黃 婷,梁 亮,耿 笛,李 麗,王李娟,王樹果,羅 翔,楊敏華
·農業信息與電氣技術·
波段寬度對利用植被指數估算小麥LAI的影響
黃 婷1,梁 亮1※,耿 笛1,李 麗2,王李娟1,王樹果1,羅 翔3,楊敏華4
(1. 江蘇師范大學地理測繪與城鄉規劃學院,徐州 221000;2. 遙感科學國家重點實驗室,北京 100101;3. 江西省農業科學院農業工程研究所,南昌 330000;4. 中南大學地球科學與信息物理學院,長沙 410083)
為了能夠根據遙感數據類型實現指數的優化選擇進而提高葉面積指數的反演精度,該研究分析了不同波段寬度(5~80 nm)對植被指數反演葉面積指數精度的影響。通過比較反演模型的決定系數均值,篩選出14個模型精度較高的植被指數,并探討了不同波段寬度的選取對各指數葉面積指數反演精度的影響。結果表明,波段寬度對不同植被指數的影響可分為3類:1)OSAVI2等指數波寬越窄,反演精度越高,更適合應用于高光譜遙感數據;2)SR[800,680]等指數隨著波段寬度的增加,反演精度先升后降,最適波寬為35 nm,適用于中等光譜分辨率的遙感數據;3)SR[675,700]等指數隨著波段寬度的增大,反演精度不斷提高,在多光譜數據中有更好的應用潛力。
波段寬度;植被指數;葉面積指數;PROSAIL模型
葉面積指數(leaf area index,LAI)可有效反映植被生理生化特性,是植被的重要結構特征參數之一。快速、無損、精準地監測冬小麥關鍵生育期的葉面積指數對準確掌握長勢動態、水肥調控、災害監測和產量預測等田間生產管理具有重要意義[1-3]。遙感技能以較低的成本獲得LAI的時空變化信息,目前已成宏觀尺度上獲取這一指標最常用的方法[4-6]。
如何更準確地通過遙感數據來估算LAI一直是植被遙感的熱點內容之一[1,7-9]。目前,為了提高LAI的反演模型的精度與普適性,研究者一方面不斷地優化與改進反演策略與算法以降低模型誤差[10-12];另一方面則致力于分析土壤背景[13]、土壤類型[14]、觀測幾何[15]、熱點效應[16]等因素在LAI反演過程的作用,以期找出相應的方法減少或消除干擾因素的影響。有研究表明,植被指數類型的選取及其計算時波段寬度的選擇也是影響植被參量反演的重要因素[17-19]。目前,植被指數的選取或僅依靠經驗值或需要通過對各種指數進行篩選才能確定,增加了反演過程的不確定性與復雜性。而由于波段寬度的影響,利用同一指數進行LAI反演,其結果也往往存在較大差異。如Twele等[18]利用NDVI(normalized difference vegetation index),SR(simple ratio),RSR(reduced simple ratio index),NDVIc(corrected normalized difference vegetation index),SAVI2(soil adjusted vegetation index 2)估算森林冠層LAI時發現,該類植被指數在窄波段時可獲得更高的反演精度;王福民等[20]對水稻LAI的反演研究表明,利用波段寬度為15 nm的光譜所計算的NDVI可取得最佳結果。由于不同衛星數據波段寬度不同,這一影響也導致某一研究通過窮盡法篩選出的最優指數,在實際的遙感應用過程中通常不具備普適性[21-22]。因此,系統地分析LAI反演時波段寬度對各植被指數的影響,探討不同指數的最適波段寬度,對提高LAI反演精度具有重要意義,是一亟待研究的問題。
本研究將利用地面實測數據集對LAI反演時較常用的植被指數進行分析,研究各不同波段寬度對LAI反演精度的影響,從而為LAI估算時不同光譜分辨率傳感器指數的選擇以及遙感估算小麥LAI時植被指數的篩選(即針對不同遙感數據源來選擇合適的植被指數)提供依據。
本研究數據來自國家農業信息化工程技術研究中心開展的“作物田間信息獲取與基于影像GIS的快速診斷系統”農學遙感實驗。試驗區(40°10'31"N~40°11'18"N,116°26'10"E~116°27'05"E)占地面積 167 hm2,海拔高度30~100 m,種植作物為冬小麥(圖1)。為保證小麥LAI值有較大變化范圍以便開展農學遙感分析,在試驗基地的24個小區(面積60 m×60 m)內分別進行了氮脅迫與水脅迫試驗。2類脅迫各設置6個處理(施氮量:0~375 kg/hm2,級差75 kg;澆水量:0~1 125 m3/hm2,級差225 m3),每一處理包括2個重復(圖1)。
