林剛云 肖健 吳銀秀 黃小丹 楊尚東 屈達才



摘要:【目的】分析秸稈覆蓋還田對桑園土壤肥力及其細菌多樣性的影響,闡明秸稈覆蓋還田技術對南方桑園土壤肥力及健康的影響機制與應用前景,為構建穩定高產、可持續發展的桑樹栽培管理體系提供參考依據。【方法】設秸稈覆蓋還田桑園和對照桑園(非秸稈覆蓋還田桑園)2個處理,其中,秸稈覆蓋還田處理是將水稻秸稈切碎、自然堆漚50~60 d后覆蓋于桑樹根系兩旁,覆蓋45 d后分別采集秸稈覆蓋還田桑園和對照桑園的土壤樣品,利用傳統的測定方法和Illumina高通量測序技術分析秸稈覆蓋還田對桑園土壤生物學性狀及土壤細菌群落結構特征的影響。【結果】秸稈覆蓋還田桑園土壤β-葡糖苷酶、氨肽酶和磷酸酶活性及土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物生物量磷(MBP)含量均顯著高于對照桑園土壤(P<0.05,下同);秸稈覆蓋還田桑園土壤的菌群Chao1和Shannon指數也顯著高于對照桑園土壤。在秸稈覆蓋還田桑園和對照桑園土壤中相對豐度大于1.00%的優勢細菌門分類數量均為11個,但二者的優勢細菌門分類組成比例存在一定差異;相對于對照桑園土壤,秸稈覆蓋還田桑園土壤中Bacteroidota的相對豐度急劇增加,而綠彎菌門(Chloroflexi)和Verrucomicrobiota的相對豐度急劇下降。在秸稈覆蓋還田桑園和對照桑園土壤中相對豐度大于1.00%的優勢細菌屬分類數量分別為23和24個;與對照桑園土壤相比,秸稈覆蓋還田桑園土壤中雖然慢生根瘤菌屬(Bradyrhizobium)、假雙頭斧形菌屬(Pseudolabrys)、Dongia、Candidatus_Udaeobacter和norank_f_JG30-KF-AS9等優勢細菌屬部分缺失,但富集了類諾卡氏菌屬(Nocardioides)、norank_f_Methyloligellaceae、黃桿菌屬(Flavobacterium)和微枝形桿菌屬(Microvirga)等特有優勢菌屬。秸稈覆蓋還田桑園土壤的特有細菌屬為199個、特有細菌種為390個,分別是對照桑園土壤特有細菌屬和細菌種的3.75和2.52倍。【結論】秸稈覆蓋還田不僅顯著提高桑園土壤肥力,還改變桑園土壤優勢細菌不同(門、屬)分類水平的組成比例,形成更豐富多樣的土壤細菌群落結構,而有助于維護桑園土壤健康。
關鍵詞: 秸稈覆蓋還田;桑園;土壤酶活性;土壤微生物生物量;細菌群落結構
中圖分類號: S154.36? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2020)10-2339-09
Effects of straw mulching on soil biological properties and bacterial community structure in mulberry plantation
LIN Gang-yun, XIAO Jian, WU Yin-xiu, HUANG Xiao-dan,
YANG Shang-dong, QU Da-cai*
(College of Agriculture, Guangxi University, Nanning? 530004, China)
Abstract:【Objective】Analyzing the effects of straw mulching on soil fertility and bacterial diversity in mulberry fields, and clarifying the mechanism and application prospects for straw mulching techniques on soil fertility and health in sou-thern mulberry fields, in order to provide a reference basis for building a stable, high-yield and sustainable mulberry cultivation system. 【Method】Two treatments were set up, including straw mulching and returning to the mulberry field and the control mulberry field(non straw mulching and returning field). The straw mulching treatment was to cut the rice straw to pieces, pile it up naturally for 50-60 d and then cover both sides with the mulberry root system, and collect the straw mulch after 45 d of covering. The soil samples of returning mulberry fields and control mulberry fields were used to analyze the effects of straw mulching on soil biological properties and soil bacterial community structure characteristics using traditional measurement methods and Illumina high-throughput sequence technology. 【Result】The activities of β-glucosidase, amino peptidase and phosphate in mulc-hing soils of mulberry plantation were all significantly higher than those of control(P<0.05, the same below), as well as the microbial biomass carbon(MBC), microbial biomass nitrogen(MBN), microbial biomass phosphorus(MBP). The Chao1 and Shannon indexes of the microbial community of the mulberry soil covered with straws were also significantly higher than those of the control mulberry soil. In both straw mulching mulberry fields and control mulberry fields, there were 11 types of dominant bacteria whose relative abundance was greater than 1.00%, but there were some differences in the composition ratio of dominant bacteria. In addition, compared to the control mulberry soil, the ratios of Bacteroidota increased sharply and Chloroflexi, Verrucomicobiota decreased sharply in mulching soils of mulberry plantation at phylum level. There were 23 and 24 dominant bacterial genera in the soil with relative abundance greater than 1.00% in straw mulching mulberry fields and control mulberry fields, respectively. Moreover, some dominant bacteria, such as Bradyrhizobium,Pseudolabrys,Dongia,Candidatus_Udaeobacter and norank_ f_JG30-KF-AS9 even though lost in mulching soil of mulberry plantation, but Nocardioides,norank_f_Methyloligellaceae,Flavobacterium and Microvirga accumulated in mulching soil as its unique dominant bacteria. There were 199 unique bacteria genera and 390 unique bacteria species in the soil of straw mulching mulberry field, which were 3.75 times and 2.52 times of those in the soil of control mulberry field. 【Conclusion】Straw mulching not only can significantly improve soil fertility, but also change the proportions of soil dominant bacterial community structure(phylum and genus), and form a more diverse soil bacterial community structure. It is helpful for maintaining the health of mulberry field soil.
