999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于VMD-Hilbert邊際譜能量熵和SVM的高壓斷路器機(jī)械故障診斷

2020-04-22 06:00:44楊秋玉阮江軍黃道春邱志斌莊志堅(jiān)

楊秋玉 阮江軍 黃道春 邱志斌 莊志堅(jiān)

摘 要:針對(duì)高壓斷路器分、合閘動(dòng)作過(guò)程中產(chǎn)生的振動(dòng)信號(hào)持續(xù)時(shí)間短暫及強(qiáng)烈的非線性非平穩(wěn)性,導(dǎo)致的特征提取困難問(wèn)題,提出一種變分模態(tài)分解(VMD)-希爾伯特(Hilbert)邊際譜能量熵,及支持向量機(jī)(SVM)的高壓斷路器振動(dòng)信號(hào)組合特征提取和機(jī)械故障診斷方法。采用VMD對(duì)高壓斷路器振動(dòng)信號(hào)進(jìn)行分解,得到一系列反映振動(dòng)信號(hào)局部特性的本征模態(tài)函數(shù)(IMF);對(duì)IMF進(jìn)行Hilbert變換,并求取對(duì)高壓斷路器機(jī)械狀態(tài)變化敏感的Hilbert邊際譜能量熵作為特征向量;將特征向量輸入到SVM分類(lèi)器,實(shí)現(xiàn)高壓斷路器機(jī)械故障的智能診斷。試驗(yàn)結(jié)果表明:該方法能夠準(zhǔn)確識(shí)別高壓斷路器的常見(jiàn)機(jī)械故障類(lèi)型,具有一定的工程應(yīng)用價(jià)值。

關(guān)鍵詞:高壓斷路器;變分模態(tài)分解;希爾伯特邊際譜;能量熵;支持向量機(jī);機(jī)械故障識(shí)別

DOI:10.15938/j.emc.2020.03.002

中圖分類(lèi)號(hào):TM 561文獻(xiàn)標(biāo)志碼:A文章編號(hào):1007-449X(2020)03-0011-09

Abstract:In this paper, a feature extraction method and fault diagnosis for high voltage circuit breakers (HVCBs) is presented and discussed. The vibration signals are nonlinear and timevarying since the complicated structure and extremely fast operation of HVCBs, which makes the extraction and selection of sensitive features for fault diagnosis difficult. Therefore, it is of vital importance to explore a new vibration feature extraction algorithm to improve the accuracy of fault diagnosis for HVCBs. A combination feature extraction method based on variational mode decomposition (VMD) and Hilbert marginal spectrum energy entropy, and support vector machine (SVM) for the diagnosis of HVCBs mechanical condition is presented and clearly discussed. Vibration signals were decomposed into several intrinsic mode functions (IMFs) by using VMD. Marginal spectral energy entropies of IMFs (which vary with different fault types of HVCB) were obtained and served as feature vectors for the SVM classifier for the diagnosis of HVCB. Experimental results indicate that the proposed method can accurately identify the common mechanical faults of HVCB and has potential of practical application.

Keywords:high voltage circuit breakers; variational mode decomposition; Hilbert marginal spectrum; energy entropy; support vector machine; mechanical fault detection

0 引 言

高壓斷路器的可靠性對(duì)于保障電力系統(tǒng)的安全穩(wěn)定運(yùn)行具有重要的作用。運(yùn)行實(shí)踐表明,機(jī)械故障是導(dǎo)致高壓斷路器故障的主要原因。近年來(lái),對(duì)高壓斷路器機(jī)械故障診斷的研究越來(lái)越多,一些研究成果也已用于實(shí)際工程,其中,基于振動(dòng)信號(hào)的高壓斷路器機(jī)械故障診斷技術(shù)越來(lái)越受到人們的關(guān)注[1-3]。

