999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具平坦歐氏邊界的局部凸浸入超曲面

2020-01-10 03:29:48王寶富
四川大學學報(自然科學版) 2020年1期
關鍵詞:數(shù)學

王寶富

(四川大學數(shù)學學院, 成都 610064)

1 Introduction

Firstly, we recall some notions on an immersed hypersurface in differential geometry. An immersed hypersurface M is defined asx:M→Rn+1, whereMis ann-dimensional differential manifold.

(i) If for eachp∈M, there is a neighborhood Up?Msuch thatx(Up) lies on one side of the tangent hyperplaneπatx(p), then we callx(M) a locally convex hypersurface.

(ii) For a locally convex surfacex(M), ifπ∩x(Up)={x(p)} for eachp∈M, then we callx(M) the locally strongly (strictly) convex hypersurface.

Ifx(M) isC2, the definition “l(fā)ocally strongly convex” is equivalent to “l(fā)ocally uniformly convex”. Generally, to prove thatx(M) is locally strongly (uniformly) convex hypersurface, we only needs to prove that its second fundamental form is positive definite.

(iii) If for eachp∈M,x(M) lies on one side of its tangent hyperplane atx(p), then we callx(M) a globally convex hypersurface, or (simply) a convex hypersurface.

An equivalent definition of the immersed locally convex hypersurface is stated in Ref.[1].

Definition1.1A locally convex surface M inRn+1is an immersion ofn-dimensional oriented and connected manifold N (possibly with boundary) inRn+1,i.e., a mappingT:N→M ?Rn+1, such that for anyp∈N, there exists a neighborhoodωp?N such that

(i)Tis a homeomorphism fromωptoT(ωp);

(ii)T(ωp) is a convex graph;

(iii) the convexity ofT(ωp) agrees with the orientation.

A hypersurface is assumed to be locally uniformly convex, namely it has positive principal curvatures[2].

Generally the geometric property of a hypersuface boundary is closely related to the completeness of the immersed hypersuface itself. So it is interesting to study the boundary character of a locally uniformly (strongly) convex immersed hypersurface. In Ref.[3], the author classifies the Euclidean boundary points as two classes and gives many hypersurfaces with the first class and the second class Euclidean boundary point respectively.

In this paper, we will prove that there exist locally strongly convex immersed surfaces inR3such that their boundaries lie in a plane but the surfaces is not globally convex, which are different from an existing conclusion. Moreover, we give a method to construct similar hypersurfaces inR4,i.e., we get the following theorem:

Forn=2, there is an Example 1.3 constructed by author and involved in Ref. [4], it is totally different from Lemma 2.1 of Refs.[5-6].

(1)

wherea>0 be a constant. The Euclidean boundary ofx(M) is a line segment

The surface is convex at all the points corresponding tot=0,i.e., at any points of the half circle

x(M) is obviously not globally convex (see Fig.1 and Fig.2).

Fig.1 A sketch map of x(M) for a=2

In the next section, we will construct a new locally strongly (uniformly) convex surface inR3(n=2) and some new examples forn>2 which are satisfying Theorem 1.2. Then we complete the proof.

2 New examples

LetM?R2be an open set andx:M→R3be an immersed surface inR3defined by

f(u)g(t)sint,h(u))

(2)

wheref(u),g(t),h(u) are smooth functions to be determined later.By direct calculations we have

A normal vector ofx:M→R3is

h′f(g′ cost-gsint),ff′g2).

Denote

|f|A,

Next, we have

2g′cost-gsint,0).

Then we get the second fundamental form ofx:M→R3, which can be expressed as

II=Lu udu2+2Lu tdudt+Lttdt2,

where

Lu u=A-1g2(h″f′-h′f″),Ltt=

A-1fh′(-gg″+2g′2+g2),Lut=0

(3)

Define the functiong(t) as following.

(4)

whereb>0 is a constant to be determined later.A direct calculation shows thatg(t) isC2. For

-gg″+2g′2+g2=g2+2g′2-

(5)

Letf(u)=u,h(u)=eu,u>0 in (2). We get

Luu=A-1g2eu>0

(6)

Ltt=A-1ueu(-gg″+2g′2+g2)>0

(7)

letM={(u,t)|(u,t)∈(0,+)×R}?R2,x:M→R3be defined by

(8)

for the surfacex(M)?R3.

