999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于科學計量的天然橡膠學科領域前沿熱點分析

2020-02-22 03:19:20李一萍茶正早王大鵬
熱帶作物學報 2020年12期

李一萍 茶正早 王大鵬

摘? 要:當前天然橡膠產業持續低迷,追蹤國際天然橡膠研究前沿熱點對于我國天然橡膠產業發展和升級具有重要參考價值。本研究采用科學計量方法結合CiteSpace技術,對Web of Science數據庫的天然橡膠文獻進行共被引、共詞和聚類分析,概述了該領域重要的基礎文獻,揭示其學科領域研究前沿和熱點。結果表明,共探測出6個前沿熱點,高度聚合在三大學科領域。其中,在化學與材料科學領域,領先優勢十分明顯,共遴選出4個前沿熱點:(1)功能化改性石墨烯或氧化石墨/天然橡膠納米復合材料;(2)生物基體/天然橡膠納米復合材料;(3)彈性體或天然橡膠納米復合材料的應變誘導結晶行為;(4)廢舊橡膠的自修復與回收加工。在生物科學領域,遴選出1個前沿熱點,即橡膠樹基因組測序、橡膠生物合成路徑與關鍵基因。在生態與環境科學領域,遴選出1個前沿熱點,即橡膠林的擴張及其對生態環境的影響。高頻和高突現關鍵詞在三大學科呈現由多到少分布,反映了當前天然橡膠研究領域發展趨于多方向性,但其前沿熱點相對集中在天然橡膠全產業鏈的下游。

關鍵詞:天然橡膠;學科領域;科學計量;前沿熱點

中圖分類號:S794.1;G353.1? ? ? 文獻標識碼:A

Abstract: At present, the natural rubber industry has fallen into continuous tremor. Consequently, tracking and analyzing the hotspots in the fields of international natural rubber research is of important referring values for developing and upgrading the natural rubber industry of China. Based on the database from Web of Science, scientometrics methods and CiteSpace were used to analyze the co-citation, co-word and clustering of natural rubber literature. The basic articles were summarized to track and reveal the future fronts and hotspots in this field. The results showed that six hotspots were detected, which were highly concentrated in the three fields. Of the fields of chemistry and material science, the leading advantage was very obvious, and four hotspots were protruded: (1) functionally modified grapheme or graphene oxide/natural rubber nanocomposites; (2) biobased/natural rubber nanocomposites; (3) strain-induced crystallization behavior of elastomers or natural rubber; (4) self-healing and recycling of waste rubber. Of the field of biological science, there was one hotspot: rubber tree genome sequencing, rubber biosynthesis pathway and key genes. Of the field of ecological and environmental science, the expansion of rubber plantation and its impact on the ecological environment is becoming important research hotspots in this field. High-frequency and high-emergency keywords showed a distribution trend of gradually less in the three major disciplines, which reflecting that the current research field of natural rubber intends to be multi-directional, but its frontier hotspots are relatively concentrated in the downstream link of the whole natural rubber industry chain.

Keywords: natural rubber; discipline field; scientometrics; fronts and hotspots

DOI: 10.3969/j.issn.1000-2561.2020.12.028

天然橡膠是由含橡膠的植物中采割其膠乳加工而成。據統計[1-2],世界上能產膠的植物約有2 000多種,其中重要的有大戟科的巴西橡膠樹(Hevea brasiliensis),菊科的橡膠草(Taraxacum brevicorniculatum)和銀色橡膠菊(Parthenium argentatum),杜仲科的杜仲(Eucommia ulmoides Oliver)等。巴西橡膠樹(又稱橡膠樹)由于其產量高、品質好、經濟壽命長、生產成本低等優點,成為人工栽培中最為重要的產膠植物,其產量占世界天然橡膠總產量的99%以上。橡膠是熱帶地區典型的經濟林作物,是重要的戰略物資。在熱帶農林業中,橡膠具有特殊和重要的地位。迄今為止,天然橡膠在航天、軍工及醫療等高端和特殊用途領域中仍具有不可替代性。當前,天然橡膠產業持續低迷,國際天然橡膠產品供大于求,但我國天然橡膠的自給率仍不到20%。而與此同時,國內高端和特殊用途的高性能膠卻仍然幾乎完全依賴進口。我國天然橡膠產業發展中的一些重大問題已逐漸發生轉變,如從早期的追求高產轉變為高產與優質并重、膠木兼優品種的選育和推廣、勞動力成本的不斷上升、加工領域工藝改進和技術創新等。從我國天然橡膠產業發展歷程來看,科學技術的提升是推動橡膠產業升級的重要動力。當前一些高新尖的技術領域,如天然高分子或納米微粒補強天然橡膠合成納米復合材料、橡膠微生物降解、產膠植物橡膠生物合成與調控等,未來很可能極大地影響天然橡膠產業的發展。

