戴毅 田龍果 潘貞志 陳林 宋麗

摘要:植物硝酸鹽轉運蛋白不僅擔負著硝酸離子吸收、轉運的功能,還參與植物諸多生理發育過程。本文重點介紹了激素和硝酸鹽轉運蛋白在植物生長發育過程中的相互作用,硝酸鹽轉運蛋白參與非生物逆境脅迫響應方面的最新研究進展,以及激素和逆境協同參與硝酸鹽轉運蛋白表達和功能的調控機制,最后對硝酸鹽轉運蛋白在激素信號傳導和抗逆境脅迫中的應用以及未來可能開展的研究方向提出了展望。
關鍵詞:硝酸鹽轉運蛋白;植物激素;逆境
中圖分類號:Q756文獻標識碼:A文章編號:1000-4440(2020)06-1595-10
Abstract: Plant nitrate transporters are responsible for the absorption and transport of nitrate ions, and participate in various physiological processes of plants. This review focused on the interactions between hormones and nitrate transporters during plant growth and development, the roles of nitrate transporters in abiotic stress, and the synergistic effects of hormone and abiotic stress on the expression and function of nitrate transporters. Finally, the application of nitrate transporter in hormone signal transduction and stress resistance was proposed.
Key words:nitrate transporter;plant hormone;abiotic stress
氮(N)是植物生長發育必需的大量元素之一,氮素不僅是蛋白質、核酸及磷脂等生物大分子的組成成分,也是輔酶、輔基、葉綠素和植物激素等植物生長發育重要成分的構成組分[1-2]。氮素對植物生長發育的影響是十分明顯的,氮素缺乏會導致植物細胞中重要物質的合成受阻,功能蛋白活性降低,生長分裂速率減緩,進而抑制營養生長和生殖生長[3]。
植物既能吸收有機氮,也能吸收無機氮,但對于大多數植物來說,吸收的氮大部分是無機氮,主要是硝酸鹽(NO-3)和銨鹽(NH+4),其中硝酸鹽是植物生長發育主要的氮源[4-5]。硝酸鹽不僅是營養物質,也是一種信號分子,在打破種子休眠,誘導葉片生長,調控側根發育,誘導基因表達等方面具有關鍵調控作用[6-7]。硝酸鹽在植物體內的吸收、轉運和分配是不斷循環的過程,這不僅可以反映植物吸收氮素的效率,同時也可以反映當環境和所需營養發生變化時,這種循環過程是如何受到調控的。本文概述硝酸鹽轉運蛋白與激素的相互作用,以及逆境脅迫下它們在植物局部或整體發育中的作用,有利于理解硝酸鹽對植物代謝、生理和生長發育的影響,以促進農業的可持續發展。
1硝酸鹽轉運蛋白家族
植物細胞、組織和器官對硝態氮的吸收、轉運和分配需要借助轉運蛋白和離子通道完成,植物中有NRT1/PTR和NRT2共2類硝酸鹽轉運蛋白。NRT1/PTR是低親和性硝酸鹽轉運系統(LATS)的組成成分,NRT2是高親和性硝酸鹽轉運系統(HATS)的組成成分。根據最新命名規則,NRT1/PTR已經被重新命名為NPF[8-9]。有研究發現,在模式植物擬南芥和水稻中分別有53個和93個NPF成員[9-12],其中擬南芥CHL1蛋白是植物中第一個被發現的NPF家族成員,后來被命名為AtNRT1.1或AtNPF6.3[13],之后擬南芥中又有11個NRT1/PTR成員(AtNRT1.2-1.12)被證明與硝酸鹽轉運有關[10],其他物種(如大豆、黃瓜、苜蓿、水稻、玉米、高粱等)中也報道了許多NPF家族成員[14]。這些NPF家族成員中,除擬南芥NPF6.3和蒺藜苜蓿NRT1.3同時具有高、低親和力之外,其他NPF家族成員都是低親和轉運蛋白[15-16]。