利用的FieldSpec Pro FR 地物光譜儀(ASD公司生產,光譜范圍350~2 500 nm;350~1 000 nm分辨率為3 nm,采樣間隔為1.4 nm;1 000~2 500 nm分辨率為10 nm,采樣間隔為2 nm)對生長季(拔節后至孕穗前)的小麥進行光譜采集。光譜采集在風力小于3級,無卷云與濃積云的晴朗天氣下進行,時間范圍規定為北京時間10:00~15:00,以保證有較高的太陽高度角。傳感器探頭(25° 視場角)垂直向下,高度保持在冠層上方1.3 m附近,每一樣本重復測量10次取均值,且每半小時用參考板對儀器進行一次校正,以消除環境變化所帶來的影響。光譜采集的同時進行農學采樣,以干重法測定LAI值,即取50~100片葉進行面積測量后,烘干稱重,建立干質量與葉面積之間的相關模型,然后再根據被測對象的干質量反推葉面積,并采用激光葉面積儀(Cl-203型)進行矯正。在試驗期間,在小麥的水、氮脅迫區內同步采樣6次(采樣日期分別為4月11日、4月21日、5月4日、5月13日、5月23和6月3日),在大田均布點上同步采樣一次(4月11日),共獲取有效樣本139份。圖2為各小麥樣本的光譜反射率曲線圖。

圖1 研究區概況

圖2 小麥冠層的光譜曲線
葉面積指數與利用地表反射率計算的植被指數之間有很強的相關性,經驗反演方法則通過建立LAI和植被指數之間的某種函數關系能夠較好的估算出LAI。但植被指數的選擇通常不唯一,目前對于最適合葉面積反演的植被指數還沒有一致的結論[1,7]。本研究在前人的研究基礎上,選擇了28個LAI反演較常用的植被指數[4],用于不同波段寬度下植被指數與葉面積指數的相關關系研究(表1)。在建模時,將植被指數作為自變量,將實測LAI作為因變量,分別利用線性回歸、指數回歸、對數回歸、多項式回歸和冪函數回歸建立植被指數和LAI的曲線擬合模型,并采用均方根誤差(root mean square error,RMSE)和決定系數(coefficient of determination,R)這2個統計量作為模型精度評價指標,從而篩選出R最大,RMSE最小的最優曲線擬合模型,各植被指數的最佳擬合模型如表2所示。

表1 本研究選用的植被指數
注:為光譜反射率,下標為波長。
Note:is the spectral reflectance, the subscript is the wavelength.

表2 植被指數的最佳擬合模型
為研究不同波段寬度對植被指數反演LAI精度的影響,需獲得利用不同波段寬度的冠層反射率計算出的植被指數,由于傳感器各通道受元器件特性的制約,每個通道在特定光譜區間對不同光譜輻射的響應能力不同,為了能夠更加接近衛星傳感器所接收的輻射信號。本研究將地面實測小麥的冠層光譜反射率(350~2 500 nm)根據式(1)和式(2)模擬生成不同波段寬度時的葉片反射率[19,38]。冠層光譜的初始波段寬度設置為5 nm,并以5 nm為步長逐步增至80 nm,逐一計算不同波寬下的植被指數。其中,參與植被指數計算的波長設置為波段寬度拓展時的中心波長,同時,中心波長的反射率為根據式(1)模擬生成的光譜反射率。這樣的多波段寬度設置既保證了波段寬度的豐富度和連續性,又模擬了絕大多數傳感器的光譜通道寬度,有助于確定不同傳感器數據源反演葉面積指數時的最佳植被指數,從而提高LAI反演精度。


為了能定量地比較和評估植被指數對波段寬度的敏感度,本研究將波段寬度為5~80 nm時計算的植被指數值與實測原始波段寬度(1 nm)時計算的植被指數值進行比較,根據式(3)定義敏感度系數Var計算方法如下[19]


同時,定量分析植被反射光譜對理化參數的敏感性是遙感反演理化參數含量的前提[39]。本研究采用靈敏度系數LAI定量描述光譜指數對LAI的敏感性,其計算公式如下[18]



圖3 植被指數的最佳擬合模型的精度