科學知識圖譜是進行領域分析和可視化的通用過程,其分析范圍可以是一門學科、一個研究領域、或特定研究問題的主題領域。換句話說,知識圖譜的分析單元是科學知識的一一個領域,它通過一個科學團體或更精確定義的專業成員的智力貢獻集合來反映[3-4]。常用的科學文獻數據來源有Web of Science、Scopus、Google Scholar和PubMed等。科學計量方法包括作者共引分析、文獻共引分析、共詞分析和共現分析等[5-6]。知識圖譜工具通常將一組文獻作為輸入,生成具有復雜結構的交互式圖像用于定量分析和視覺探索。許多知識圖譜技術起源于共被引分析理論,這一理論描述了知識基礎在共被引文獻網絡中的結構特征[7-8]。本研究依據科學計量學理論,基于CiteSpace可視化分析工具,對近15年天然橡膠學科領域的研究成果和重要文獻進行識別和可視化,建立學科領域知識圖譜,跟蹤和揭示國際天然橡膠學科領域的前沿熱點,以期為科研管理者、政策制定者、相關科研人員及天然橡膠產業發展提供科學參考和借鑒。

1? 材料與方法

1.1? 數據來源

數據來源于Web of Science核心合集的SCI-EXPANDED和SSCI。本文定義的天然橡膠,是指從巴西橡膠樹(Hevea brasiliensis)提取的天然膠乳。為了確保天然橡膠文獻數據集的查全率,采用表1制定的檢索策略進行主題檢索。檢索詞主要有天然橡膠、天然膠乳、橡膠膠乳、橡膠樹、橡膠林、橡膠種植園、膠園、植膠區、橡膠間作、橡膠生物合成、橡膠產量、割膠、產膠、排膠等。經檢索得到9960條記錄,除重后獲得9579篇文獻,這些文獻共引用了179 317篇引文(檢索日期:2019-09-17,數據庫更新日期:2019-09-16)。

1.2? 研究工具和方法

采用CiteSpace(5.5.R2)進行天然橡膠文獻數據集的可視化分析。CiteSpace使用時間切片技術構建隨時間變化的時間序列網絡模型,并綜合這些單獨的網絡形成一個概覽網絡,以便系統地回顧相關文獻。以每年引用次數排序前100的文獻構建當年共被引網絡,然后合成各個網絡。合成的網絡被劃分為多個共被引文獻聚類。相似的論文和相關的聚類被定位在接近的位置,而不同論文和聚類則相距較遠。采用文獻[4]中的方法,排除檢索結果中的干擾文獻:基于CiteSpace技術特點,對檢索策略的持續精煉以及對檢索結果文獻的手工剔除,在一定程度上會導致相關研究文獻的缺失并影響文獻的關聯。通過對原始檢索結果所生成的圖譜,辨別分析有效文獻所生成的大型活躍聚類,而對無效文獻生成的聚類則加以識別和排除,能夠有效地保證文獻查全率,同時能夠排除與研究無關的干擾文獻。每個聚類成員(被引文獻)代表研究領域的知識基礎,引用這些文獻的施引文獻是與這些聚類相關的研究前沿[3-4]。由于文章篇幅所限,只列出前5~10篇被引文獻和施引文獻進行陳述和解讀。一個節點的引文歷史描述為若干個引用年輪,每一個引用年輪代表共被引網絡中相應年份的引用次數。