NRT2屬于硝酸鹽-亞硝酸鹽轉運體(NNP)家族,最初是在構巢曲霉中發現的[17]。植物中,人們最先從大麥中分離得到NRT2基因(HvNRT2.1和HvNRT2.2)[18],之后又在煙草、大豆、擬南芥、番茄、水稻、玉米、小麥和菸草等多種植物中鑒定出多個NRT2成員[8]。其中,擬南芥中有7個NRT2成員[19],水稻中有4個NRT2成員[1]。與NRT1/PTR不同的是,植物中大多數NRT2家族成員并不能單獨轉運NO-3,它們需要與輔助蛋白NAR2(NRT3)結合,形成蛋白復合體才能實現NO-3的轉運或吸收[20-21],水稻中已發現2個NAR2成員[22]。
2硝酸鹽轉運蛋白和激素
氮為植物生長和發育提供了其必需的元素,而激素是植物生長過程中重要的調節物質。植物激素與硝酸鹽轉運蛋白的關系主要表現在二個方面:一是激素參與硝酸鹽轉運蛋白的表達調控;二是硝酸鹽轉運蛋白影響激素的生物合成、運輸和信號轉導。植物激素與硝酸鹽轉運蛋白相互影響、相互協調,在植物的生長發育過程中發揮重要作用[23]。
2.1生長素
在植物生長發育過程中,生長素與硝酸鹽轉運蛋白之間相互影響。生長素通過誘導相關基因表達來促進植物對硝酸鹽的吸收。例如,外源施加吲哚-3-乙酸(IAA)會誘導擬南芥AtNRT1.1基因表達,從而增強擬南芥對硝酸鹽的吸收能力[24]。但生長素并不能促進所有硝酸鹽轉運蛋白的表達,它對NRT2.1的轉錄有抑制作用[25]。硝酸鹽轉運蛋白也會影響生長素的合成和運輸。硝酸鹽轉運蛋白作為生長素轉運體,可以調控生長素在側根中的積累和運輸。例如,擬南芥硝酸鹽轉運蛋白NRT1.1會從側根運輸生長素,通過抑制側根生長來響應氮饑餓[13,26-28]。研究生長素調控網絡發現,生長素受體AFB3和miRNA393構成的氮響應模塊,通過調控硝酸鹽響應網絡中關鍵調控元件NAC4轉錄因子而影響植物根系構型,進而調節植物對外部和內部氮吸收的有效性[29-31]。一些轉錄因子也可以連接硝酸鹽和生長素信號傳導途徑,調控植物生長發育。例如,菊花轉錄因子CmTCP20能與生長素應答因子CmARF8結合形成CmTCP20-CmARF8異二聚體,在硝酸鹽誘導下調控細胞周期信號,從而影響側根的生長發育[32]。此外,在大豆、小麥、菠蘿、玉米和黑麥草等多種植物中,外源施加NO-3會降低根中生長素含量,而且生長素從地上部到地下部的運輸會受到抑制[33-34]。上述研究結果表明,硝酸鹽轉運蛋白與生長素的關系密切,生長素運輸中關鍵基因的表達受硝酸鹽調控,一些硝酸鹽轉運蛋白參與生長素運輸[35]。
2.2細胞分裂素
細胞分裂素(CKs)是一類與植物生長發育密切相關的植物激素[36]。有研究結果表明,氮素的供應會影響CKs的生物合成。例如,提高氮水平會使CKs在玉米根部、木質部、汁液和芽中積累[37]。在擬南芥中,CKs的合成受到磷酸腺苷-異戊烯基轉移酶基因AtIPT3的調控,而AtIPT3的表達又受硝酸鹽轉運蛋白NRT1.1/CHL1(NRT1.1)的調控[37-38]。另外,在許多植物中,提高NO-3水平不僅可以促進細胞分裂素的合成,還能借助硝酸鹽轉運蛋白調控CKs的運輸。例如,在擬南芥中,CKs可以上調NRT1.3、NRT1.4、NRT1.7、NRT2.7等硝酸鹽轉運蛋白基因的表達,促進氮素從衰老葉片向新葉片轉運,從而提高植物光合氮素的利用效率,促進植物生長發育[7,36-37,39]。外源施加CKs會抑制植物對氮素的吸收,這主要是因為CKs的受體AHK3和AHK4會影響硝酸鹽轉運蛋白的合成,從而抑制了氮素的吸收[40]。例如在擬南芥中,CKs能抑制根系中主要硝酸鹽轉運蛋白基因(AtNRT1.1、AtNRT1.5、AtNRT2.1、AtNRT2.2和AtNRT2.4)的表達,進而抑制植株對氮素的吸收和轉運[41-43]。有研究結果表明,CKs也會正向調控NRT基因(AtNRT2.7,AtNRT1.4和AtNRT1.7)的表達,促進硝酸鹽的分布和轉運[44-46]。由此可見,CKs可作為一種信號分子調節植物對氮的吸收和同化,而NO-3也能作為信號分子參與植物生長發育中CKs的合成與運輸[47-49]。
2.3乙烯