Key words: straw mulching and returning to field; mulberry field; soil enzyme activity; soil microbial biomass; bacterial community structure
Foundation item: Special Project for Guangxi Innovation Team Construction of National Modern Agricultural Industrial Technology System(nycytxgxcxtd-02-04); University Science and Technology Innovation and Service Capacity Enhancement Project of Guangxi(Guijiaokeyan〔2020〕8)
0 引言
【研究意義】桑樹(Morus alba L.)是我國重要的多年生木本經濟植物。據統計,我國現有的桑樹種質資源居世界第一,約3000份,分屬15個種和4個變種(蘇超和焦鋒,2011;杜偉等,2017)。廣西是我國最大的桑蠶生產基地,無論是桑園面積還是蠶繭產量均連續多年位居全國首位,2018、2019年廣西桑園面積分別為22.85萬和19.72萬ha,蠶繭產量分別達40.44萬和37.4萬t(林強,2020;張志林等,2020)。但目前廣西桑園管理偏施氮肥,普遍存在氮、磷、鉀肥施用比例失調等問題,造成土壤肥力下降進而導致桑葉產量降低,嚴重制約了廣西桑蠶產業的健康發展(張志林等,2020)。因此,研究并優化桑園施肥技術對提高桑園土壤肥力和桑葉產量及保護生態環境具有重要意義。【前人研究進展】秸稈還田作為改善土壤環境和提高土壤肥力的一種重要方式已被廣泛認可(王靜靜等,2019;劉明等,2020)。秸稈中的碳氮比較高,與燃燒作物秸稈相比,將秸稈還田不僅可減少CO2排放,增加土壤固碳容量(逯非等,2010;Li et al.,2018;彭廷等,2019),還能提高有機質含量與土壤肥力,以及促進土壤團粒結構形成,進而改善土壤結構、透氣性、持水能力和陽離子交換量(Lenka and Lal,2013;伍佳等,2019;Su et al.,2020)。此外,在秸稈分解過程中能釋放出有利于植物吸收利用的無機磷,而提高土壤養分的有效性(Shan et al.,2010)。趙亞麗等(2015)研究表明,與常規耕作+無秸稈還田相比,深耕+秸稈還田、深松+秸稈還田處理的土壤有機碳含量分別提高14.8%和12.4%,土壤微生物數量分別提高45.9%和33.9%,土壤酶活性分別提高34.1%和25.2%,作物產量分別提高18.0%和19.3%,即土壤深松(耕)結合秸稈還田有利于作物產量及土壤微生物數量和酶活性的提高。王靜靜等(2019)研究證實,越冬期還田水稻秸稈的腐解呈由慢到快又變慢的變化趨勢,且與氣溫及降水量的變化相關;秸稈還田具有培肥地力的作用,可提高土壤有機質和鉀素含量,同時有效調節土壤pH。石含之等(2020)通過研究秸稈還田對土壤有機碳結構的影響,發現秸稈還田能促使紅壤和黑土中有機碳疏水性增強,提高土壤團聚體穩定性,對改善土壤結構具有促進作用;此外,外源秸稈的加入會引起土壤中有機碳分解,具體表現為:黑土發生負激發效應,其有機碳結構趨于復雜,穩定性增強;而紅壤和褐土發生正激發效應,其有機碳結構簡單、穩定性減弱。可見,腐熟分解后的作物秸稈還田不僅能有效提高土壤速效養分含量及作物產量(Han et al.,2013),還有助于提高土壤肥力和維護土壤健康(Gaind and Nain,2007)。自20世紀90年代以來,秸稈還田在我國北方小麥、玉米種植體系中得到大面積推廣應用,其累計推廣面積已達110億ha(Qi et al.,2015)。但也有研究表明,新鮮秸稈還田會對土壤健康產生負面影響,可能是作物品質和產量提高的限制因素(Hamada et al.,2011;Yang et al.,2011;楊麗華等,2013)。因此,科學的秸稈還田方法應避免采用新鮮秸稈還田方式。【本研究切入點】目前,在小麥、玉米等大宗作物生產中秸稈還田技術已得到廣泛應用,但在我國南方地區鮮見桑園應用秸稈還田技術,尤其缺乏秸稈還田對桑園土壤肥力影響及其改良措施的相關研究。【擬解決的關鍵問題】基于田間定位試驗,系統分析秸稈覆蓋還田對桑園土壤肥力及其細菌多樣性的影響,旨在闡明秸稈覆蓋還田技術對南方桑園土壤肥力及健康的影響機制與應用前景,為構建穩定高產、可持續發展的桑樹栽培管理體系提供參考依據。
1 材料與方法
1. 1 試驗地概況
試驗在廣西大學農學院教學實驗桑園基地(東經108°17′14″,北緯22°51′17″)進行,試驗區域屬于亞熱帶季風氣候,陽光充足,雨量充沛;年均氣溫21.7 ℃,年均降水量1600 mm。桑園土壤類型為赤紅壤,土壤pH 5.79,有機質含量6.75 g/kg,全氮含量0.84 g/kg,全磷含量0.53 g/kg,全鉀含量14.54 g/kg,堿解氮含量57.45 mg/kg,速效磷含量3.39 mg/kg,速效鉀含量81.77 mg/kg。
1. 2 樣品采集
試驗設秸稈覆蓋還田桑園(SR)和對照桑園(CK,非秸稈覆蓋還田桑園)2個處理,桑樹品種均為桂桑12號,樹齡6年。其中,SR處理是將水稻秸稈切碎、自然堆漚50~60 d后覆蓋于桑樹根系兩旁;CK處理除了未進行相應的秸稈覆蓋外,其余田間管理措施與SR處理完全相同。覆蓋秸稈45 d后(2020年6月18日)分別采集SR處理和CK處理桑園0~30 cm土層的土壤樣品。每個處理桑園隨機選擇6個土壤取樣點,用無菌密封袋收集后裝入放有冰袋的冰盒中帶回實驗室,將每份土壤樣品分成2份。1份在室內風干后過40目篩,用于土壤理化性質測定;1份過10目篩后用于土壤生物學性狀和細菌群落結構分析。