2? 結果與分析

合成的網絡包含1499篇引文。4個最大的連接網絡包括1272個節點,占整個網絡的84%。該網絡具有非常高的模塊化值,為0.8307,表明各學科領域在共被引聚類中有明確的定義。圖譜展示了4個主要學科領域(圖1):左側區域涉及化學與材料科學,右上方涉及生物科學、生態與環境科學,右下方涉及免疫學。不同顏色區域表示這些區域共被引連接首次出現的時間,紫色區域比粉色區域生成的時間早,黃色區域是在粉色區域之后生成。黃色區域是仍在持續發展的聚類,目前仍在活躍的大型聚類象征著學科的前沿方?向,也是本文重點分析的部分。每個聚類都可以通過標題術語、關鍵字和引用聚類文獻的抽象術語進行標記。如最右側黃色區域被標記為橡膠人工林與生態環境,表明關于橡膠人工林與生態環境的論文引用了#8聚類。表2按照核心論文數量列出了前13個聚類。輪廓值是衡量聚類同質性或一致性的指標,同質聚類的平均輪廓值趨于1[3-4]。

2.1? 化學與材料科學活躍聚類的研究前沿探測

2.1.1? 功能化石墨烯納米復合材料——#2聚類? #2是活躍的大型聚類,關注功能化改性石墨烯或氧化石墨烯補強天然橡膠制備納米復合材料(表3),由121篇共被引文獻組成。聚類中引用次數較高的文章[9-12],展示了超聲輔助膠乳共混法和原位還原法等將氧化石墨烯均勻分散于天然橡膠基體,顯著提高材料的拉伸強度、機械、電熱和屏蔽性能等。Wu等[13]系統研究了石墨烯/天然橡膠納米復合材料的硫化動力學特性的變化。覆蓋率前5的施引文獻[14-18],引用了該聚類8%~12%的引文。Papageorgiou等[14]、Srivastava等[17]和Mensah等[18]的文章綜述了不同類型石墨烯應用于補強天然橡膠或彈性體納米復合材料,及其對復合材料的拉伸強度、熱穩定性、氣體屏蔽、電學、機械和動態力學性能等的影響。其他施引文獻[15-16]也在關注改進的方法制備功能化改性石墨烯或氧化石墨烯/天然橡膠納米復合材料及其性能的增強。

2.1.2? 生物基納米復合材料——#10聚類? #10聚類代表了聚乳酸、納米微晶纖維素等生物基體補強天然橡膠制備納米復合材料活躍的施引文獻和被引文獻(表4)。該聚類引用次數第一的文章由Bitinis等[19]發表,關于聚乳酸/天然橡膠共混物的微觀結構、結晶行為和機械性能研究。其他共被引文獻代表了聚乳酸基或形狀記憶聚乳酸基與天然橡膠或環氧化天然橡膠制備共混物及其韌性、晶體穩定性增強的知識基礎[20-23]。覆蓋率前5的施引文獻[24-28],引用了該聚類6%~7%的引文。Cao等[24, 28]采用兩2種方法制備海鞘納米微晶纖維素/天然橡膠納米復合材料,對其形態、力學性能和水膨脹行為進行了比較研究。Heuwers等[25]、Quitmann等[26]研究了不同形狀記憶聚乳酸基天然橡膠納米復合材料的儲能、力學和機械應力性能。Chen等[27]研發了一種生物基動態硫化聚乳酸/天然橡膠共混物,其中交聯NR相具有連續的網狀分散。

3? 討論與結論

一個領域的研究前沿體現的是該領域當前的科學發展水平。天然橡膠領域的跨學科、跨專業和學科交叉視角明顯,使得新興研究領域和主題不斷出現。本研究借助知識圖譜可視化分析概述了2004—2018年天然橡膠領域重要的基礎文獻,突出了持續發展的研究領域;并通過關鍵詞共現分析尋找研究熱點,探索活躍的研究方向。主要研究結果如下:

(1)在共被引文獻和施引文獻分析的基礎上,按照學科探測研究前沿,在三大學科探測出6個研究前沿。①化學與材料科學領域識別出4個研究前沿:功能化改性石墨烯或氧化石墨烯補強天然橡膠制備納米復合材料;生物基體補強天然橡膠制備納米復合材料;彈性體或天然橡膠納米復合材料的應變誘導結晶行為;廢舊橡膠的自修復與回收加工。②生物科學領域識別出1個研究前沿:橡膠樹基因組測序、調控橡膠樹乳管橡膠生物合成路徑與關鍵基因。③生態與環境科學領域識別出1個研究前沿:土地利用變化背景下橡膠人工林的擴張對生態環境的影響。