乙烯(Ethylene)是化學結構最簡單的氣態植物激素,是植物生長發育和適應環境脅迫的調節劑,也是植物養分吸收和利用過程中的關鍵激素之一[50]。有研究結果表明,植物從低氮轉移至高氮環境下生長后,根中會產生大量的乙烯,這是由于NO-3供給的增多可以通過激活ACS和ACO基因的轉錄來引發乙烯的生物合成[51]。另外,硝酸鹽轉運蛋白NRT2.1通過參與乙烯的合成途徑來影響NO-3的吸收。例如,乙烯合成前體1-氨基環丙烷羧酸(ACC)可促進歐洲油菜(Brassica napus)根系的生長以及根毛長度、數目的增加,但會降低硝酸鹽轉運蛋白基因BnNRT2.1的表達,從而抑制氮素的吸收[52]。進一步研究發現,施氮后的擬南芥突變體etr1和ein2中,根部AtNRT2.1基因的轉錄水平降低,NPF6.3(CHL1/NRT1.1)基因的轉錄水平上升,相反當外界NO-3濃度降低時,AtNRT2.1基因表達上調,從而促進NO-3的吸收[53]。NO-3吸收的增加會使外界NO-3的濃度更低,此時乙烯合成及轉導信號增加;乙烯的合成又可以抑制AtNRT2.1基因的表達,進而減少NO-3的吸收,緩解外界NO-3缺乏的狀況。這樣即使在外界NO-3缺乏時,NO-3的吸收也可以達到一個內部相對平衡的狀態,因此AtNRT2.1基因是NO-3吸收途徑與乙烯合成及信號轉導途徑互作網絡中的關鍵因子,乙烯在某種程度上是一種潛在的NO-3信號中轉站[23]。
2.4脫落酸
脫落酸(ABA)是植物體5大重要激素之一,參與調控植物多個生長發育過程。目前的研究結果證明,ABA的生物合成與NO-3的供應有關,特別是在根系發育過程中[23]。高濃度硝酸鹽抑制ABA的合成,從而影響細胞周期相關基因(CYCD3;1和CDKB1;1)的轉錄,導致植物側根生長發育受到抑制[54-55]。在植物的其他發育階段,ABA的吸收也會受到硝酸鹽轉運蛋白的調控,如AtNRT1.2(AtNPF4.6)在種子萌發和萌發后的生長過程中介導細胞對ABA的吸收[56]。有研究者認為,硝酸鹽與ABA信號之間存在相互作用[57]。例如,Kanno等[56]發現,AtNRT1.2(NPF4.6/AIT1)可以將維管組織中合成的ABA運輸到保衛細胞中,來調節莖中氣孔的開度。植物受到脅迫時,ABA信號調控因子ABI2與RCAR/PYL/PYR互作,使CBL1-CIPK23蛋白復合體磷酸化,影響硝酸鹽轉運蛋白的功能[58-59]。
2.5赤霉素
赤霉素(GA)在植物生長發育過程中發揮重要的調控作用,也會影響植物對養分的吸收。外源施加GA能夠提高黃瓜中氮代謝酶的活性,增強氮代謝能力,進而促進根系氮素吸收速率[60]。進一步研究發現,GA可以調控黃瓜根中CsNPF3.2/CsNitr1表達水平,影響NO-3吸收速率[61]。另外,Kanno等[56]發現NPF4.1在酵母中參與GA的運輸,Chiba等[62]在擬南芥中發現18個NPF成員具有運輸GA的能力,其中NPF3.1在低濃度的硝酸鹽環境下會影響赤霉素局部的積累和外排,參與植物中GA的運輸[63-64]。
3非生物逆境中硝酸鹽轉運蛋白基因的表達調控
植物并非始終生長在適宜的環境中,并且不能移動去尋找最適環境。所以遭受非生物逆境脅迫時,需要在植物體內發生反應,形成相關調節機制來響應并適應脅迫。植物硝酸鹽轉運蛋白除了具有轉運硝酸鹽、激素等物質的功能外,也被證實與植物脅迫防御息息相關。環境脅迫一方面能夠調控植物NRT的表達水平,另一方面硝酸鹽的轉運及含量變化也參與植物對非生物逆境脅迫的防御。
3.1干旱
水是植物生長所必需的物質之一。通常植物吸收的NO-3是隨著水從土壤到根部的,但在缺水時,植物無法從土壤中吸收水分,因此根部的氮水平就會降低[65]。在干旱情況下,一些硝酸鹽轉運蛋白會參與植物對干旱脅迫的應答。例如,干旱脅迫下,蘋果根中高親和力硝酸鹽轉運體MdNRT2.4基因的轉錄水平升高,導致氮吸收從低親和力轉運轉變成高親和力轉運,從而提高硝酸鹽的轉運來響應干旱脅迫[66]。在小麥不同基因型、不同生長階段及不同氮素供應狀況下,NRT基因的表達也會受到干旱脅迫的調控[67]。另外,在氣孔保衛細胞中過量表達AtNRT1.1基因,會使細胞中NO-3含量增加,引起保衛細胞去極化,從而促進氣孔張開,導致植物的干旱耐受性降低[68]。相反,AtNPF4.6/AtNRT1.2可作為脫落酸(ABA)的輸入體來調節莖中氣孔的開度,從而提高植物的耐旱性,因此該硝酸鹽轉運蛋白在植物響應干旱脅迫中起正向調控作用[56]。