圖4為篩選出的14個植被指數對波段寬度的敏感度系數Var變化圖。從圖中可以發現,植被指數的Var與波段寬度基本呈正相關關系,而Var越大說明植被指數對波段寬度的抗干擾性越差,反之則越好。上述研究表明,波段寬度是影響植被指數的重要因素之一,且隨著波段寬度的增加,本研究所篩選的植被指數受波段寬度的干擾越大。

圖4 各植被指數對波段寬度的敏感度
根據式(4)計算的敏感度系數LAI結果如圖5所示,Carte2指數的敏感度系數與波段寬度呈正相關關系。與之相反的是,OSAVI2、Carte3、NDCI、SR[752,690]、SR[800,680]、NDVI705、SR[750,550]、SR[750,700]、SR[675,700]、Datt3、Carte4、SR[750,710]隨著波段寬度的增加敏感度度系數LAI呈下降趨勢。而RI1dB的敏感度系數曲線雖總體呈上升趨勢,但在30~60 nm之間存在明顯的波谷。因此,植被指數在各波段寬度下對LAI的敏感度曲線變化趨勢,同樣說明了波段寬度也會造成植被指數對LAI的響應程度發生改變。因此,經過對Var和LAI隨波段寬度變化的初步分析可以猜測,波段寬度是影響LAI估算精度的重要因素,且波段寬度對不同植被指數估算LAI精度的影響趨勢可能是不同的,可能存在以下2種情況:波段寬度越大,效果越好;波段寬度越小,效果越差,但波段寬度對利用植被指數進行LAI估算的具體影響仍需進一步的研究分析。


圖5 各波段寬度下植被指數對LAI的敏感度
圖7~圖10是不同指數所建LAI反演模型2隨波段寬度變化而變化情況。根據2的變化趨勢,各指數可分為4類:1)所建反演模型2隨著波段寬度增加不斷降低,即所用波段寬度越窄越合適,這類指數可稱之為窄波段指數;2)2隨著波段寬度的增加先升后降,變化曲線存在明顯峰值,可稱之為中波段指數;3)2隨著波段寬度增加而升高,即在本研究的分析范圍內(波段寬度≤80 nm),波段越寬越合適,可稱之為寬波段指數;4)R隨著波段寬度的增加先下降后上升再下降的植被指數。

圖6 敏感度系數均值
圖7為窄波段植被指數OSAVI2、NDCI、SR[752,690]、SR[750,700]和Carte2所建LAI估算模型的R隨波段寬度增加的變化圖。由圖可知,隨著波段寬度的增加,窄波段植被指數所建模型R的變化趨勢基本相同,均呈現下降趨勢。說明波段寬度越窄,由這類指數所構建模型估算LAI的能力越好。因此,利用高光譜遙感數據進行LAI估算時,可優先考慮窄波段植被指數,以期獲得更好的估算結果。從圖中可以發現,指數OSAVI2所建LAI反演模型的R始終最高,其次為NDCI、SR[752,690]、Carte2和SR[750,700]。同時,值得注意的是,窄波段植被指數OSAVI2和NDCI隨著波段寬度的增加其R的波動較小,因此,當OSAVI2和NDCI在不同的遙感數據源下估算LAI的差異可能較小。但SR[752,690]、Carte2、SR[750,700]隨波段寬度的增加,R下降趨勢明顯,說明這兩個指數所構建的LAI反演模型極易受波段寬度的影響,在使用不同傳感器數據源估算LAI時,其結果可能差異較大。因此,綜合植被指數的敏感度分析及R隨波寬變化的結果,可確定OSAVI2和NDCI為LAI高光譜反演時的優選指數。


圖7 窄波段植被指數LAI估算模型R2隨波寬的變化

圖8 中波段植被指數LAI估算模型R2隨波寬的變化
圖9為寬波段植被指數所建LAI反演模型R隨波段寬度的變化圖。寬波段植被指數SR[750,550]、SR[675,700]的顯著特點是其LAI反演模型R與LAI呈正相關關系,而植被指數SR[750,710]和RI1dB在波段寬度20~60 nm之間有所波動,但總體呈現上升趨勢,本研究將這2個指數也劃分為寬波段植被指數。隨著波段寬度的增大,寬波段植被指數所建模型的估算能力越好(R越大),說明寬波段植被指數在反演LAI時,波段寬度越大越合適。因此當利用多光譜數據進行LAI估算時,寬波段植被指數可能發揮出更好的估算潛力。同時由圖可知,當波段寬度小于40 nm時,SR[750,550]所建模型R始終高于SR[675,700],波段寬度大于40 nm時,SR[750,550]的R始終低于SR[675,700],說明利用單一波段寬度比較不同植被指數反演LAI的能力往往存在局限性,且波段寬度對不同植被指數的影響程度也有所差異。