(2)在關鍵詞共現頻次和強度分析基礎上,發現高頻和高突現關鍵詞主要分布在化學與材料科學領域,如“納米復合材料”“共混”“改性”“石墨烯”“聚合物基體”“誘導結晶”“性能”等,其次分布在生態與環境科學領域,如“生物多樣性”“熱帶雨林”“土地利用”等,分布在生物科學領域的關鍵詞較少,主要有“基因表達”“乳管”“聚異戊二烯”等。這預示著當前天然橡膠研究趨于多方向性,但活躍的研究主題主要集中在天然橡膠全產業鏈的下游。伴隨著天然橡膠產業發展帶來的環境和社會問題,防止砍伐森林,保護生物多樣性,確保天然橡膠產業的可持續生產非常值得關注。在基礎研究領域,提高天然橡膠產量和質量,明確調控橡膠生物合成關鍵路徑和基因,為橡膠樹優異種質的發掘利用和高產優質抗逆遺傳改良奠定基礎,也是活躍的研究主題。

(3)本研究所指“研究前沿”是一簇共被引聚類形成的高被引論文及其后續的施引論文形成的一個“專業研究方向”,還不能完全等同于科學研究中的前沿科學問題和前沿研究領域,所以本方法只是監測分析科學研究發展態勢的一種視角。另外,論文的寫作、發表和被引用存在一定的滯后性,影響了研究前沿成果的及時揭示,因此需要補充各類相關信息,如施引論文,才能更為全面地監測和分析科學研究發展態勢。

參考文獻

國家天然橡膠產業技術體系. 中國現代農業產業可持續發展戰略研究:天然橡膠分冊[M]. 北京:中國農業出版社, 2016: 11-35.

International Rubber Research and Development Board. Portrait of the global rubber industry[M]. Kuala Lumpur: IRRDB, 2006: 73-86.

Chen C M. CiteSpace II: Detecting Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.

Chen C M. Science mapping: A systematic review of the literature[J]. Journal of Data and Information Science, 2017, 2(2): 1-40.

White H D, McCain K W. Visualizing a discipline: An author co-citation analysis of information science, 1972- 1995[J]. Journal of the AmericanSociety for Information Science, 1998, 49(4): 327-355.

Callon M, Courtial J P, Turner W A, et al. From translations to problematic networks: An introduction to co-word analysis[J]. Information (International Social Science Council), 1983, 22(2): 191-235.

Shneider A M. Four stages of a scientific discipline; four types of scientist[J]. Trends in Biochemical Sciences, 2009, 34(5): 217-223.

Fuchs S. A sociological theory of scientific change[J]. Social Forces, 1993, 71(4): 933-953.

Potts J R, Shankar O, Du L, et al. Processing– morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites[J]. Macromolecules, 2012, 45(15): 6045 -6055.

Zhan Y H, Lavorgna M, Buonocore G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. Journal of Materials Chemistry, 2012, 22(21): 10 464-10 468.

Potts J R, Shankar O, Murali S, et al. Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites[J]. Composites Science and Technology, 2013, 74: 166-172.

Zhan Y H, Wu J K, Xia H S, et al. Dispersion and exfoliation of graphene in rubber by an ultrasonically- assisted latex mixing and in situ reduction process[J]. Macromolecular Materials and Engineering, 2011, 296(7): 590-602.

Wu J R, Xing W, Huang G S, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites[J]. Polymer, 2013, 54(13): 3314-3323.

Papageorgiou D G, Kinloch I A, Young R J. Graphene/ elastomer nanocomposites[J]. Carbon, 2015, 95: 460-484.

Galimberti M, Cipolletti V, Musto S, et al. Recent advancements in rubber nanocomposites[J]. Rubber Chemistry and Technology, 2014, 87(3): 417-442.

Wu S W, Tang Z H, Guo B C, et al. Effects of interfacial interaction on chain dynamics of rubber/graphene oxide hybrids: A dielectric relaxation spectroscopy study[J]. RSC Advances, 2013, 3(34): 14 549-14 559.

Srivastava S K, Mishra Y K. Nanocarbon reinforced rubber nanocomposites: Detailed insights about mechanical, dynamical mechanical properties, payne, and mullin effects[J]. Nanomaterials, 2018, 8(11): 945.

Mensah B, Gupta K C, Kim H, et al. Graphene-reinforced elastomeric nanocomposites: A A review[J]. Polymer Testing, 2018, 68: 160-184.