3.2鹽脅迫
鹽脅迫對植物造成的傷害主要有2種:一是滲透脅迫,二是離子損傷,兩者都會擾亂細胞內離子平衡,使植物根系、光合系統等受損,影響植物的正常生長發育。隨著研究的深入,人們發現一些硝酸鹽轉運蛋白參與植物響應鹽脅迫的機制。例如,擬南芥硝酸鹽轉運蛋白NPF2.3主要在根的中柱鞘中表達,在鹽脅迫時,雖然NPF2.3基因的表達水平幾乎不受影響,但NPF2.3使得NO-3分泌至根的木質部汁液中,在硝酸鹽從根部至芽部的運輸中發揮作用,從而提高植物對鹽的耐受性[69]。同樣,NRT1.5和NRT1.8基因也參與鹽脅迫下硝酸鹽的轉運[65,70]。但不同是,鹽脅迫下NRT1.5基因的表達量下降,而NRT1.8基因的表達量上升[71]。這是因為,NRT1.5基因表達量的下降會減少NO-3向芽中的運輸,從而防止有害的Na+進入芽中對植物造成傷害[72],同時NRT1.8會通過木質部導管運輸NO-3,滿足植物生長發育過程中對NO-3的需求[71]。對鹽地堿蓬的耐鹽性研究發現,在鹽脅迫下,鹽地堿蓬老葉或成熟葉片中NRT1.7和NRT2.1可以通過韌皮部將NO-3運輸到新葉中,來維持植物正常的生長發育[73]。另外,有研究結果表明,擬南芥中的NPF2.3和NPF2.4參與鹽脅迫下Cl-的運輸,通過減少植物地上部分Cl-的積累,從而緩解Cl-對植物造成的毒害[74];NPF2.5可作為根中Cl-外流的調控因子,在鹽脅迫時促使Cl-從芽部外流[75]。這些結果都說明硝酸鹽轉運蛋白在植物對鹽脅迫的適應中承擔著直接或間接的重要功能。
3.3酸脅迫
根部細胞對硝酸鹽的吸收往往伴隨著質子的吸收,因此硝酸鹽轉運蛋白也會參與植物對質子毒性的耐受。在酸性生長環境中,植物根部會吸收大量NO-3,同時伴隨著吸收大量的H+,促使根際pH提高,從而緩解H+對植物的毒害[76]。AtNPF6.3/AtNRT1.1/CHL1主要負責根系中硝酸鹽的吸收和轉運,它是一種能同時從土壤或培養基中運輸1個硝酸根離子和2個H+到根細胞的轉運體。NRT1.1介導的H+耐受就需要足夠的NO-3,與硝酸根離子感應階段無關,而且H+脅迫可以在轉錄和翻譯水平正向調節NRT1.1的表達,從而調控NRT1.1對硝酸鹽的吸收[77]。另外,擬南芥NPF2.7基因主要在成熟根的皮層表達,在酸脅迫下NPF2.7可以調控NO-3在根邊緣細胞中的轉運[78]。水稻NRT2.3b基因位于質膜上,并且主要在韌皮部表達,在水稻中過表達該基因可以提高對酸脅迫的耐受能力,促進水稻從外界環境中吸收硝酸鹽并向地上部輸送,從而提高產量[79]。
3.4重金屬脅迫
土壤中鎘的含量會影響植物對硝酸鹽的轉運。相關研究結果表明,AtNPF7.2/AtNRT1.8的表達水平在受到Cd2+脅迫時會明顯上調,參與從木質部導管卸載硝酸鹽的過程,調控硝酸鹽在根部的重新分配[71]。另外,AtNPF7.3/AtNRT1.5也參與硝酸鹽的重新分配,但其表達量在受到Cd2+脅迫時下調,這可能是因為木質部中NRT1.5的負荷功能有助于將硝酸鹽保留在根中,這樣就可以和NRT1.8基因協同調控硝酸鹽向根的重新分配,并且這種再分配被認為是植物對各種逆境的常規反應[65,71,80]。Cd2+脅迫也會抑制AtNRT1.1的表達,從而抑制擬南芥根中NO-3的吸收,打亂根中NO-3的平衡[81]。相反,植物體內硝酸鹽的供應與鋅積累呈正相關。例如,擬南芥中NRT1.1活性的缺乏會減輕鋅(Zn)脅迫導致的植物光合損傷和生長抑制,這說明NRT1.1可以通過硝酸鹽依賴的途徑調控植物體內Zn的積累[82]。
3.5氮饑餓