同時,對比SR[675,700]、SR[750,550]、SR[750,710]和RI1dB所建模型R的變化曲線,SR[750,550]、SR[750,710]和RI1dB的曲線變化趨勢較為平緩,反演LAI的能力較為穩定。值得注意的是,雖然SR[675,700]是作為高光譜指數所提出[30],但本研究分析表明,波段寬度對SR[675,700]具有較大影響,當所采用的遙感數據光譜通道小于20 nm 時(如Hyperion與CHRIS等高光譜數據),該指數并非估算LAI的優選指數;當數據的光譜通道大于50 nm時(如SPOT和Landsat OLI),該指數則具有較高的反演精度,是進行LAI估算的優選指數。

圖9 寬波段植被指數LAI估算模型R2隨波寬的變化
圖10為Carte3與Carte4所建LAI估算模型的R隨波段寬度的變化圖。Carte3與Carte4的R隨波段寬度變化的趨勢較為相似,均呈現先下降在上升再下降的變化趨勢,但該類植被指數所建模型在波段寬度5~80 nm之間估算能力較為穩定,其最大R與最小R的差值均小于0.003。因此,當利用Carte3與Carte4在不同遙感數據下進行LAI的估算時,LAI估算結果可能差距較小,估算精度較為穩定,可忽略波段寬度的影響。

圖10 Carte3和Carte4的LAI估算模型R2隨波寬的變化
本研究結果表明,波段寬度是影響LAI反演精度的重要因素之一,王福民等[20]對水稻的分析表明,當波段寬度取值為15 nm時,NDVI可取得最佳結果,而劉玉琴等[7]的分析則表明窄波段寬度下選用的植被指數能更好地實現草地LAI的反演。目前,大量研究利用高光譜數據下的植被指數進行LAI估算[40-42],但大多研究僅針對一個或少數的幾個植被指數,各植被指數受波段寬度的影響尚未得到系統的梳理。本研究選取了28個常用于LAI研究的植被指數,并將波段寬度的設置為5~80 nm之間連續的16種波段寬度,較為全面的探討了各類植被指數估算LAI能力隨波段寬度的變化趨勢,可為各指數合適波段寬度的選擇提供參考。另,進一步分析表明,由于波段寬度對不同植被指數的影響大小存在差異(如當波段寬度小于45 nm時,SR[750,550]的模型估算精度明顯優于SR[675,700],但當波段寬度大于45 nm時,結果卻恰恰相反),故在以提高參量反演精度為目標的指數篩選擇優過程中,不但要考慮植被指數的種類,還需要綜合考慮波段寬度的影響。
本研究植被指數所建模型R隨波段寬度的變化趨勢主要有以下3種情況:1)OSAVI2和NDCI等所建模型R隨著波段寬度增加不斷降低,最適波段寬度越窄越好;2)Datt3和SR[800,680]等所建模型R隨著波段寬度增加先升后降,最適波段寬度位于R峰值處;3)SR[750,550]和SR[675,700]所建模型R隨著波段寬度增加不斷增加,最適波段寬度越寬越好。目前,寬波段/窄波段植被指數通常為利用寬波段/窄波段傳感器數據可以計算得到的植被指數[43]。其中,NDVI705、SR[800,680]和SR[750,710]等植被指數通常被定義為高光譜/窄波段植被指數[44],但分析表明,NDVI705在波段寬度為35 nm時具有更好的LAI估算能力,SR[750,710]在寬波段處所建模型R更大,說明部分高光譜指數的植被指數在多光譜可能存在很強的應用潛力。這一結果可為不同遙感數據類型下植被指數的優選提供指導。
結合光譜學的知識可知,波段越窄,定位敏感信息的能力越強,波段越寬,則對某一光譜區域的信息利用得更為充分[45]。對OSAVI2與 NDCI等窄波段指數的分析表明,這類指數的反演精度主要取決于能否準確地定位敏感波,因此波段越窄,精度越高;而SR[750,710]和RI1dB等寬波段指數,反演精度的提高更多地取決于是否充分利用了該光譜區域的信息,因此波段越寬,信息利用越充分,反演精度也就越高;Datt3與SR[800,680]等中波段指數,則需要尋找敏感波段與光譜信息充分利用兩者之間的平衡點,因此出現先升后降,并在35 nm附近存在峰值的情況。
本研究分析了不同植被指數對LAI與波段寬度的敏感性,研究了利用這些指數進行LAI估算時,波段寬度變化對模型精度的影響,并探討了各類植被指數所建反演模型R隨波段寬度增加的變化趨勢,為不同數據源下LAI反演的指數選擇提供了參考。文章主要結論如下:
1)波段寬度是影響LAI反演精度的重要因素之一。分析表明,利用植被指數進行小麥LAI估算時,反演模型的精度不僅與選用的植被指數有關,而且與計算該指數的波段寬度有關。在利用植被指數進行LAI反演時,應根據傳感器的通道寬度與光譜分辨率選擇最佳的植被指數。
2)波段寬度的變化對各植被指數的影響具有明顯差異,可分為4種類型:①窄波段指數,所建反演模型精度隨著波段寬度增加不斷降低,這一類型包括指數OSAVI2、NDCI、SR[752,690]、SR[750,700]和Carte2;②中波段指數所建模型精度隨著波段寬度增加先升后降,這一類型主要包括指數Datt3、SR[800,680]與NDVI705,其最適波寬約為35 nm;③寬波段指數所建模型精度隨著波段寬度增加而升高,這一類型包括指數SR[750,550]、SR[675,700]、SR[750,710]和RI1dB;④植被指數Carte3與Carte4所建模型的R在波段寬度5~80 nm雖然先下降后上升再下降,但在各波段寬度下其估算精度均較為穩定,因此可忽略波段寬度對該類植被指數的影響。
3)研究結果表明,利用植被指數進行LAI反演時,應根據傳感器的通道寬度與光譜分辨率選擇最佳的植被指數。其中OSAVI2與NDCI等指數波寬越窄,LAI反演精度越高,更適合應用于高光譜遙感數據;Datt3等指數的最適波寬約為35 nm,更適用于中等/多光譜分辨率的遙感數據;SR[750,710]和RI1dB等指數波寬越寬,LAI反演精度越高,在多光譜遙感數據中有更好的應用潛力。
[1]束美艷,顧曉鶴,孫林,等. 基于新型植被指數的冬小麥LAI高光譜反演[J]. 中國農業科學,2018,51(18):3486-3496. Shu Meiyan, Gu Xiaohe, Sun Lin, et al. High spectral inversion of winter wheat LAI based on new vegetation index[J]. Scientia Agricultura Sinica, 2018, 51(18): 3486-3496. (in Chinese with English abstract)
[2]李衛國,趙春江,王紀華,等. 基于衛星遙感的冬小麥拔節期長勢監測[J]. 麥類作物學報,2007,27(3):523-527. Li Weiguo, Zhao Chunjiang, Wang Jihua, et al. Monitoring the growth condition of winter wheat in jointing stage based on Landsat TM image[J]. Journal of Triticeae Crops, 2007, 27(3): 523-527. (in Chinese with English abstract)
[3]Krishnan P, Sharma R K, Dass A, et al. Web-based crop model: Web Info Crop-Wheat to simulate the growth and yield of wheat[J]. Computers and Electronics in Agriculture, 2016, 127: 324-335.
[4]Liang Liang, Di Liping, Zhang Lianpeng, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165(8): 123-134.
[5]Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features[J]. Remote Sensing of Environment, 2004, 89(3): 393-408.
[6]Fang Hongliang. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model[J]. Remote Sensing of Environment, 2003, 85(3): 257-270.