1. 3 土壤生物學性狀分析
土壤β-葡糖苷酶、氨肽酶和磷酸酶活性參照楊尚東等(2013)的方法進行測定;土壤微生物生物量碳(MBC)含量采用氯仿熏蒸提取—容量分析法測定(龐師嬋等,2020),土壤微生物生物量氮(MBN)含量采用茚三酮比色法測定(Jorrgensen and Brookes,1990),土壤微生物生物量磷(MBP)含量采用磷鉬藍比色法測定(吳金水等,2003)。
1. 4 土壤細菌多樣性分析
根際土壤樣品總DNA提取、PCR擴增及序列測定均委托上海美吉生物醫藥科技有限公司完成。具體操作:根據FastDNA? Spin Kit for Soil試劑盒(MP Biomedicals)說明進行總DNA提取,使用NanoDrop 2000分光光度計(Thermo Fisher Scientific)檢測其濃度和純度,同時利用1%瓊脂糖凝膠電泳檢測DNA提取質量;然后以338F(5'-ACTCCTACGGGAGGCAG CAG-3')和806R(5'-GGACTACHVGGGTWTCTAA T-3')引物對16S rDNA序列V3~V4可變區進行PCR擴增,并進行鑒定、純化及定量分析。Illumina MiSeq測序:以2%瓊脂糖凝膠電泳回收PCR擴增產物,經Extraction Kit純化、Tris-HCl洗脫及電泳檢測后,采用Quantus? Fluorometer(Promega)進行檢測定量,以NEXTflex? Rapid DNA-Seq Kit構建文庫,然后利用Illumina測序公司的MiSeq平臺300PE完成測序。
1. 5 統計分析
試驗數據采用Excel 2019和SPSS 21.0進行整理統計,并以上海美吉生物醫藥科技有限公司的I-Sanger云數據分析平臺進行在線分析。
2 結果與分析
2. 1 秸稈覆蓋還田桑園土壤生物學性狀特征
由表1可知,SR處理桑園土壤β-葡糖苷酶、氨肽酶和磷酸酶活性均顯著高于CK處理(P<0.05,下同),表明秸稈覆蓋還田能顯著提高桑園土壤中涉及碳、氮、磷循環的相關酶活性。在土壤微生物生物量含量方面,SR處理桑園的土壤MBC、MBN和MBP含量也顯著高于CK處理,表明秸稈覆蓋還田能顯著提高桑園土壤中碳、氮和磷的庫容,即有助于改良桑園土壤肥力。
2. 2 秸稈覆蓋還田桑園土壤細菌OTU聚類分析結果
基于Illumina高通量測序分析,從12個桑園土壤樣品中共獲得4271個OTUs(表2),依據細菌群落組成不同分類水平可分為39門119綱283目449科820屬1620種。其中,從SR處理桑園土壤樣品中獲得3565個OTUs,其細菌群落組成依據不同分類水平可分為37門114綱271目429科767屬1465種;從CK處理桑園土壤樣品中獲得3017個OTUs,其細菌群落組成依據不同分類水平可分為34門101綱222目350科621屬1230種。說明秸稈覆蓋還田能改變桑園土壤中不同分類水平的細菌群落組成,且與對照處理相比,秸稈覆蓋還田有效提高了桑園土壤中細菌群落不同分類水平的數量。
2. 3 秸稈覆蓋還田桑園土壤細菌Alpha多樣性分析結果
覆蓋率越高說明樣本中目的序列被測出的概率越高,而未被測出的概率越低(孫珂岱,2015)。由表3可知,桑園土壤樣品分析覆蓋率均達98%,說明分析數據真實可信。Alpha多樣性指數包括ACE、Chao1、Shannon和Simpson等(洪嘉煒等,2019),其中,Chao1指數表征細菌群落豐富度,Chao1指數越大表明土壤中細菌數目越多,群落豐富度越高(Chao et al.,2000);Shannon指數表征細菌群落多樣性,Shannon指數越大表明物種多樣性越豐富(張傳進等,2020)。由表3可知,SR處理桑園土壤樣品的Chao1和Shannon指數均顯著高于CK處理,說明秸稈覆蓋還田能顯著提高桑園土壤細菌的多樣性和豐富度。
2. 4 桑園土壤細菌群落組成分析結果
2. 4. 1 桑園土壤細菌門分類水平分析結果 在SR處理和CK處理桑園土壤中相對豐度大于1.00%的優勢細菌門分類數量均為11個(圖1),但二者的優勢細菌門分類組成比例存在一定差異。其中,SR處理桑園土壤優勢細菌門的相對豐度排序為變形桿菌門(Proteobacteria,26.26%)>放線菌門(Actinobacteriota,24.76%)>Acidobacteriota(14.26%)>綠彎菌門(Chloroflexi,11.54%)>Bacteroidota(5.57%)>Myxococcota(3.85%)>厚壁菌門(Firmicutes,3.55%)>Gem-matimonadota(1.82%)>Methylomirabilota(1.75%)>Planctomycetota(1.42%)>Verrucomicrobiota(1.12%),其他門類的合計相對豐度為4.10%;CK處理桑園土壤優勢細菌門的相對豐度排序為變形桿菌門(Proteobacteria,25.04%)>放線菌門(Actinobacteriota,23.71%)>綠彎菌門(Chloroflexi,15.95%)>Acidobacteriota(14.33%)>厚壁菌門(Firmicutes,3.58%)>Gemmatimonadota(3.48%)>Myxococcota(2.97%)>Bacteroidota(2.40%)>Verrucomicrobiota(1.87%)>Methylomirabilota(1.59%)>Planctomycetota(1.10%),其他門類的合計相對豐度為3.97%。由此可見,秸稈覆蓋還田雖然未改變桑園土壤優勢細菌門分類水平組成,但部分優勢細菌門的相對豐度排序已發生改變。如綠彎菌門類細菌在CK處理桑園土壤中的相對豐度排在變形桿菌門和放線菌門之后,位列第三;但在SR處理桑園土壤中的相對豐度降至11.54%,相對于CK處理桑園土壤(15.95%)下降了4.44%(絕對值),排在Acidobacteriota之后,位列第四。同時,Bacteroidota的相對豐度在覆蓋秸稈后急劇增加,由CK處理桑園土壤的2.40%上升至5.57%。秸稈覆蓋還田不僅改變桑園土壤中部分優勢細菌門分類水平組成比例,還會改變桑園土壤細菌群落結構,最終改善土壤的生物學功能。