高壓斷路器分、合閘動(dòng)作時(shí)產(chǎn)生的振動(dòng)信號(hào)蘊(yùn)含著豐富、重要的高壓斷路器狀態(tài)信息[4-6]。由于高壓斷路器動(dòng)作時(shí)間極短(常常是幾十毫秒)、各運(yùn)動(dòng)件之間強(qiáng)烈碰撞沖擊等特點(diǎn)質(zhì),使得其振動(dòng)信號(hào)具有時(shí)域時(shí)間短、頻域分布寬、強(qiáng)烈的非線性非平穩(wěn)性。所以,一方面,對(duì)傳感器的性能提出了更高的要求:傳感器必須具有足夠高的采樣精確度,且頻響范圍及量程應(yīng)足夠大;另一方面,對(duì)振動(dòng)信號(hào)的處理也提出了更高的要求,傳統(tǒng)的信號(hào)處理方法不能有效提取高壓斷路器這種具有強(qiáng)沖擊時(shí)變特性振動(dòng)信號(hào)的關(guān)鍵信息。

針對(duì)高壓斷路器振動(dòng)信號(hào)的特殊性,時(shí)頻分析方法無(wú)疑是較適合的,因此,越來(lái)越多的時(shí)頻分析方法被用于分析高壓斷路器的振動(dòng)信號(hào)。如小波變換[7-9]、經(jīng)驗(yàn)?zāi)B(tài)分解[10-12](empirical mode decomposition,EMD)。實(shí)際上,小波變換的本質(zhì)還是一種傅里葉變換,存在信號(hào)能量泄漏、基函數(shù)選擇等問(wèn)題,且不具備自適應(yīng)性。EMD是一種可以根據(jù)信號(hào)自身特點(diǎn)進(jìn)行自適應(yīng)多分辨率分解的信號(hào)分析方法,但其在分解過(guò)程中容易產(chǎn)生模態(tài)混疊、本征模態(tài)函數(shù)(intrinsic mode function,IMF)篩分停止條件和端點(diǎn)效應(yīng)等問(wèn)題[13-14]。而變分模態(tài)分解[15-17](variational mode decomposition,VMD)通過(guò)尋找約束變分模型最優(yōu)解實(shí)現(xiàn)信號(hào)的分解,各IMF分量中心頻率和帶寬不斷交替迭代更新,實(shí)現(xiàn)信號(hào)頻帶的自適應(yīng)分解。VMD方法克服了EMD方法的諸多缺陷(如模態(tài)混疊等),大大提高信號(hào)分解的準(zhǔn)確性。振動(dòng)信號(hào)經(jīng)VMD處理得到一系列反映振動(dòng)信號(hào)局部特性的本征模態(tài)函數(shù)(IMF);IMF通過(guò)希爾伯特(Hilbert)變換可更有效、更真實(shí)地獲得振動(dòng)信號(hào)中所含的重要信息,即Hilbert譜(Hilbert譜可精確地描述信號(hào)幅值在整個(gè)頻段上隨時(shí)間和頻率的變化規(guī)律)。

[6] RUNDE M, OTTESEN G E, SKYBERG B,et al. Vibration analysis for diagnostic testing of circuitbreakers[J]. IEEE Transactions on Power Delivery, 1996, 11(4): 1816.

[7] LEE D S S, LITHGOW B J, MORRISON R E. New fault diagnosis of circuit breakers[J]. IEEE Transactions on Power Delivery, 2003, 18(2): 454.

[8] CHARBKAEW N, SUWANASR T, BUNYAGUL T, et al. Vibration signal analysis for condition monitoring of puffertype highvoltage circuit breakers using wavelet transform[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2012, 7(1):13.

[9] LIU Mingliang, WANG Keqi, SUN Laijun, et al. Fault diagnosis method of HV circuit breaker based on wavelets neural network[J]. The Open Automation and Control Systems Journal, 2015, 7:126.

[10] HUANG Jian, HU Xiaoguang, GENG Xin. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multiclass support vector machine[J]. Electric Power Systems Research, 2011, 81: 400.

[11] 張麗萍, 石敦義, 繆希仁. 低壓斷路器振動(dòng)特性分析及其故障診斷研究[J]. 電機(jī)與控制學(xué)報(bào), 2016, 20(10):82.