[7]劉玉琴,沙晉明,余濤,等. 基于寬波段和窄波段植被指數的草地LAI 反演對比研究[J]. 遙感技術與應用,2014,29(4):587-593. Liu Yuqin, Sha Jinming, Yu Tao, et al. Comparing the performance of broad-band and narrow-band vegetation indices for estimation of grass LAI[J]. Remote Sensing Technology and Application, 2014, 29(4): 587-593. (in Chinese with English abstract)
[8]劉振波,鄒嫻,葛云健,等. 基于高分一號WFV影像的隨機森林算法反演水稻LAI[J]. 遙感技術與應用,2018,33(3):458-464. Liu Zhenbo, Zou Xian, Ge Yunjian, et al. Retrieval rice leaf area index using random forest algorithm based on GF-1 WFV remote sensing data[J]. Remote Sensing Technology & Application, 2018, 33(3): 458-464. (in Chinese with English abstract)
[9]Roosjen P P J, Brede B, Suomalainen J M, et al. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data-potential of unmanned aerial vehicle imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 66: 14-26.
[10]Tang S, Chen J M, Zhu Q, et al. LAI inversion algorithm based on directional reflectance kernels[J]. Journal of Environmental Management, 2007, 85(3): 638-648.
[11]Leonenko G, Lows S O, North P R J. Retrieval of leaf area index from MODIS surface reflectance by model inversion using different minimization criteria[J]. Remote Sensing of Environment, 2013, 139(12): 257-270.
[12]Woodgate W, Disney M, Armston J D, et al. An improved theoretical model of canopy gap probability for Leaf area index estimation in woody ecosystems[J]. Forest Ecology and Management, 2015, 358: 303-320.
[13]Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
[14]高林,王曉菲,顧行發,等. 植冠下土壤類型差異對遙感估算冬小麥葉面積指數的影響[J]. 植物生態學報,2017,41(12):1273-1288. Gao Lin, Wang Xiaofei, Gu Xingfa, et al. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating[J]. Chinese Journal Plant Ecology, 2017, 41(12): 1273-1288. (in Chinese with English abstract)
[15]楊貴軍,黃文江,王紀華,等. 多源多角度遙感數據反演森林葉面積指數方法[J]. 植物學報,2010,45(5):566-578. Yang Guijun, Huang Wenjiang, Wang Jihua, et al. Inversion of forest leaf area index calculated from multi-source and multi-angle remote sensing data[J]. Bulletin of Botany, 2010, 45(5): 566-578. (in Chinese with English abstract)
[16]趙娟,張耀鴻,黃文江,等. 基于熱點效應的不同株型小麥LAI反演[J]. 光譜學與光譜分析,2014,35(1):207-211. Zhao Juan, Zhang Yehong, Huang Wenjiang, et al. Inversion of LAI by considering the hotspot effect for different geometrical wheat[J]. Spectroscopy and Spectral Analysis, 2014, 35(1): 207-211. (in Chinese with English abstract)
[17]Zhao Dehua, Huang Liangmei, Li Jianlong, et al. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(1): 25-33.
[18]Twlele A, Erasmi S, Kappasa M. Spatially explicit estimation of leaf area index using EO-1 Hyperion and Landsat ETM+ data: Implications of spectral bandwidth and shortwave infrared data on prediction accuracy in a tropical montane environment[J]. GIScience & Remote Sensing, 2008, 45(2): 229-248.
[19]Du Huishi, Jiang Hailing, Zhang Lifu, et al. Evaluation of spectral scale effects in estimation of vegetation leaf area index using spectral indices methods[J]. Chinese Geographical Science, 2016, 26(6): 731-744.
[20]王福民,黃敬峰,唐延林,等. 采用不同光譜波段寬度的歸一化植被指數估算水稻葉面積指數[J]. 應用生態學報,2007,18(11):2444-2450. Wang Fuming, Huang Jinfeng, Tang Yanlin, et al. Estimation of rice LAI by using NDVI at different spectral bandwidths[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2444-2450. (in Chinese with English abstract)
[21]Liang Liang, Di Liping, Huang Ting, et al. Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm[J]. Remote Sens, 2018, 10(12): 1940-1956.
[22]Liang Liang, Qin Zhihao, Zhao Shuhe, et al. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method[J]. International Journal of Remote Sensing, 2016, 37(13): 2923-2949.