在氮饑餓過程中,硝酸鹽轉運蛋白的表達水平受到復雜的調控。例如,小麥中TaNRT1和TaNRT2家族不同成員表現出不同的響應模式,并且同一成員在不同脅迫時間點的表達量也存在差異[67];擬南芥葉片中NRT1.7的表達量在氮饑餓時上調,維持硝酸鹽的運轉[46]。同樣,氮饑餓還會誘導啟動植物根中的高親和力運輸系統[83]。研究發現,擬南芥NRT2.1和NRT2.2主要分布在根成熟區域的皮層細胞中,在缺少氮時,NRT2.1和NRT2.2可以調節NO-3的HATS,從而影響硝酸鹽的吸收和根系發育[84-86]。此外,研究人員發現NRT2.1、NRT2.2、NRT2.4和NRT2.5對于成熟植物應對嚴重的氮饑餓至關重要[87],其中2個高親和硝酸鹽轉運蛋白基因NRT2.4和NRT2.5在氮饑餓時被高度誘導,并在氮饑餓條件下芽中韌皮部硝酸鹽的運輸中發揮潛在作用[87-88]。因此,我們推測這些基因在植物響應氮饑餓過程中起著重要作用,它們能提高植物對NO-3的利用效率,使植物適應短期的氮饑餓,維持正常的生命活動。不同基因表達量之間的差異反映了它們在響應氮饑餓脅迫中的不同功能。
4激素和逆境協同參與硝酸鹽轉運蛋白的功能調控
植物本身的發育信號和外部環境因子可轉變成內源激素信號,間接調節植物的生長發育,因此激素和逆境往往協同參與硝酸鹽轉運蛋白的功能調控。例如,在低溫條件下,施用赤霉素(GA3)可使黃瓜幼苗期根中NRT1基因的表達水平上升,同時調控編碼硝酸還原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)基因的表達水平,來提高根系吸收NO-3的速率,這說明外源施加GA3,可以促使植物通過硝酸鹽轉運蛋白調控NO-3的吸收效率,來響應低溫對植物造成的傷害[60-61,89]。干旱脅迫下,增強NRT1.2(NPF4.6/AIT1)基因的表達可以促進植物體內ABA含量的增加,進而增強植物氣孔的閉合來響應干旱脅迫[56]。
另外,逆境下植物激素與硝酸鹽轉運蛋白有時會共同發揮作用。有研究結果表明,乙烯對低氮下高親和硝酸根離子的吸收有抑制作用,而NRT2.1的表達對乙烯合成的前體物質1-氨基環丙烷羧酸(ACC)和乙烯合成拮抗劑氨基乙氧基乙烯基甘氨酸(AVG)十分敏感[51-52]。由此,研究人員提出一個模型:NRT2.1的表達在外部NO-3濃度低時上調,從而提高了高親和硝酸根離子的吸收,使外部NO-3持續減少;而NO-3減少會誘導乙烯的生物合成以及信號傳導,降低NRT2.1的表達,從而減少植物中NO-3的吸收,緩解外部缺少NO-3時的脅迫,使得植物在動態土壤環境中可以較好地調節氮的吸收[53]。
植物在生長發育過程中往往會同時受到多種逆境脅迫。有研究結果表明,多種逆境或激素可協同調控不同硝酸鹽轉運蛋白的表達。例如,干旱、低溫、重金屬等非生物脅迫會誘導NRT1.8表達,抑制NRT1.5表達,調控NO-3的吸收和轉運,從而減少逆境脅迫對植物造成的傷害[65,71]。同樣,芥菜中多個NRT基因,在低溫、熱、鹽和滲透脅迫下表達水平發生變化,說明NRT基因可能在逆境導致的芥菜生長發育抑制中起關鍵作用[90]。
5展望
近年來在硝酸鹽轉運蛋白功能研究方面取得了較多進展,本文也總結了目前植物中已報道的部分硝酸鹽轉運蛋白的功能(表1),但是我們對硝酸鹽信號轉導、吸收和運輸分子機制的了解還遠遠不夠。例如,有關新型植物激素(如油菜素甾醇、獨腳金內酯、水楊酸類、茉莉酸類和多胺等)是如何調控硝酸鹽轉運蛋白的報道較少。盡管有研究結果表明,油菜素甾醇可以誘導硝酸鹽轉運蛋白基因的表達,擬南芥根部有一類C末端編碼肽家族基因,在缺氮時可以調控NRT基因的表達,促使根部吸收硝酸根離子[91],但是這些調控機制都不是很清楚。另外,硝酸鹽轉運蛋白不僅參與植物的多個生長發育過程,而且其調控機制十分復雜。例如,硝酸鹽轉運蛋白的表達受晝夜節律的調控,其蛋白質活性水平也受到調控,這些復雜的代謝調控網絡需要深入研究。
中國是農業大國,農用耕地占世界耕地面積的1/10,但是氮肥使用量卻高于世界氮肥使用總量的1/4。由于植物對氮素的吸收率很低,造成大量氮素不能被合理利用而浪費,過量氮肥流入生態系統后,又會造成嚴重的環境污染問題。因此,提高植物氮肥的利用率是目前亟待解決的關鍵科學問題。提高植物的氮素利用率對于改良植物品種質量具有重要意義,不僅可以節約資源,減少污染,還可以獲得高產、高質的優良品種。目前模式植物中有關硝酸鹽轉運蛋白的研究較多,但是在農作物中的研究較少。所以,深入研究農作物中硝酸鹽轉運蛋白的功能及調節機制,可以為培育氮高效利用的農作物新品種提供新的研究思路和切入點。
參考文獻:
[1]蔣志敏, 王 威, 儲成才. 植物氮高效利用研究進展和展望[J]. 生命科學, 2018, 30(10):1060-1071.