2. 4. 2 桑園土壤細菌屬分類水平分析結果 在SR處理和CK處理桑園土壤中相對豐度大于1.00%的優勢細菌屬分類數量分別為23和24個(圖2)。其中,SR處理桑園土壤優勢細菌屬的相對豐度排序為norank_f_norank_o_Vicinamibacterales(5.08%)>no-rank_ f_Vicinamibacteraceae(4.55%)>Gaiella(2.87%)> norank_f_Xanthobacteraceae(2.38%)>norank_f_no-rank_o_norank_c_KD4-96(2.37%)>norank_f_norank_ o_norank_c_MB-A2-108(1.90%)>鏈霉菌屬(Streptomyces,1.85%)>類諾卡氏菌屬(Nocardioides,1.84%)>norank_f_JG30-KF-CM45(1.79%)>norank_f_norank_ o_Gaiellales(1.66%)>芽孢桿菌屬(Bacillus,1.65%)>norank_f_67-14 (1.49%)>norank_f_SC-I-84(1.44%)>norank_f_Gemmatimonadaceae(1.43%)=norank_f_ no-rank_o_Rokubacteriales(1.43%)>norank_f_Roseiflexaceae(1.32%)>黃桿菌屬(Flavobacterium,1.31%)>norank_f_norank_o_norank_c_TK10(1.29%)>鞘脂單胞菌屬(Sphingomonas,1.25%)>norank_f_Methyloligellaceae(1.16%)>norank_f_norank_o_IMCC26256 (1.10%)>分枝桿菌屬(Mycobacterium,1.09%)>微枝形桿菌屬(Microvirga,1.02%),其他屬類的合計相對豐度為54.02%(圖2-A)。CK處理桑園土壤優勢細菌屬的相對豐度排序為norank_f_Roseiflexaceae(4.74%)>norank_f_norank_o_Vicinamibacterales(4.73%)>norank_f_Xanthobacteraceae(3.82%)>no-rank_f_norank_o_Gaiellales(3.58%)>Gaiella(3.51%)>芽孢桿菌屬(Bacillus,2.97%)>norank_f_Gemmatimonadaceae(2.72%)>norank_f_Vicinamibacteraceae(2.33%)>norank_f_SC-I-84(2.30%)>norank_f_no-rank_o_norank_c_TK10(1.82%)>norank_f_67-14(1.78%)>鏈霉菌屬(Streptomyces,1.64%)>鞘脂單胞菌屬(Sphingomonas,1.60%)>norank_f_norank_o_ IMCC 26256(1.56%)>慢生根瘤菌屬(Bradyrhizobium,1.44%)>norank_f_norank_o_Rokubacteriales(1.43%)>假雙頭斧形菌屬(Pseudolabrys,1.40%)>norank_f_ norank_o_norank_c_KD4-96(1.36%)>分枝桿菌屬(Mycobacterium,1.26%)>norank_f_norank_ o_norank_c_MB-A2-108(1.18%)>norank_f_JG30-KF-AS9(1.15%)>Dongia(1.08%)>Candidatus_Udaeobacter(1.05%)>norank_f_JG30-KF-CM45(1.04%),其他屬類的合計相對豐度為46.21%(圖2-B)。
與對照相比,秸稈覆蓋還田同步改變了桑園土壤優勢細菌屬分類水平組成及其相對豐度。在SR處理桑園土壤中,norank_f_norank_o_Vicinamibacterales的相對豐度最高(5.08%),但其在CK處理桑園土壤中的相對豐度排名第二,僅為4.73%;norank_ f_Roseiflexaceae在CK處理桑園土壤中相對豐度(4.74%)排名第一,但在SR處理桑園土壤中的相對豐度急劇下降,僅為1.32%,排在第十六位。此外,秸稈覆蓋還田還改變了桑園土壤中優勢細菌屬的群落結構,如慢生根瘤菌屬(Bradyrhizobium)、假雙頭斧形菌屬(Pseudolabrys)、Dongia、Candidatus_Udaeobacter和norank_f_JG30-KF-AS9等均為CK處理桑園土壤中的優勢細菌屬,但經秸稈覆蓋還田處理后這些優勢細菌屬缺失,同時富集了類諾卡氏菌屬(Nocardioides)、norank_f_Methyloligellaceae、黃桿菌屬(Flavobacterium )和微枝形桿菌屬(Microvirga)等細菌屬,成為SR處理桑園土壤的特有優勢細菌屬。
