徐順剛 文瑞強 周國華 何子奕 覃福班



摘 要:傳統BuckBoost型電池均衡電路存在能量傳輸路徑長和均衡速度慢等缺點,而其改進型電路也存在電路復雜、均衡速度不一致的問題。提出一種單電容集中式均衡電路,該電路利用電容器作為虛擬電池臨時存儲能量,而后周期性地將存儲的能量反饋回整組電池,實現對電池組的均衡,解決了傳統BuckBoost均衡電路均衡速度不一致的問題。在研究了該均衡電路的工作模式和控制策略的基礎上,設計了4個電池的均衡實驗電路對工作原理和控制策略進行驗證,并進行對比實驗。實驗結果表明,該均衡電路具有均衡速度快、各電池單體均衡速度一致、能量損耗小的優點。
關鍵詞:電池均衡;BuckBoost;單電容;均衡速度;控制策略
DOI:10.15938/j.emc.2020.03.001
中圖分類號:TM 912文獻標志碼:A文章編號:1007-449X(2020)03-0001-10
Abstract:Traditional BuckBoost battery equalizer has a long energy transmission path and slow speed, when the imbalanced cells are not adjacent. However, the modified circuit has the problems of complexity and inconsistent equalization speed. In order to solve the above problems, a singlecapacitor centralized battery equalizer based on BuckBoost converter is proposed. The equalizer uses a capacitor as a virtual battery to store battery energy temporarily, and then the stored energy is fed back to the whole battery periodically to realize all cell voltages being uniform, which solves the problem of the inconsistent equalization speed for traditional BuckBoost equalizer. Based on the research of the working mode and control strategy of the equalization circuit, the balanced experimental circuit with four batteries was designed to verify the working principle and control strategy, and several sets of comparative experiments were carried out. The experimental results show that the equilibrium topology has advantages of equilibrium speed, each battery monomer equilibrium speed and low energy loss.
Keywords:battery equalizer; BuckBoost; singlecapacitor; balancing speed; control strategy
0 引 言
如今,儲能單元已成為生產、生活中不可或缺的一部分。而鋰離子電池以其能量密度大、自放電小、使用壽命長等優點在生活中被廣泛采用。常見鋰離子電池單體電壓較低,往往需要多個單元串聯成組才能實現高壓輸出。由于制造過程中很難保證各單體內阻、自放電率等參數的一致性,使用過程中電池組串聯單元間不均衡現象極易發生,而單體電池過充和過放現象都會大幅度降低電池的使用壽命,影響電池組的整體性能[1-3]。因此,研究性能更加優異的電池均衡電路對提高串聯電池組性能和續航能力具有重要意義。
均衡電路總體上可分為無源均衡電路和有源均衡電路[2,4]。有源均衡電路由于具有能量損耗低、均衡精度高等特點,已成為國內外研究熱點。從均衡方式上,有源均衡電路可分為集中式均衡電路和分布式均衡電路。根據電路工作原理的不同,集中式均衡電路又可分為多繞組變壓器型、BuckBoost型和DCDC變換器型均衡電路[2,3]。多繞組變壓器型均衡電路受變壓器體積及加工工藝的影響,難以滿足高精度、大數量電池均衡的實際需要[5-9]。在實際應用中,多采用BuckBoost型和DCDC變換器型均衡電路[10-13]。BuckBoost型均衡電路,通過對分流電感周期性的充放電,從而實現電池組中能量的轉移。