[2]FRINK C R, WAGGONER P E, AUSUBEL J H. Nitrogen fertilizer: retrospect and prospect[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1175-1180.
[3]STITT M, KRAPP A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background [J]. Plant, Cell and Environment, 1999, 22(6): 583-621.
[4]SURYA K, YONG M B, ROTHSTEIN S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency[J]. Journal of Experimental Botany, 2011, 62(4): 1499-1509.
[5]WANG M Y, SIDDIQI M Y, RUTH T J, et al. Ammonium uptake by rice roots (II. Kinetics of 13NH+4 influx across the plasmalemma) [J]. Plant Physiology, 1993, 103(4): 1259-1267.
[6]ALBORESI A, GESTIN C, LEYDECKER M T, et al. Nitrate, a signal relieving seed dormancy in Arabidopsis[J]. Plant, Cell and Environment, 2005, 28(4): 500-512.
[7]WALCH-LIU P, NEUMANN G, BANGERTH F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco[J]. Journal of Experimental Botany, 2000, 51(343): 227-237.
[8]WANG Y Y, HSU P K, TSAY Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.
[9]LRAN S, VARALA K, BOYER J C, et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends in Plant Science, 2014, 19(1): 5-9.
[10]WANG Y Y, CHENG Y H, CHEN K E, et al. Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85-122.
[11]RYOICHI A, HIROSHI H. Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction[J]. Breeding Science, 2006, 56(3): 295-302.
[12]FENG H, YAN M, FAN X, et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany, 2011, 62(7): 2319-2332.
[13]TSAY Y F, SCHROEDER J I, FELDMANN K A, et al. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter[J]. Cell, 1993, 72(5): 705-713.
[14]VON WITTGENSTEIN N J, LE C H, HAWKINS B J, et al. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants[J]. BMC Evolutionary Biology, 2014, 14(1): 11.
[15]LIU K H, HUANG C, TSAY Y. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake[J]. Plant Cell, 1999, 11(5): 865-874.
[16]MORRE-LE P M C, LAURE V, ALAIN H, et al. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula[J]. Journal of Experimental Botany, 2011, 62(15): 5595-5605.
[17]UNKLES S E, HAWKER K L, GRIEVE C, et al. crnA encodes a nitrate transporter in Aspergillus nidulans[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(1): 204-208.
[18]TRUEMAN L J, ONYEOCHA I, FORDE B G. Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters[J]. Plant Physiology and Biochemistry, 1996, 34(5): 621-627.
[19]MILLER A J, FAN X, ORSEL M, et al. Nitrate transport and signalling[J]. Journal of Experimental Botany, 2007, 58(9): 2297-2306.
[20]KOTUR Z, MACKENZIE N, RAMESH S, et al. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytologist, 2012, 194(3): 724-731.
[21]KOTUR Z, GLASS A D M. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana[J]. Plant, Cell and Environment, 2015, 38(8): 1490-1502.
[22]FAN X R, NAZ M, FAN X R, et al. Plant nitrate transporters: from gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475.
[23]KROUK G. Hormones and nitrate: a two-way connection[J]. Plant Molecular Biology, 2016, 91(6): 599-606.
[24]鄭冬超,夏新莉,尹偉倫. 生長素促進擬南芥AtNRT1.1基因表達增強硝酸鹽吸收[J]. 北京林業大學學報, 2013, 35(2): 80-85.
[25]ASIM M, ULLAH Z, OLUWASEUN A, et al. Signalling overlaps between nitrate and auxin in regulation of the root system architecture: insights from the Arabidopsis thaliana [J].International Journal of Molecular Sciences,2020,21(8): 2880.
[26]LIU P W, IVANOV L L, FILLEUR S, et al. Nitrogen regulation of root branching [J]. Annals of Botany, 2006, 97(5): 875-881.
[27]KROUK G, LACOMBE B, BIELACH A, et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants [J]. Developmental Cell, 2010, 18(6): 927-937.
[28]CHAI S, LI E, ZHANG Y, et al. NRT1.1-mediated nitrate suppression of root coiling relies on PIN2-and AUX1-mediated auxin transport[J]. Frontiers in Plant Science, 2020, 11: 671.
[29]VIDAL E A, ARAUS V, LU C, et al. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9):4477-4482.
[30]VIDAL E A, MOYANO T C, RIVERAS E, et al. Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): 12840-12845.
[31]ASIM M, ULLAH Z, XU F, et al. Nitrate signaling, functions, and regulation of root system architecture: insights from Arabidopsis thaliana[J]. Genes, 2020, 11(6): 633.