2. 5 桑園土壤細菌群落結構Venn分析結果
基于屬和種分類水平的Venn分析結果顯示,在屬分類水平(圖3-A)上,SR處理和CK處理桑園土壤的共有細菌屬為568個,SR處理桑園土壤的特有細菌屬達199個,CK處理桑園土壤的特有細菌屬僅為53個,前者是后者的3.75倍;在種分類水平(圖3-B)上,SR處理和CK處理桑園土壤的共有細菌種為1075個,SR處理桑園土壤的特有細菌種達390個,CK處理桑園土壤的特有細菌種為155個,前者是后者的2.52倍。表明秸稈覆蓋還田明顯改變桑園土壤中細菌屬、種分類水平上的群落結構,提高桑園土壤細菌多樣性及豐富度,而有助于提高和維護桑園土壤健康。
3 討論
桑樹隸屬于桑科(Moraceae)桑屬(Morus L.),為多年生的深根性、闊葉型、落葉性小喬木或灌木。桑樹除了是養蠶產業不可或缺的原料外,對恢復脆弱生態區植被也具有積極作用,還可作為優質飼料作物,具有極高的經濟價值和應用前景。廣西是我國桑蠶的主產區,桑園面積約占全國桑園總面積的1/4,連續13年位居全國之首(鐘春云,2019)。近年來,由于廣西大部分桑園種植年限已超過10年,部分桑農為了獲得較高的桑葉產量,而無限制地加大氮肥施用量,導致桑園土壤有機質含量降低、土壤板結及肥力下降,甚至發生嚴重的土傳病害等一系列問題(祁廣軍等,2015;王帥帥等,2019),嚴重威脅著廣西桑蠶產業的可持續發展。秸稈覆蓋還田是將秸稈直接或堆漚后施入土壤中,具有培肥、蓄水、調溫、增產及減少污染的作用,能有效改善農田生態環境、培肥地力和提高作物品質與產量。因此,在我國南方桑園開展秸稈覆蓋還田技術研究,對構建穩定高產、可持續發展的桑樹栽培管理體系具有重要意義。
土壤酶是土壤的重要組成成分,幾乎參與土壤中所有有機物和營養元素的循環過程,在穩定土壤結構、分解有機廢棄物、有機質形成和養分循環等方面發揮重要作用,其活性高低能客觀地反映土壤肥力及其健康狀況(Dick et al.,1994;林天等,2005;楊寧等,2014)。土壤微生物生物量是衡量土壤質量、維持土壤肥力和作物生產力的一個重要指標,土壤微生物生物量越大,即土壤通過有機養分礦化提供給植物所需養分的能力越強(任奎瑜等,2020)。本研究結果表明,秸稈覆蓋還田桑園土壤中的β-葡糖苷酶、氨肽酶和磷酸酶活性均顯著高于對照桑園土壤,MBC、MBN和MBP等土壤微生物生物量也顯著高于對照桑園土壤,說明秸稈覆蓋還田能顯著提高桑園土壤酶活性及土壤中碳、氮和磷的庫容,從而有助于提高桑園土壤肥力。
微生物是生態系統中功能最活躍、開發潛力最大的生物資源庫(Vanniern et al.,2018)。土壤中豐富的微生物多樣性在陸地生態系統中發揮著重要的功能作用(楊尚東等,2019),其微生物群落結構越復雜、物種多樣性越豐富時,植物對抗病原菌的綜合能力越強(楊尚東等,2020)。本研究結果表明,在秸稈覆蓋還田桑園土壤中,指示細菌豐富度的Chao1指數和細菌多樣性的Shannon指數均顯著高于對照桑園土壤,說明秸稈覆蓋還田有助于提高桑園土壤微生物的多樣性和豐富度。本研究還發現,秸稈覆蓋還田改變了桑園土壤的部分優勢細菌門,如Bacteroidota的相對豐度急劇增加,而綠彎菌門(Chloroflexi)和Verrucomicrobiota的相對豐度急劇下降;此外,與對照桑園土壤相比,在秸稈覆蓋還田桑園土壤中雖然慢生根瘤菌屬(Bradyrhizobium)、假雙頭斧形菌屬(Pseudolabrys)、Dongia、Candidatus_Udaeobacter和norank_f_JG30-KF-AS9等優勢細菌屬部分缺失,但富集了類諾卡氏菌屬(Nocardioides)、norank_f_Methyloligellaceae、黃桿菌屬(Flavobacterium)和微枝形桿菌屬(Microvirga)等特有優勢菌屬。其中,類諾卡氏菌屬(Nocardioides)細菌不僅能利用C2~C16一系列烷烴及苯酚等作為碳源,具有降解原油、治理污水和生物防護等功能(杜慧竟等,2012),還具有溶磷、產鐵載體及固氮等作用(劉冰冰,2014)。黃桿菌屬(Flavobacterium)細菌是具有脫氮除磷功能的好氧反硝化微生物(楊浩等,2017)。微枝形桿菌屬(Microvirga)是根瘤菌中的一類新種屬,具有與黏細菌相似的噬大腸桿菌活性和抗馬鈴薯晚疫病菌活性,主要分布在干旱或半干旱且偏堿性的土壤中,個別類型菌株可生長在50 ℃左右的地下含水層內,屬于中性嗜熱微生物,與植物共生時能產生明顯的結瘤,即具有顯著的固氮活性(趙璞鈺等,2017),少數微枝形桿菌屬還具有運輸鐵離子的載體功能。
基于屬和種分類水平的Venn分析結果顯示,秸稈覆蓋還田桑園土壤的特有細菌屬為199個,特有細菌種為390個,分別是對照桑園土壤特有細菌屬和細菌種的3.75和2.52倍。說明秸稈覆蓋還田不僅能改變桑園土壤細菌不同分類水平的組成比例和群落結構,還有助于富集更多的特有細菌種屬,提高桑園土壤微生物的多樣性及豐富度,而有助于維護桑園土壤健康。
4 結論
秸稈覆蓋還田不僅顯著提高桑園土壤肥力,還改變桑園土壤優勢細菌不同(門、屬)分類水平的組成比例,形成更豐富多樣的土壤細菌群落結構,而有助于維護桑園土壤健康。
參考文獻:
杜慧竟,余利巖,張玉琴. 2012. 類諾卡氏屬放線菌的研究進展[J]. 微生物學報,52(6):671-678. [Du H J,Yu L Y,Zhang Y Q. 2012. Recent advance on the genus Nocar-dioides—A review[J]. Acta Microbiologica Sinica,52(6):671-678.]