? By (6), (7), it is locally strongly convex.

? Whenu→0,(0,0,1) is the unique Euclidean boundary point of the surface (see Fig.3), so the boundary ofx(M) lies in a plane.

Fig.3 The unique Euclidean boundary point of the surface

Therefore, This example satisfies Theorem 1.2.

It is easy to construct the high dimensional hypersufaces satisfying Theorem 1.2. Here we give a method as follows ( here we only considern=3).

p(v)f(u)g(t)sint,h(u),k(v))

(9)

as before, where

andp(v),k(v) will be determined later. We have

The normal vector ofx:M→R4is

k′h′pf(g′cost-gsint),k′p2ff′g2,

pp′f2g2h′).

where

We have

2g′cost-gsint,0,0),

Then we get the coefficients of the second fundamental forms ofx:M→R4as follows

(10)

(11)

(12)

(13)

Lut=Lvt=0

(14)

Luu>0,Ltt>0,Lvv>0

(15)

A-2g4cos2ucos2v(1-sin2usin2v)>0

(16)

where

(17)

This means that the immersionx:M→R4is locally strongly convex. The boundary ?x(M) is

lies in a plane. One may easily check that the hypersuface defined by the above formula (9) satisfies Theorem 1.2.

Similarly, based on the above new example, one may get

ucosvg(t)sint,eu,sinv)

(18)

猜你喜歡
數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
我們愛數(shù)學
我為什么怕數(shù)學
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數(shù)學就難過
數(shù)學也瘋狂
主站蜘蛛池模板: 精品国产自| 美女无遮挡免费网站| 成人毛片免费在线观看| 午夜影院a级片| 亚洲国产日韩视频观看| 成人蜜桃网| 中国美女**毛片录像在线| 国产喷水视频| 国产尤物视频网址导航| 亚洲啪啪网| 97在线免费| 五月丁香伊人啪啪手机免费观看| 日韩成人在线一区二区| 日韩区欧美区| 9cao视频精品| 一本大道东京热无码av| 日韩福利在线观看| 亚洲一级色| 国产va免费精品观看| 国产精品白浆无码流出在线看| 久久久久久高潮白浆| 国产精品美人久久久久久AV| 日韩无码真实干出血视频| 欧洲亚洲欧美国产日本高清| 亚洲精品片911| 亚洲综合中文字幕国产精品欧美| 露脸一二三区国语对白| 天天综合网色中文字幕| 国产乱子伦无码精品小说| 国产亚洲精| 亚洲欧美在线综合图区| 日韩av在线直播| 国产尤物jk自慰制服喷水| 99在线视频免费观看| 亚洲综合18p| 亚洲永久色| 超碰色了色| 人妻丰满熟妇αv无码| 日韩人妻精品一区| 久久国产高清视频| 久青草国产高清在线视频| 日韩精品免费在线视频| 亚洲精品波多野结衣| 一区二区理伦视频| 影音先锋亚洲无码| 日韩高清中文字幕| 日韩东京热无码人妻| 欧洲极品无码一区二区三区| 伊人久久精品亚洲午夜| 国产精品原创不卡在线| 五月婷婷中文字幕| 97久久人人超碰国产精品| 国产精品一区二区在线播放| 就去吻亚洲精品国产欧美| 欧美日韩国产精品综合| 中文无码日韩精品| 亚洲无码电影| 深爱婷婷激情网| 成人无码区免费视频网站蜜臀| 色噜噜久久| 亚洲无限乱码一二三四区| 国内自拍久第一页| 欧美精品v| 国产第八页| 欧美性天天| 国产亚洲精品自在久久不卡| 制服丝袜一区| 香蕉色综合| 国产美女91视频| 亚洲综合九九| 在线国产毛片手机小视频| 国产精品无码制服丝袜| 在线a网站| 亚洲av无码牛牛影视在线二区| 欧美伦理一区| 97综合久久| 亚洲成网777777国产精品| 亚洲天堂网在线视频| 午夜国产精品视频| 免费观看男人免费桶女人视频| 国产哺乳奶水91在线播放| 亚洲不卡影院|