Bitinis N, Verdejo R, Cassagnau P, et al. Structure and properties of polylactide/natural rubber blends[J]. Materials Chemistry and Physics, 2011, 129(3): 823-831.

Zhang C M, Wang W W, Huang Y, et al. Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber[J]. Materials & Design, 2013, 45: 198-205.

Heuwers B, Quitmann D, Hoeher R, et al. Stress-induced stabilization of crystals in shape memory natural rubber[J]. Macromolecular Rapid Communications, 2013, 34(2): 180-184.

Jaratrotkamjorn R, Khaokong C, Tanrattanakul V. Toughness enhancement of poly (lactic acid) by melt blending with natural rubber[J]. Journal of Applied Polymer Science, 2012, 124(6): 5027-5036.

Xu C H, Cao L M, Lin B F, et al. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17 728-17 737.

Cao L M, Yuan D S, Fu X F, et al. Green method to reinforce natural rubber with tunicate cellulose nanocrystals via one-pot reaction[J]. Cellulose, 2018, 25(8): 4551-4563.

Heuwers B, Beckel A, Krieger A, et al. Shape-memory natural rubber: An exceptional material for strain and energy storage[J]. Macromolecular Chemistry and Physics, 2013, 214(8): 912-923.

Quitmann D, Gushterov N, Sadowski G, et al. Solvent- sensitive reversible stress-response of shape memory natural rubber[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3504-3507.

Chen Y K, Yuan D S, Xu C H. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase[J]. ACS Applied Materials & Interfaces, 2014, 6(6): 3811-3816.

Cao L M, Huang J R, Chen Y K. Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14 802-14 811.

Toki S, Che J, Rong L, et al. Entanglements and networks to strain-induced crystallization and stress–strain relations in natural rubber and synthetic polyisoprene at various temperatures[J]. Macromolecules, 2013, 46(13): 5238-5248.

Huneau B. Strain-induced crystallization of natural rubber: A review of X-ray diffraction investigations[J]. Rubber Che mistry and Technology, 2011, 84(3): 425-452.

Candau N, Laghmach R, Chazeau L, et al. Strain-induced crystallization of natural rubber and cross-link densities he terogeneities[J]. Macromolecules, 2014, 47(16): 5815-5824.

Bru?ning K, Schneider K, Roth S V, et al. Kinetics of strain-induced crystallization in natural rubber studied by WAXD: Dynamic and impact tensile experiments[J]. Macromolecules, 2012, 45(19): 7914-7919.

Vieyres A, Pe?rez-Aparicio R, Albouy P A, et al. Sulfur- cured natural rubber elastomer networks: Correlating cross- link density, chain orientation, and mechanical response by combined techniques[J]. Macromolecules, 2013, 46(3): 889-899.

Fu X, Huang G S, Xie Z T, et al. New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction[J]. RSC Advances, 2015, 5(32): 25 171-25 182.

Rublon P, Huneau B, Saintier N, et al. In situ synchrotron wide-angle X-ray diffraction investigation of fatigue cracks in natural rubber[J]. Journal of Synchrotron Radiation, 2013, 20(1): 105-109.

Pe?rez-Aparicio R, Vieyres A, Albouy P A, et al. Reinforcement in natural rubber elastomer nanocomposites: Breakdown Breakdown of entropic elasticity[J]. Macromolecules, 2013, 46(22): 8964-8972.

Pe?rez-Aparicio R, Schiewek M, Valenti?n J L, et al. Local chain deformation and overstrain in reinforced elastomers: An NMR study[J]. Macromolecules, 2013, 46(14): 5549- 5560.

Mondal M, Gohs U, Wagenknecht U, et al. Additive free thermoplastic vulcanizates based on natural rubber[J]. Materials Chemistry and Physics, 2013, 143(1): 360-366.

Karger-Kocsis J, Mészáros L, Bárány T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers[J]. Journal of Materials Science, 2013, 48(1): 1-38.

Shi J W, Jiang K, Ren D Y, et al. Structure and performance of reclaimed rubber obtained by different methods[J]. Journal of Applied Polymer Science, 2013, 129(3): 999-1007.

Faruk O, Bledzki A K, Fink H P, et al. Biocomposites reinforced with natural fibers: 2000-2010[J]. Progress in Polymer Science, 2012, 37(11): 1552-1596.