早期由Kutu提出了一種采用電流轉移方式實現均衡的BuckBoost變換器集中式拓撲結構[14],利用反激變換器回饋能量,該均衡電路體積大、均衡速度慢。文獻[15]對上述電路進行改進,利用一套獨立的BuckBoost變換器代替反激變換器,體積得到一定程度減小,但未能解決均衡時能量傳輸路徑長、均衡速度慢等問題。文獻[16-19]采用雙向BuckBoost變換器對BuckBoost集中式均衡結構進行改進,實現能量在相鄰電池單體之間的雙向傳遞,但有源開關數量增多,電路復雜性加大。文獻[20]提出可同時實現單對多、多對單能量傳遞的均衡方案,均衡速度有了很大提高,但其均衡速度與上下游串聯電池單體數量直接相關。
國內也有學者對BuckBoost型均衡電路進行優化研究,文獻[21]在傳統BuckBoost型均衡拓撲上增加一組BuckBoost實現對上下半區的均衡,加快了均衡速度。文獻[22]中采用了模塊化分組的方式,增加了電路的拓展性。但就目前已有的BuckBoost型均衡電路而言,還沒有有效的解決電池單體均衡速度不一致的方案。
本文提出一種基于BuckBoost變換器的單電容集中式均衡電路,利用電容器作為虛擬電池臨時存儲能量,而后周期性地將電容器存儲的能量反饋回整組電池,從而實現對電池組的均衡。本文提出的均衡電路體積小、有源器件少、控制簡單,解決了傳統BuckBoost類均衡電路均衡速度慢、單體電池均衡速度不一致等問題。本文通過研究該均衡電路的工作模式,采用電池電壓分時采樣以及單周期內最大均衡電流的控制方法,詳細的分析了所提均衡電路的工作原理。最后,本文搭建了四電池均衡實驗電路并進行相關實驗驗證,實驗結果表明該均衡電路具有均衡速度快、各電池單體均衡速度一致、能量損耗小的優點。
1 波形分析與電流路徑
所提出的單電容集中式均衡電路如圖1所示。若要對電池Bi放電,則該電池對應的開關管Si周期性導通,此時,電池Bi與電容C1之間,通過電感、開關管和二極管構成了BuckBoost衍生結構電路,該衍生結構電路與傳統BuckBoost變換器拓撲結構相類似,如圖2所示。
6 結 論
本文提出了一種單電容集中式電池均衡電路,該均衡電路均衡速度快、各電池單體均衡速度一致性好。本文詳細分析了該均衡電路的工作模式和控制策略,通過仿真與實驗對該電路與傳統BuckBoost型均衡電路進行了對比分析,設計制作了針對4個電池單體的均衡實驗電路,并進行靜置、充電和放電下的均衡實驗。實驗表明:單電容集中式均衡電路能夠有效解決傳統BuckBoost型均衡電路均衡速度一致性差的問題,提高了均衡速度,極大地拓寬了BuckBoost型電池均衡電路在實際中的應用范圍。
參 考 文 獻:
[1] UNO M, KUKITA A. Singleswitch singletransformer cell voltage equalizer based on forward–flyback resonant inverter and voltage multiplier for seriesconnected energy storage cells [J]. IEEE Transactions on Vehicular Technology, 2014, 63(9): 4232.
[2] 陳洋, 劉曉芳, 楊世彥, 等. 串聯電池組有源均衡拓撲結構綜述[J]. 電源學報, 2013(5): 28.
CHEN Yang, LIU Xiaofang, YANG Shiyang, et al. Overview of active equalization for series connected batteries [J]. Journal of Power Supply, 2013(5):28.
[3] 沈聃, 夏正鵬, 倪紅軍, 等. 電動汽車串聯電池組電壓均衡系統研究進展[J]. 電源技術, 2014, 38(2): 390.
SHEN Dan, XIA Zhengpeng, NI Hongjun, et al, Research progress of equalization charging for EV traction battery [J]. Chinese Journal of Power Sources, 2014, 38(2): 390.
[4] 蓋曉東. 基于三單體直接均衡電路的串聯儲能電源組均衡技術研究[D]. 哈爾濱: 哈爾濱工業大學, 2010.
[5] HSIEH Y C, WU J L, CHEN X. ClassEbased chargeequalisation circuit for battery cells[J].IET Power Electronics,2012,5(7):978.