杜偉,楊文,吳克軍,李鎮剛,陳松,儲一寧. 2017. 10份云南特異野生桑樹種質資源的搜集與評價[J]. 南方農業學報,48(8):1504-1510. [Du W,Yang W,Wu K J,Li Z G,Chen S,Chu Y N. 2017. Collection and evaluation of ten peculiar wild mulberry resources in Yunnan[J]. Journal of Southern Agriculture,48(8):1504-1510.]
洪嘉煒,陳明強,鄧正華,李有寧,馬振華,顧志峰,王雨. 2019. 恩諾沙星對馬氏珠母貝腸道微生物群落的影響[J]. 南方農業學報,50(5):1104-1110. [Hong J W,Chen M Q,Deng Z H,Li Y N,Ma Z H,Gu Z F,Wang Y. 2019. Effects of enrofloxacin on intestinal microbial community of Pinctada fucata martensii[J]. Journal of Sou-thern Agriculture,50(5):1104-1110.]
林強. 2020. 2019年廣西蠶桑產業發展簡報[J]. 蠶學通訊,40(1):48. [Lin Q. 2020. A brief report on the development of sericulture industry in Guangxi in 2019[J]. Newsletter of Sericultural Science,40(1):48.]
林天,何園球,李成亮,楊芳,徐江兵. 2005. 紅壤旱地中土壤酶對長期施肥的響應[J]. 土壤學報,42(4):682-686. [Lin T,He Y Q,Li C L,Yang F,Xu J B. 2005. Response of soil enzymes to long-term fertilization in upland red soil[J]. Acta Pedologica Sinica,42(4):682-686.]
劉冰冰. 2014. 烤煙K326與香料植物間作下原核微生物多樣性及部分菌株功能酶篩選研究[D]. 哈爾濱:東北農業大學. [Liu B B. 2014. The diversity and functional enzymes screening of prokaryotes in intercropping systems of tobacco with aromatic plants[D]. Harbin:Northeast Agricultural University.]
劉明,張愛君,陳曉光,靳容,趙鵬,蔣薇,唐忠厚. 2020. 秸稈還田配施化肥對土壤肥力及鮮食甘薯產量和品質的影響[J]. 應用生態學報,31(10):3445-3452. [Liu M,Zhang A J,Chen X G,Jin R,Zhao P,Jiang W,Tang Z H. 2020. Effects of straw returning and fertilization on soil fertility and yield and quality of edible sweetpotato[J]. Chinese Journal of Applied Ecology,31(10):3445-3452.]
逯非,王效科,韓冰,歐陽志云,鄭華. 2010. 稻田秸稈還田:土壤固碳與甲烷增排[J]. 應用生態學報,21(1):99-108. [Lu F,Wang X K,Han B,Ouyang Z Y,Zheng H. 2010. Straw return to rice paddy:Soil carbon sequestration and increased methane emission[J]. Chinese Journal of Applied Ecology,21(1):99-108.]
龐師嬋,郭霜,任奎瑜,王帥帥,楊尚東. 2020. 番茄/茄子嫁接對其根際土壤生物學性狀及細菌群落結構的影響[J]. 園藝學報,47(2):253-263. [Pang S C,Guo S,Ren K Y,Wang S S,Yang S D. 2020. Impact of grafting on soil microbial properties and bacterial community structure in tomato rhizosphere[J]. Acta Horticulturae Sinica,47(2):253-263.]
彭廷,張中南,王留行,金玉蔓,杜想想,王童童,王付山,黃松,趙全志. 2019. 沿黃稻區適宜秸稈腐熟劑的篩選及其腐熟效應研究[J]. 河南農業大學學報,53(2):168-174. [Peng T,Zhang Z N,Wang L H,Jin Y M,Du X X,Wang T T,Wang F S,Huang S,Zhao Q Z. 2019. Effects of different straw decomposing inoculants on returned straw in the paddy field along Yellow River[J]. Journal of Henan Agricultural University,53(2):168-174.]
祁廣軍,田智得,黃紅燕. 2015. 廣西桑園土壤狀況分析與施肥對策[J]. 廣西蠶業,52(3):32-35. [Qi G J,Tian Z D,Huang H Y. 2015. Analysis of soil condition and fertilization strategy in Guangxi mulberry garden[J]. Guangxi Sericulture,52(3):32-35.]
任奎瑜,趙久成,郭霜,王帥帥,張傳進,龐師嬋,楊尚東. 2020. 紅椎林中正紅菇生境的土壤肥力及真菌多樣性特征[J]. 西南農業學報,33(1):109-116. [Ren K Y,Zhao J C,Guo S,Wang S S,Zhang C J,Pang S C,Yang S D. 2020. Characteristics of soil biological properties and fungal diversity of Russula vinosa in Castanopsis hystrix Forest[J]. Southwest China Journal of Agricultural Scien-ces,33(1):109-116.]