Riyajan S A, Sasithornsonti Y, Phinyocheep P. Green natural rubber-g-modified starch for controlling urea release[J]. Carbohydrate Polymers, 2012, 89(1): 251-258.

Myhre M, Saiwari S, Dierkes W, et al. Rubber recycling: Chemistry, processing, and applications[J]. Rubber Chemistry and Technology, 2012, 85(3): 408-449.

Imbernon L, Norvez S. From landfilling to vitrimer chemistry in rubber life cycle[J]. European Polymer Journal, 2016, 82: 347-376.

Imbernon L, Norvez S, Leibler L. Stress relaxation and self-adhesion of rubbers with exchangeable links[J]. Macromolecules, 2016, 49(6): 2172-2178.

Xiang H P, Rong M Z, Zhang M Q. Self-healing, reshaping, and recycling of vulcanized chloroprene rubber: A case study of multitask cyclic utilization of cross-linked polymer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2715-2724.

Denissen W, Winne J M, Du Prez F E. Vitrimers: Permanent organic networks with glass-like fluidity[J]. Chemical Science, 2016, 7(1): 30-38.

Xu C H, Huang X H, Li C H, et al. Design of “Zn2+ Salt-Bondings” cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6981-6990.

Rahman A Y A, Usharraj A O, Misra B B, et al. Draft genome sequence of the rubber tree Hevea brasiliensis[J]. BMC Genomics, 2013, 14(1): 75.

Li D J, Deng Z, Qin B, et al. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.)[J]. BMC Genomics, 2012, 13(1): 192.

Tang C R, Yang M, Fang Y J, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants, 2016, 2(6): 16073.

Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, et al. Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map[J]. DNA Research, 2011, 18(6): 471-482.

Chow K S, Mat-Isa M N, Bahari A, et al. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex[J]. Journal of Experimental Botany, 2012, 63(5): 1863-1871.

Nawamawat K, Sakdapipanich J T, Ho C C, et al. Surface nanostructure of Hevea brasiliensis natural rubber latex particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390(1-3): 157-166.

Chow K S, Wan K L, Isa M N M, et al. Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex[J]. Journal of Experimental Botany, 2007, 58(10): 2429-2440.

Sansatsadeekul J, Sakdapipanich J, Rojruthai P. Characterization of associated proteins and phospholipids in natural rubber latex[J]. Journal of Bioscience and Bioengineering, 2011, 111(6): 628-634.

Berthelot K, Lecomte S, Estevez Y, et al. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An An overview on rubber particle proteins[J]. Biochimie, 2014, 106: 1-9.

Hillebrand A, Post J J, Wurbs D, et al. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum[J]. PLoS One, 2012, 7(7): e41874.

Duan C F, Argout X, Gébelin V, et al. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequen cing[J]. BMC Genomics, 2013, 14(1): 30.

Tang C R, Huang D B, Yang J H, et al. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree)[J]. Plant, Cell and Environment, 2010, 33(10): 1708-1720.

Dusotoit-Coucaud A, Porcheron B, Brunel N, et al. Cloning and characterization of a new polyol transporter (HbPLT2) in Hevea brasiliensis[J]. Plant and Cell Physiology, 2010, 51(11): 1878-1888.

Dusotoit-Coucaud A, Kongsawadworakul P, Maurousset L, et al. Ethylene stimulation of latex yield depends on the expression of a sucrose transporter (HbSUT1B) in rubber tree (Hevea brasiliensis)[J]. Tree Pysiology, 2010, 30(12): 1586-1598.

Deng X M, Guo D, Yang S G, et al. Jasmonate signalling in the regulation of rubber biosynthesis in laticifer cells of rubber tree, Hevea brasiliensis[J]. Journal of Experimental Botany, 2018, 69(15): 3559-3571.

Montoro P, Wu S, Favreau B, et al. Transcriptome analysis in Hevea brasiliensis latex revealed changes in hormone signalling pathways during ethephon stimulation and consequent Tapping Panel Dryness[J]. Scientific Reports, 2018, 8(1): 1-12.

de Fa? E. Histo-and cytopathology of trunk phloem necrosis, a form of rubber tree (Hevea brasiliensis Müll. Arg.) Tapping Panel Dryness[J]. Australian Journal of Botany, 2011, 59(6): 563-574.

Zou Z, Gong J, An F, et al. Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue[J]. BMC Genomics, 2015, 16(1): 1001.

