally uniformly convex”. Generally, to prove thatx(M) is locally strongly (uniformly) convex hypersurface, we only needs to prove that its second fundamental form is positive definite.

(iii) If for eachp∈M,x(M) lies on one side of its tangent hyperplane atx(p), then we callx(M) a globally convex hypersurface, or (simply) a convex hypersurface.

An equivalent definition of the immersed locally convex hypersurface is stated in Ref.[1].

Definition1.1A locally convex surface M inRn+1is an immersion ofn-dimensional oriented and connected manifold N (possibly with boundary) inRn+1,i.e., a mappingT:N→M ?Rn+1, such that for anyp∈N, there exists a neighborhoodωp?N such that

(i)Tis a homeomorphism fromωptoT(ωp);

(ii)T(ωp) is a convex graph;

(iii) the convexity ofT(ωp) agrees with the orientation.

A hypersurface is assumed to be locally uniformly convex, namely it has positive principal curvatures[2].

Generally the geometric property of a hypersuface boundary is closely related to the completeness of the immersed hypersuface itself. So it is interesting to study the boundary character of a locally uniformly (strongly) convex immersed hypersurface. In Ref.[3], the author classifies the Euclidean boundary points as two classes and gives many hypersurfaces with the first class and the second class Euclidean boundary point respectively.

In this paper, we will prove that there exist locally strongly convex immersed surfaces inR3such that their boundaries lie in a plane but the surfaces is not globally convex, which are different from an existing conclusion. Moreover, we give a method to construct similar hypersurfaces inR4,i.e., we get the following theorem:

Forn=2, there is an Example 1.3 constructed by author and involved in Ref. [4], it is totally different from Lemma 2.1 of Refs.[5-6].

(1)

wherea>0 be a constant. The Euclidean boundary ofx(M) is a line segment

The surface is convex at all the points corresponding tot=0,i.e., at any points of the half circle

x(M) is obviously not globally convex (see Fig.1 and Fig.2).

Fig.1 A sketch map of x(M) for a=2

In the next section, we will construct a new locally strongly (uniformly) convex surface inR3(n=2) and some new examples forn>2 which are satisfying Theorem 1.2. Then we complete the proof.

2 New examples

LetM?R2be an open set andx:M→R3be an immersed surface inR3defined by

f(u)g(t)sint,h(u))

(2)

wheref(u),g(t),h(u) are smooth functions to be determined later.By direct calculations we have

A normal vector ofx:M→R3is

h′f(g′ cost-gsint),ff′g2).

Denote

|f|A,

Next, we have

2g′cost-gsint,0).

Then we get the second fundamental form ofx:M→R3, which can be expressed as

II=Lu udu2+2Lu tdudt+Lttdt2,

where

Lu u=A-1g2(h″f′-h′f″),Ltt=

A-1fh′(-gg″+2g′2+g2),Lut=0

(3)

Define the functiong(t) as following.

(4)

whereb>0 is a constant to be determined later.A direct calculation shows thatg(t) isC2. For

-gg″+2g′2+g2=g2+2g′2-

(5)

Letf(u)=u,h(u)=eu,u>0 in (2). We get

Luu=A-1g2eu>0

(6)

Ltt=A-1ueu(-gg″+2g′2+g2)>0

(7)

letM={(u,t)|(u,t)∈(0,+)×R}?R2,x:M→R3be defined by

(8)

for the surfacex(M)?R3.

? By (6), (7), it is locally strongly convex.

? Whenu→0,(0,0,1) is the unique Euclidean boundary point of the surface (see Fig.3), so the boundary ofx(M) lies in a plane.

Fig.3 The unique Euclidean boundary point of the surface

Therefore, This example satisfies Theorem 1.2.

It is easy to construct the high dimensional hypersufaces satisfying Theorem 1.2. Here we give a method as follows ( here we only considern=3).

p(v)f(u)g(t)sint,h(u),k(v))

(9)

as before, where

andp(v),k(v) will be determined later. We have

The normal vector ofx:M→R4is

k′h′pf(g′cost-gsint),k′p2ff′g2,

pp′f2g2h′).

where

We have

2g′cost-gsint,0,0),

Then we get the coefficients of the second fundamental forms ofx:M→R4as follows

(10)

(11)

(12)

(13)

Lut=Lvt=0

(14)

Luu>0,Ltt>0,Lvv>0

(15)

A-2g4cos2ucos2v(1-sin2usin2v)>0

(16)

where

(17)

This means that the immersionx:M→R4is locally strongly convex. The boundary ?x(M) is

lies in a plane. One may easily check that the hypersuface defined by the above formula (9) satisfies Theorem 1.2.

Similarly, based on the above new example, one may get

ucosvg(t)sint,eu,sinv)

(18)

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产精品一区二区不卡的视频| 伊人丁香五月天久久综合| 丰满人妻久久中文字幕| 欧美高清三区| 亚洲国产日韩在线观看| 久久香蕉国产线| 免费国产黄线在线观看| 91久久偷偷做嫩草影院电| 国产一二三区视频| 亚洲国产成人无码AV在线影院L| 国产亚洲精久久久久久久91| 青青网在线国产| 亚洲国产精品VA在线看黑人| 香蕉视频国产精品人| 国产成人三级| 91最新精品视频发布页| 亚洲精品国产自在现线最新| 欧美日韩免费观看| 91精品免费久久久| 中文字幕va| 久久精品aⅴ无码中文字幕| 91麻豆精品国产91久久久久| 青青久视频| 亚洲日本精品一区二区| 美女一区二区在线观看| 无码AV日韩一二三区| 国内精品免费| 久久91精品牛牛| 成人福利在线免费观看| 激情综合五月网| 激情综合网激情综合| 亚洲一区二区三区麻豆| 国产va欧美va在线观看| 国产成人高清在线精品| 亚洲欧美日韩视频一区| 国产女人综合久久精品视| 亚洲一区精品视频在线| 性激烈欧美三级在线播放| a级毛片免费在线观看| 亚洲欧美另类中文字幕| 国产高清无码麻豆精品| 亚洲精品天堂在线观看| 日韩精品无码免费专网站| 老司机午夜精品视频你懂的| 亚洲视频四区| AV无码一区二区三区四区| 国产手机在线小视频免费观看 | 国内精品一区二区在线观看| 久久无码高潮喷水| 91外围女在线观看| 97se综合| 欧美.成人.综合在线| 色悠久久综合| 人人妻人人澡人人爽欧美一区| 国产福利大秀91| 热久久国产| 精品无码国产自产野外拍在线| 国产精品吹潮在线观看中文| 色九九视频| 老司国产精品视频| 日韩二区三区| 国产第一色| 精品色综合| 久久永久精品免费视频| 亚洲成a人片| 高清久久精品亚洲日韩Av| 九九视频免费在线观看| 91青青草视频在线观看的| 国产成人做受免费视频| 国产麻豆永久视频| 久久亚洲高清国产| 久久久久亚洲Av片无码观看| 久久美女精品国产精品亚洲| 免费毛片视频| 久久久久无码精品| 欧美区国产区| 亚洲国产精品国自产拍A| 在线人成精品免费视频| 无码日韩视频| 福利视频99| 日韩黄色在线| 日韩成人高清无码|