石含之,趙沛華,黃永東,吳志超,杜應瓊,杜瑞英. 2020. 秸稈還田對土壤有機碳結構的影響[J]. 生態環境學報,29(3):536-542. [Shi H Z,Zhao P H,Huang Y D,Wu Z C,Du Y Q,Du R Y. 2020. Effect of straw mulching on soil organic carbon structure[J]. Ecology and Environmental Sciences,29(3):536-542.]
蘇超,焦鋒. 2011. 桑樹的遺傳變異特點及在品種選育中的應用[J]. 蠶業科學,37(6):1089-1092. [Su C,Jiao F. 2011. Characteristics of heredity and variation in mulberry and their application in selection and breeding of varieties[J]. Science of Sericulture,37(6):1089-1092.]
孫珂岱. 2015. 嚴重燒傷后腸黏膜屏障損傷的機理及防治研究[D]. 重慶:第三軍醫大學. [Sun K D. 2015. The mecha-nism and treatment of intestinal mucosa barrier damage post severe burn[D]. Chongqing:Third Military Medical University.]
王靜靜,張鵬,毛筱曄,王素霞,李東升,杜洪艷. 2019. 越冬期還田稻秸腐解規律及其對濱海粘質土地力的影響[J]. 江西農業學報,31(2):42-45. [Wang J J,Zhang P,Mao X Y,Wang S X,Li D S,Du H Y. 2019. Decomposition law of rice straw returned to field at overwintering stage and its effect on fertility of coastal clay soil[J]. Acta Agri-culturae Jiangxi,31(2):42-45.]
王帥帥,林剛云,黃小丹,楊尚東,屈達才. 2019. 施用有機—無機復混肥對桑樹根際土壤細菌與根系內生細菌多樣性的影響[J]. 蠶業科學,45(4):494-500. [Wang S S,Lin G Y,Huang X D,Yang S D,Qu D C. 2019. Effect of organic-inorganic compound fertilizer on diversity of bacteria in mulberry rhizosphere soil and endophytic bacteria in root[J]. Science of Sericulture,45(4):494-500.]
吳金水,肖和艾,陳桂秋,黃敏. 2003. 旱地土壤微生物磷測定方法研究[J]. 土壤學報,40(1):70-78. [Wu J S,Xiao H A,Chen G Q,Huang M. 2003. Measurement of microbial biomass-P in upland soils in China[J]. Acta Pedologica Sinica,40(1):70-78.]
伍佳,王忍,呂廣動,隆斌慶,楊飛翔,陳慧娜,黃璜. 2019. 不同秸稈還田方式對水稻產量及土壤養分的影響[J]. 華北農學報,34(6):177-183. [Wu J,Wang R,Lü G D,Long B Q,Yang F X,Chen H N,Huang H. 2019. Effects of different straw returning ways on rice yield and soil nutrients[J]. Acta Agriculturae Boreali-Sinica,34(6):177-183.]
楊浩,張國珍,楊曉妮,武福平,趙煒,張洪偉,張翔. 2017. 16S rRNA高通量測序研究集雨窖水中微生物群落結構及多樣性[J]. 環境科學,38(4):1704-1716. [Yang H,Zhang G Z,Yang X N,Wu F P,Zhao W,Zhang H W,Zhang X. 2017. Microbial community structure and diversity in cellar water by 16S rRNA high-throughput sequencing[J]. Environmental Science,38(4):1704-1716.]
楊麗華,王金鳳,杜麗璞,徐惠君,魏學寧,李釗,馬翎健,張增艷. 2013. 抗全蝕病、根腐病的轉PgPGIP1基因小麥的獲得與鑒定[J]. 作物學報,39(9):1576-1581. [Yang L H,Wang J F,Du L P,Xu H J,Wei X N,Li Z,Ma L J,Zhang Z Y. 2013. Generation and characterization of Pg-PGIP1 transgenic wheat plants with enhanced resistance to take-all and common root rot[J]. Acta Agronomica Sinica,39(9):1576-1581.]
楊寧,楊滿元,雷玉蘭,艾昱,付美云,林仲桂. 2014. 衡陽紫色土丘陵坡地土壤酶活性對植被恢復的響應[J]. 生態環境學報,23(4):575-580. [Yang N,Yang M Y,Lei Y L,Ai Y,Fu M Y,Lin Z G. 2014. Response of soil enzyme activities to re-vegetation on sloping-land with purple soils in Hengyang of Hunan Province,China[J]. Ecology and Environmental Sciences,23(4):575-580.]
楊尚東,郭霜,任奎瑜,龐師嬋,張傳進,王帥帥,譚宏偉. 2019. 甘蔗宿根矮化病感病與非感病株根際土壤生物學性狀及細菌群落結構特征[J]. 植物營養與肥料學報,25(6):910-916. [Yang S D,Guo S,Ren K Y,Pang S C,Zhang C J,Wang S S,Tan H W. 2019. Soil biological properties and bacterial community structures in rhizosphere soil of canes infected and non-infected by ratoon stunting disease[J]. Journal of Plant Nutrition and Fertili-zers,25(6):910-916.]
楊尚東,任奎瑜,譚宏偉. 2020. 甘蔗宿根矮化病感病與非感病植株養分含量、根系生長及內生細菌群落的差異[J]. 植物營養與肥料學報,26(9):1591-1599. [Yang S D,Ren K Y,Tan H W. 2020. Differences in plant nutrient content,root growth and endophytic bacterial community between infected and non-infected sugarcanes by ratoon stunting disease[J]. Journal of Plant Nutrition and Fertili-zers,26(9):1591-1599.]