Ahrends A, Hollingsworth P M, Ziegler A D, et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods[J]. Global Environmental Change, 2015, 34: 48-58.

Fox J, Castella J C. Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders?[J]. The Journal of Peasant Studies, 2013, 40(1): 155-170.

Li Z, Fox J M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data[J]. Applied Geography, 2012, 32(2): 420-432.

Dong J W, Xiao X M, Chen B Q, et al. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery[J]. Remote Sensing of Environment, 2013, 134: 392-402.

Xu J C, Grumbine R E, Becksch?fer P. Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region[J]. Ecological Indicators, 2014, 36: 749-756.

Warren-Thomas E, Dolman P M, Edwards D P. Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity[J]. Conservation Letters, 2015, 8(4): 230-241.

Guillaume T, Maranguit D, Murtilaksono K, et al. Sensitivity and resistance of soil fertility indicators to land-use changes: New concept and examples from conversion of Indonesian rainforest to plantations[J]. Ecological Indicators, 2016, 67: 49-57.

Drescher J, Rembold K, Allen K, et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1694): 10.1098/rstb.2015.0275.

Clough Y, Krishna V V, Corre M D, et al. Land-use choices follow profitability at the expense of ecological functions in indonesian smallholder landscapes[J]. Nature Communica- tions, 2016(7): 13137.

Guillaume T, Holtkamp A M, Damris M, et al. Soil degradation in oil palm and rubber plantations under land resource scarcity[J]. Agriculture, Ecosystems & Environment, 2016, 232: 110-118.

主站蜘蛛池模板: 国产精品一区二区在线播放| 熟妇丰满人妻av无码区| 中文字幕不卡免费高清视频| 夜夜高潮夜夜爽国产伦精品| 日韩久久精品无码aV| 亚洲乱码视频| 精品久久蜜桃| 久久精品免费国产大片| 亚洲AV无码一二区三区在线播放| 欧美激情第一欧美在线| 亚洲最大综合网| 婷婷午夜天| 特级aaaaaaaaa毛片免费视频| 色哟哟国产精品一区二区| 精品久久久久久久久久久| 高清色本在线www| 国产日韩丝袜一二三区| 亚洲人精品亚洲人成在线| 国产精品粉嫩| 97人妻精品专区久久久久| 国产亚洲欧美在线视频| 免费jjzz在在线播放国产| 欧美乱妇高清无乱码免费| 99久久亚洲综合精品TS| 亚洲一区网站| 亚洲色图欧美在线| 亚洲男人在线天堂| 国产香蕉国产精品偷在线观看| 色135综合网| 国产欧美自拍视频| 久久黄色一级片| 欧美成人免费午夜全| 亚洲人成成无码网WWW| 免费看美女自慰的网站| a级免费视频| 日韩中文精品亚洲第三区| 高清视频一区| 伊人中文网| yy6080理论大片一级久久| 色天堂无毒不卡| 国产乱肥老妇精品视频| 国产在线观看高清不卡| 免费国产高清精品一区在线| 青草娱乐极品免费视频| 亚洲成人77777| 亚洲无码A视频在线| 国产国拍精品视频免费看| aa级毛片毛片免费观看久| 国产精品片在线观看手机版| 国产99在线| 一级做a爰片久久毛片毛片| 中国国产高清免费AV片| 国产精品乱偷免费视频| 99视频精品在线观看| 亚洲天堂777| 日韩国产精品无码一区二区三区 | 国产综合在线观看视频| 看看一级毛片| 日本不卡在线视频| 毛片大全免费观看| 欧美19综合中文字幕| 亚洲免费福利视频| 国产精品嫩草影院av| 伊人激情综合网| 亚洲精品爱草草视频在线| 波多野结衣第一页| 特黄日韩免费一区二区三区| 又爽又黄又无遮挡网站| 黄色网址手机国内免费在线观看| 亚洲AV一二三区无码AV蜜桃| 成人午夜免费观看| 毛片免费在线视频| 高清无码手机在线观看| 精品一区二区久久久久网站| 欧美日韩免费观看| 99久久免费精品特色大片| 呦女亚洲一区精品| 国产主播一区二区三区| 久久精品欧美一区二区| 亚洲国产成人精品一二区| 亚洲男人的天堂久久香蕉网| 国产免费一级精品视频 |