[23]Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2/3): 337-354.
[24]Marshak A, Knyazikhin Y, Davis A B, et al. Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness[J]. Geophysical Research Letters, 2000, 27(12): 1695-1698.
[25]McMurtrey III J E, Chappelle E W, Kim M S, et al. Distinguishing nitrogen fertilization levels in field corn (L.) with actively induced fluorescence and passive reflectance measurements[J]. Remote Sensing of Environment, 1994, 47(1): 36-44.
[26]Carter G A. Ratios of leaf reflectance in narrow wavebands as indicators of plant stress[J]. International Journal of Remote Sensing, 1994, 15(3): 697-703.
[27]Gupta R K, Vijayan D, Prasad T S. New hyperspectral vegetation characterization parameters[J]. Advances in Space Research, 2001, 289(1): 201-206.
[28]Main R, Cho M A, Mathieu R, et al. An investigation into robust spectral indices for leaf chlorophyll estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): 751-761.
[29]Wu Chaoyang, Niu Zheng, Tang Quan, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8/9): 1230-1241.
[30]Chappelle E W, Kim M S, McMurtrey III J E. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves[J]. Remote Sensing of Environment, 1992, 39(3): 239-247.
[31]Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90(3): 337-352.
[32]Gitelson A, Merzlyak M N. Quantitative estimation of chlorophyll using reflectance spectra: Experiments with autumn chestnut and maple leaves[J]. Journal of Photochemistry and Photobiology B: Biology, 1994, 22(3): 247-252.
[33]Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red-edge hyperspectral indices[J]. Advances in Space Research, 2003, 32(11): 2217-2222.
[34]Zarco-Tejada P J, Miller J R. Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery[J]. Journal of Geophysical Research, 1999, 104(D22): 27921-27933.
[35]Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves[J]. International Journal of Remote Sensing, 1993, 14(8): 1563-1575.
[36]Datt B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests usingleaves[J]. Journal of Plant Physiology, 1999, 154(1): 30-36.
[37]Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239.
[38]肖艷芳,周德民,宮輝,等. 冠層反射光譜對植被理化參數的全局敏感性分析[J]. 遙感學報,2015,19(3):368-374. Xiao Yanfang, Zhou Deming, Gong Hui, et al. Sensitivity of canopy reflectance to biochemical and biophysical variables[J]. Journal of Remote Sensing, 2015, 19(3): 368 -374. (in Chinese with English abstract)
[39]梁順林. 定量遙感[M]. 北京:科學出版社,2015.
[40]Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90(3): 337-352.
[41]唐建民,廖欽洪,劉奕清,等. 基于CASI高光譜數據的作物葉面積指數估算[J]. 光譜學與光譜分析,2015,35(5):1351-1356. Tang Jianmin, Liao Qinhong, LiuYiqing, et al. Estimating leaf area index of crops based on hyperspectral compact airborne spectrographic imager (CASI) data[J]. Spectroscopy and Spectral Analysis, 2015, 35(5): 1351-1356. (in Chinese with English abstract)
[42]吳偉斌,李佳雨,張震邦,等. 基于高光譜圖像的茶樹LAI與氮含量反演[J]. 農業工程學報,2018,34(3):195-201. Wu Weibin, Li Jiayu, Zhang Zhenbang, et al. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 195-201. (in Chinese with English abstract)
[43]Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J]. Remote Sensing of Environment, 2000, 71(2): 158-182.
[44]葛昊,盧珊,趙云升. 葉片茸毛對葉片反射光譜及高光譜植被指數的影響研究[J]. 光譜學與光譜分析,2012,32(2):153-158. Ge Hao, Lu Shan, Zhao Yunsheng. Effects of leaf hair on leaf reflectance and hyperspectral vegetation indices[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 153-158. (in Chinese with English abstract)
[45]普拉薩德,約翰,阿爾弗雷德. 高光譜植被遙感[M]. 北京:中國農業科學技術出版社,2015.