楊尚東,吳俊,趙久成,郭伊娟,龍明華. 2013. 番茄青枯病罹病植株和健康植株根際土壤理化性狀及生物學特性的比較[J]. 中國蔬菜,(22):64-69. [Yang S D,Wu J,Zhao J C,Guo Y J,Long M H. 2013. Physical,chemical and biological characteristics analysis of rhizosphere soils between infected plants of tomato bacterial wilt and non-infected plants[J]. China Vegetables,(22):64-69.]
張傳進,任奎瑜,郭霜,龐師嬋,王帥帥,楊尚東. 2020. 磁處理改善豌豆根際土壤生物學性狀[J]. 熱帶作物學報,41(4):829-836. [Zhang C J,Ren K Y,Guo S,Pang S C,Wang S S,Yang S D. 2020. Soil biological properties in rhizosphere of pea(Pisum sativum L.) improved by magnetic treatments[J]. Chinese Journal of Tropical Crops,41(4):829-836.]
張志林,秦和生,何夢秀,謝振獎,黃志瓊. 2020. 蚯蚓糞配施化肥對桑樹根際土壤生物學特征及桑葉產量和品質的影響[J]. 西南農業學報,33(2):357-362. [Zhang Z L,Qin H S,He M X,Xie Z J,Huang Z Q. 2020. Effects of vermicompost co-applied with inorganic fertilizer on soil biological characteristics in rhizosphere,leaf yield and quality of mulberry[J]. Southwest China Journal of Agricultural Sciences,33(2):357-362.]
趙璞鈺,任興波,丁一秀,武志華,劉惠榮. 2017. 三株微枝形桿菌屬菌株的分離鑒定及其抗馬鈴薯晚疫病菌活性分析[J]. 科學技術與工程,17(2):170-175. [Zhao P Y,Ren X B,Ding Y X,Wu Z H,Liu H R. 2017. Isolation and identification of three strains of Microvirga sp. and analysis of their antibiotic activity against potato late blight pathogen[J]. Science Technology and Engineering,17(2):170-175.]
趙亞麗,郭海斌,薛志偉,穆心愿,李潮海. 2015. 耕作方式與秸稈還田對土壤微生物數量、酶活性及作物產量的影響[J]. 應用生態學報,26(6):1785-1792. [Zhao Y L,Guo H B,Xue Z W,Mu X Y,Li C H. 2015. Effects of tillage and straw returning on microorganism quantity,enzyme activities in soils and grain yield[J]. Chinese Journal of Applied Ecology,26(6):1785-1792.]
鐘春云. 2019. “東桑西移”的廣西突破——世界蠶業看中國? 中國蠶業看廣西[J]. 當代廣西,(S1):58-59. [Zhong C Y. 2019. East mulberry west Guangxi breakthrough—World silkworm industry look at China, silkworm industry look at Guangxi[J]. Contemporary Guangxi,(S1):58-59.]
Chao A,Wang W H,Chen Y C,Kuo C Y. 2000. Estimating the number of shared species in two communities[J]. Statistica Sinica,10(1):227-246.
Dick R P,Sandor J A,Eashc N S. 1994. Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley,Peru[J]. Agriculture,Ecosystems & Environment,50(2):123-131.
Gaind S,Nain L. 2007. Chemical and biological properties of wheat soil in response to paddy straw incorporation and its biodegradation by fungal inoculants[J]. Biodegradation,18(4):495-503.
Hamada M S,Yin Y N,Chen H G,Ma Z H. 2011. The escalating threat of Rhizoctonia cerealis,the causal agent of sharp eyespot in wheat[J]. Pest Management Science,67(11):1411-1419.
Han X,Cheng Z H,Meng H W,Yang X L,Ahmad I. 2013. Allelopathic effect of decomposed garlic(Allium sativum L.) stalk on lettuce(L. sativa var. Crispa L.)[J]. Pakistan Journal of Botany,45(1):225-233.
Jorrgensen R G,Brookes P C. 1990. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 m K2SO4 soil extracts[J]. Soil Biology & Biochemistry,22(8):1023-1027.
Lenka N K,Lal R. 2013. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer mana-gement in a no-till system[J]. Soil & Tillage Research,126:78-89.
Li B,Chen X Y,Yang Y,Wang Q J,Dong Z D,Yu X R,Liu J,Xiong F. 2018. Returning the rice residue affects accumulation and physicochemical properties of wheat starch[J]. Agronomy Journal,111(1):1-10.
Qi Y Z,Zhen W C,Li H Y. 2015. Allelopathy of decomposed maize straw products on three soilborn diseases of wheat and the analysis by GC-MS[J]. Journal of Integrative Agriculture,14(1):88-97.
Shan Y H,Cai Z C,Han Y,Johnson S E,Buresh R J. 2010. Organic acid accumulation under flooded soil conditions in relation to the incorporation of wheat and rice straws with different C∶N ratios[J]. Soil Science & Plant Nutrition,54(1):46-56.
Su Y,Lü J L,Yu M,Ma Z H,Xi H,Kou C L,He Z C,Shen A L. 2020. Long-term of decompose straw return positively affects the soil microbial community[J]. Journal of Applied Microbiology,128(1):138-150.
Vanniern N,Mony C,Bittebiere A K,Michon-Coudouel S,Biget M,Vandenkoornhuyse P. 2018. A microorganismss journey between plant generations[J]. Microbiome,6(1):79. doi:10.1186/s40168-018-0459-7.
Yang M M,Mavrodi D V,Mavrodi O V,Bonsall R F,Parejko J A,Paulitz T C,Thomashow L S,Yang H T,Weller D M,Guo J H. 2011. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields[J]. Phytopathology,101(12):1481-1491.
(責任編輯 蘭宗寶)