[6] HUA C C, FANG Y H, LI P H. Charge equalisation for seriesconnected LiFePO4 battery strings [J]. IET Power Electronics, 2015, 8(6):1017.
[7] LI S, MI C C, ZHANG M. A highefficiency active batterybalancing circuit using multiwinding transformer [J]. IEEE Transactions on Industry Applications, 2013, 49(1):198.
[8] KUTKUT N H. Nondissipative current diverter using a centralized multiwinding transformer [C]// proceedings of the Power Electronics Specialists Conference, Saint Louis, MO, USA, 1997:648.
[9] CHEN Y,LIU X,CUI Y,et al.A multiwinding transformer celltocell active equalization method for lithiumIon batteries with reduced number of driving circuits [J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4916.
[10] IMTIAZ A M, KHAN F H. Time shared flyback converter based regenerative cell balancing technique for series connected Liion battery strings [J]. IEEE Transactions on power Electronics, 2013, 28(12): 5960.
[11] LEE Y S, CHEN M W, HSU K L, et al. Cell equalization scheme with energy transferring capacitance for series connected battery strings [C]// proceedings of the TENCON'02 Proceedings 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing, China, 2002, 2042-2045.
[12] PARK H, KIM C, KIM G, et al. A modularized charge equalizer for an HEV lithiumion battery string [J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1464.
[13] LAMBERT S M, PICKERT V, ATKINSON D J, et al. Transformerbased equalization circuit applied to Nnumber of high capacitance cells [J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1334.
[14] KUTKUT N H. A modular nondissipative current diverter for EV battery charge equalization [C]// APEC '98 Thirteenth Annual Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 1998, 686-690.
[15] MOO C S, HSIEH Y C, TSAI L S. Charge equalization for seriesconnected batteries [J]. IEEE Transaction on Aerospace and Electronic Systems. 2003, 39(2):704.
[16] BARRADE P. Series connection of supercapacitors: comparative study of solutions for the active equalization of the voltages [C]//International Conference on Modeling and Simulation of Electric Machines, Converters and Systems. Montreal, Canada. 2003,381-407.
[17] SHEN H, ZHU W, CHEN W. Charge equalization for series connected lithiumion batteries[C]// 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 2009, 1032-1037.
[18] LEE Y S, DUH C Y.Battery equalization using bidirectional Cuk converters in DCVM Operation [C]// 2005 IEEE 36th Power Electronics Specialists Conference, Recife, 2005, 765-771.
[19] 李海冬, 馮之鉞, 齊智平. 一種超級電容器快速電壓均衡方法的研究[J]. 電源技術,2007, 31(3):186.
LI Haidong, FENG Zhiyue, QI Zhiping. Study on a rapid voltage balancing method for supercapacitor[J]. Chinese Journal of Power Sources, 2007, 31(3):186.
[20] MESTRALLET F, KERACHEV L, CREBIER J, et al. Multiphase interleaved converter for lithium battery active balancing [J]. IEEE Transactions on Power Electronics, 2014, 29(6): 2874.
[21] 李銳華,李冀,胡波,等. 基于BuckBoost變換器的磷酸鐵鋰電池串聯電壓均衡優化策略[J]. 電氣技術,2018, 19(3):1.
LI Ruihua, LI Ji, HU Bo, et al. Voltage equalization optimization strategy for LIFEPO4 seriesconnected battery packs based on buckboost converter [J]. Electrical Engineering, 2018, 19(3):1.
[22] DONG B, LI Y, HAN Y H. Parallel architecture for battery charge equalization [J]. IEEE Transactions on Power Electronics [J]. 20155, 30(9): 4906.
[23] 徐順剛. 分布式供電系統中儲能電池均衡管理及逆變控制技術研究[D]. 成都: 西南交通大學, 2011.
[24] MOO C S, HSIEH I S, TSAI I S, et al. Dynamic charge equalisation for seriesconnected batteries [J]. IEEE Proceedings on Electric Power Applications. 2003, 150(5): 501.
(編輯:賈志超)