[32]FAN H M, SUN C H, WEN L Z, et al. CmTCP20 plays a key role in nitrate and auxin signalling-regulated lateral root development in chrysanthemum[J]. Plant and Cell Physiology,2019, 60(7):1581-1594.
[33]LIU J X, AN X, CHENG L, et al. Auxin transport in maize roots in response to localized nitrate supply [J]. Annals of Botany, 2010, 106(6): 1019-1026.
[34]PAVLIKOVA D, NEUBERG M, ZIZKOVA E, et al. Interactions between nitrogen nutrition and phytohormone levels in Festulolium plants[J]. Plant Soil and Environment, 2012, 58(8): 367-372.
[35]GUTIRREZ R A, LEJAY L V, DEAN A, et al. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis[J]. Genome Biology, 2007, 8: R7.
[36]SAKAKIBARA H. Cytokinins: activity, biosynthesis, and translocation[J]. Annual Review of Plant Biology, 2006,57:431-449.
[37]TAKEI K, UEDA N, AOKI K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis[J]. Plant and Cell Physiology, 2004, 45(8):1053-1062.
[38]MIYAWAKI K, MATSUMOTO-KITANO M, KAKIMOTO T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate[J]. The Plant Journal, 2004, 37:128-138.
[39]李志康,嚴冬,薛張逸,等. 細胞分裂素對植物生長發育的調控機理研究進展及其在水稻生產中的應用探討[J]. 中國水稻科學, 2018, 32(4): 311-324.
[40]SEGUELA M, BRIAT J F, VERT G, et al. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway[J]. The Plant Journal, 2008, 55(2): 289-300.
[41]FRANCO-ZORRILLA J M, MARTIN A C, SOLANO R, et al. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis[J]. The Plant Journal, 2002, 32(3): 353-360.
[42]MARUYAMA-NAKASHITA A, NAKAMURA Y, YAMAYA T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation[J]. The Plant Journal, 2004, 38(5): 779-789.
[43]GUO Q, LOVE J, SONG J, et al. Insights into the functional relationship between cytokinin-induced root system phenotypes and nitrate uptake in Brassica napus[J]. Functional Plant Biology, 2017, 44(8): 832-844.
[44]CHIU C C, LIN C S, HSIA A P, et al. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development[J]. Plant and Cell Physiology, 2004, 45(9): 1139-1148.
[45]CHOPIN F, WIRTH J, DORBE M F, et al. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane[J]. Plant Physiology and Biochemistry, 2007, 45(8): 630-635.
[46]FAN S C, LIN C S, HSU P K, et al. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J]. The Plant Cell, 2009, 21(9): 2750-2761.
[47]KIBA T, KUDO T, KOJIMA M, et al. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin[J]. Journal of Experimental Botany, 2011, 62(4): 1399-1409.
[48]KUDO T, KIBA T, SAKAKIBARA H. Metabolism and long-distance translocation of cytokinins[J]. Journal of Integrative Plant Biology, 2010, 52(1): 53-60.
[49]SHTRATNIKOVA V Y, KUDRYAKOVA N V, KUDOYAROVA G R, et al. Effects of nitrate and ammonium on growth of Arabidopsis thaliana plants transformed with the ARR5::GUS construct and a role for cytokinins in suppression of disturbances induced by the presence of ammonium[J]. Russian Journal of Plant Physiology, 2015, 62(6): 741-752.
[50]DUGARDEYN J, STRAETEN D V D. Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation[J]. Plant Science, 2008, 175(1/2): 59-70.
[51]TIAN Q Y, SUN P, ZHANG W H. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana[J]. New Phytologist, 2009, 184(4): 918-931.
[52]LEBLANC A, RENAULT H, LECOURT J, et al. Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2.1 and BnNrt1.1 transporter gene expression in oilseed rape[J]. Plant Physiology, 2008, 146: 1928-1940.
[53]ZHENG D, HAN X, AN Y, et al. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis[J]. Plant Cell and Environment, 2013, 36(7):1328-1337.
[54]SIGNORA L, DE SMET I, FOYER C H, et al. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis[J]. The Plant Journal, 2001, 28(6): 655-662.
[55]DE SMET I, SIGNORA L, BEECKMAN T, et al. An abscisic acid-sensitive checkpoint in lateral root development in Arabidopsis[J]. The Plant Journal, 2003, 33(3): 543-555.
[56]KANNO Y, HANADA A, CHIBA Y, et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9653-9658
[57]GUAN P. Dancing with hormones: A current perspective of nitrate signaling and regulation in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8:1697.
[58]HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194.
[59]LRAN S, EDEL K H, PERVENT M, et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid[J]. Science Signaling, 2015, 8(375): ra43.
[60]白龍強,劉玉梅,慕英,等. 赤霉素對根區亞低溫下黃瓜幼苗氮代謝與吸收的影響[J]. 園藝學報, 2018, 45(10): 1917-1928.