Effects of band width on estimation of wheat LAI using vegetation index
Huang Ting1, Liang Liang1※, Geng Di1, Li Li2, Wang Lijuan1, Wang Shuguo1, Luo Xiang3, Yang Minhua4
(1.,,221000,; 2.,100101,; 3.,,330000,; 4.,,410083,)
To improve the accuracy and universality of the inversion model of the leaf area index, on the one hand, many researchers constantly optimized inversion algorithm, on the other hand, they were committed to analyzing the influence of interference factors such as soil background, soil type, observation geometry and hot spot effected on the inversion process of leaf area index. Band width is generally considered as an important factor affecting the inversion of vegetation parameters. However, there were few studies on the influence of band width on estimating leaf area index. To optimize the selection of vegetation indices based on the type of remote sensing data, the influence of different band widths on the inversion model established by vegetation index was analyzed. Firstly, the spectral reflectance of different band widths was simulated by the measured wheat spectral data set. The initial band width was set to 5 nm and gradually increased to 80 nm in 5 nm steps. On this basis, 28 vegetation indices commonly used for inversion of leaf area indices, such as SR[800680], NDCI and Carte2, were calculated. To select the vegetation index with greater potential to estimate the leaf area index, the mean value of the coefficient of determination was used as a prediction accuracy measure, and 14 vegetation indices such as OSAVI2, Carte3 and SR[800680]were screened out. Then, by analyzing the sensitivity of 14 indices and variation of coefficient of determination to band widths, the influence of band widths on the accuracy of the leaf area index estimated by vegetation indices was discussed. The results indicated that the band width was one of the important factors that affected the accuracy of the inversion of the leaf area index, and the influence of band width on vegetation indices was inconsistent. According to the trend of coefficient determination, the indices were divided into three categories: (1) coefficient of determination of inversion models built by vegetation indices decreased with the increase of band width. This type of indices included OSAVI2, NDVI, SR[752690], SR[750700]and Carte2, which was called narrow-band vegetation index. (2) coefficient of determination rose first and then falls with the increase of band width, and the change curve had an obvious peak value, which was called the mid-band vegetation index. This type of indices included Datt3, SR[800680]and NDVI705. (3) coefficient of determination rose with the increase of band width, which was called broad-band vegetation index. This type of indices included SR[750,550], SR[675,700], SR[750,710]and RI1dB; (4) coefficient of determination of the models built by Carte3 and Carte4 showed a trend of first decreasing, then rising followed by declining, the accuracy of estimating leaf area index was stable at different band widths, and difference between the maximum and minimum of coefficient of determination was less than 0.003, so the influence of the band width on this type of vegetation indices could be ignored. The results of this study indicated that when using vegetation index for inversion of leaf area index, we should also comprehensively consider channel width and spectral resolution of the sensor to select the best vegetation index. Furthermore, when the band width increased from 5 nm to 80 nm, the precision of the leaf area index inversion model of built by narrow-band vegetation index was higher with the narrower band width, and this type of indices was more suitable for hyperspectral remote sensing data. The optimal band width of the mid-band vegetation index was about 35 nm, and this type of indices was more suitable for remote sensing data with medium resolution. The precision of the leaf area index inversion model built by broad-band vegetation index was higher with the wider band width, and this type of indices had better application potential in multispectral remote sensing data. This research provided the basis for the selection of indices using different spectral resolution sensors data during estimation of leaf area index, and screening vegetation indices for wheat leaf area index inversion.
band width; vegetation index; leaf area index; PROSAIL model
黃 婷,梁 亮,耿 笛,李 麗,王李娟,王樹果,羅 翔,楊敏華. 波段寬度對利用植被指數估算小麥LAI的影響[J]. 農業工程學報,2020,36(4):168-177. doi:10.11975/j.issn.1002-6819.2020.04.020 http://www.tcsae.org
Huang Ting, Liang Liang, Geng Di, Li Li, Wang Lijuan, Wang Shuguo, Luo Xiang, Yang Minhua. Effects of band width on estimation of wheat LAI using vegetation index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 168-177. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.04.020 http://www.tcsae.org
2019-12-16
2020-01-15
遙感科學國家重點實驗室開放基金(OFSLRSS201804);江蘇省自然科學基金(BK20181474);國家自然科學基金(41401473);江蘇高校優勢學科建設工程資助項目(PAPD)資助
黃 婷,主要研究方向為植被定量遙感。Email:lllxwjhht@163.com
梁 亮,副教授,博士,主要研究方向為農業遙感。Email:liangliang198119@163.com
10.11975/j.issn.1002-6819.2020.04.020
TP79
A
1002-6819(2020)-04-0168-10