[61]SUGIURA M, GEORGESCU M N, TAKAHASHI M. A nitrite transporter associated with nitrite uptake by higher plant chloroplasts[J]. Plant Cell Physiology, 2007, 48(7): 1022-1035.
[62]CHIBA Y, SHIMIZU T, MIYAKAWA S, et al. Identification of Arabidopsis thaliana NRT1/PTR family (NPF) proteins capable of transporting plant hormones[J]. Journal of Plant Research, 2015, 128(4): 679-686.
[63]DAVID L C, BERQUIN P, KANNO Y, et al. N availability modulates the role of NPF3.1, a gibberellin transporter, in GA-mediated phenotypes in Arabidopsis[J]. Planta, 2016, 244: 1315-1325.
[64]IZMAILOV S F, NIKITIN A V. Nitrate signaling in plants: mechanisms of implementation[J]. Russian Journal of Plant Physiology, 2020, 67(1): 31-44.
[65]CHEN C Z, LV X F, LI J Y, et al. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance[J]. Plant Physiology, 2012, 159(4): 1582-1590.
[66]BASSETT C L, BALDO A M, MOORE J T, et al. Genes responding to water deficit in apple (Malus×domestica Borkh.) roots[J]. BMC Plant Biology, 2014, 14:182.
[67]DUAN J, TIAN H, GAO Y. Expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies[J]. Crop and Pasture Science, 2016, 67(2): 128-136.
[68]GUO F Q, YOUNG J, CRAWFORD N M. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis[J]. The Plant Cell, 2002, 15(1): 107-117.
[69]TAOCHY C, GAILLARD I, IPOTESI E, et al. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress[J]. The Plant Journal, 2015,83 (3): 466-479.
[70]ZHANG G B, MENG S, GONG J M. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation[J]. International Journal of Molecular Sciences, 2018, 19: 3535.
[71]LI J Y, FU Y L, PIKE S M, et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell, 2010, 22(5): 1633-1646.
[72]LIN S H, KUO H F, CANIVENC G, et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20(9): 2514-2528.
[73]MA Y, YANG Y, LIU R, et al. Adaptation of euhalophyte Suaeda salsa to nitrogen starvation under salinity[J]. Plant Physiology and Biochemistry, 2020, 146: 287-293.
[74]LI B, BYRT C, QIU J, et al. Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis[J]. Plant Physiolpgy, 2016, 170(2): 1014-1029.
[75]LI B, QIU J, JAYAKANNAN M, et al. AtNPF2. 5 modulates chloride (Cl-) efflux from roots of Arabidopsis thaliana[J]. Frontiers in Plant Science, 2017, 7: 2013.
[76]YANG Y, QIN Y, XIE C, et al. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase [J]. The Plant Cell, 2010, 22(4): 1313-1332.
[77]FANG X Z, TIAN W H, LIU X X, et al. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis[J]. New Phytologist, 2016, 211(1): 149-158.
[78]SEGONZAC C, BOYER J C, IPOTESI E, et al. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter[J]. The Plant Cell, 2007, 19(11): 3760-3777.
[79]FAN X, TANG Z, TAN Y, et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (26): 7118-7123.
[80]ZHANG G B, YI H Y, GONG J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. The Plant Cell, 2014, 26(10): 3984-3998.
[81]MAO Q Q, GUAN M Y, LU K X, et al. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis[J]. Plant Physiology, 2014, 166(2): 934-944.
[82]PAN W, YOU Y, WENG Y N, et al. Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110104.
[83]KIBA T, KRAPP A. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture[J]. Plant Cell Physiology, 2016, 57(4): 707-714.
[84]REMANS T, NACRY P, PERVENT M, et al. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis[J]. Plant Physiology, 2006, 140: 909-921.
[85]FILLEUR S, DORBE M F, CEREZO M, et al. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake[J]. FEBS Letters, 2001, 489(2): 220-224.
[86]CEREZO M, TILLARD P, FILLEUR S, et al. Major alterations of the regulation of root NO-3 uptake are associated with the mutation of NRT2.1 and Nrt2.2 genes in Arabidopsis[J]. Plant Physiology, 2001, 127: 262-271.
[87]LEZHNEVA L, KIBA T, FERIA-BOURRELLIER A B, et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 2014, 80(2): 230-241.
[88]KIBA T, FERIA-BOURRELLIER A B, LAFOUGE F, et al. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants[J]. The Plant Cell, 2012, 24(1): 245-258.
[89]DAVIRE J M, ACHARD P. Gibberellin signaling in plants[J]. Development, 2013, 140 (6): 1147-1151.
[90]GOEL P, SINGH A K. Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L.[J]. PLoS One, 2015, 10(11): e0143645.
[91]TABATA R, SUMIDA K, YOSHII T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling[J]. Science, 2014, 346(6207): 343-346.
(責任編輯:王妮)