ZHANGLiping, SHI Dunyi, MIAO Xiren. Research on vibration signal feature analysis and its fault diagnosis[J]. Electric Machines and Control, 2016, 20(10): 82.

[12] 李建鵬, 趙書(shū)濤, 夏燕青. 基于雙譜和希爾伯特-黃變換的斷路器故障診斷方法[J]. 電力自動(dòng)化設(shè)備, 2013, 33(2):115.

LI Jianpeng, ZHAO Shu Tao, XIA Yanqing. Machinery fault diagnosis of high voltage circuit breaker based on empirical mode decomposition[J]. Electric Power Automation Equipment, 2013, 33(2):115.

[13] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[C]//Proc. Roy. Soc. London Ser. A, 1998, 454: 903-995.

[14] 任宜春, 翁璞. 基于改進(jìn)HilbertHuang變換的結(jié)構(gòu)損傷識(shí)別方法研究[J]. 振動(dòng)與沖擊, 2015, 34(18): 195.

REN Yichun, WENG Pu. Structural damage detection based on improved HilbertHuang transform[J]. Journal of Vibration and Shock, 2015, 34(18): 195.

[15] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531.

[16] 徐元博, 蔡宗琰, 胡永彪, 等. 強(qiáng)噪聲背景下頻率加權(quán)能量算子和變分模態(tài)分解在軸承故障提取中的應(yīng)用[J]. 振動(dòng)工程學(xué)報(bào), 2018, 31(3): 513.

XU Yuanbo,CAI Zongyan,HU Yongbiao,et al.A frequencyweighted energy operator and variational mode decomposition for bearing fault detection[J].Journal of Vibration Engineering,2018,31(3):513.

[17] 趙巖, 朱均超, 張寶峰, 等. 基于VMD與Hilbert譜的旋轉(zhuǎn)機(jī)械碰摩故障診斷方法[J]. 振動(dòng)、測(cè)試與診斷, 2018, 38(2): 381.

ZHAO Yan, ZHUYunchao, ZHANG Baofeng, et al. Runimpact fault diagnosis of rotating machinety based on VMD and Hilbert spectrum[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(2): 381.

[18] 艾延廷, 費(fèi)成巍. 轉(zhuǎn)子振動(dòng)故障的小波能譜熵SVM診斷方法[J]. 航空動(dòng)力學(xué)報(bào), 2011, 26(8):1830.

AI Yanting, FEI Chenwei. Rotor vibration fault diagnosis method based on wavelet energy spectrum entropy and SVM[J]. Journal of Aerospace Power, 2011, 26(8): 1830.

[19] 徐建源, 張彬, 林莘, 等. 能譜熵向量法及粒子群優(yōu)化的RBF神經(jīng)網(wǎng)絡(luò)在高壓斷路器機(jī)械故障診斷中的應(yīng)用[J]. 高電壓技術(shù), 2012, 38(6): 1299.

XU Jianyuan, ZHANG Bin, LIN Xin, et al. Application of energy spectrum entropy vector method and RBF neural networks optimized by the particla swarm in highvoltage circuit breaker mechanical fault diagnosis[J]. High Voltage Engineering, 2012, 38(6): 1299.

[20] LIU Mingliang, WANG Keqi, SUN Laijun, et al. Applying energyequal entropy of wavelet packet to diagnose circuit breaker faults[J]. The Open Electrical & Electronic Engineering Journal, 2014, 8: 445.

[21] 張彬, 徐建源, 陳江波, 等. 基于電力變壓器振動(dòng)信息的繞組形變?cè)\斷方法[J]. 高電壓技術(shù), 2015, 41(7): 2341.

ZHANG Bin, XU Jianyuan, CHEN Jiangbo, et al. Diagnosis method of winding deformation based on transformer vibration information[J]. High Voltage Engineering, 2015, 41(7): 2341.

[22] VAPNIK V N. Statistical Learning Theory[M]. Hoboken, NJ, USA: Wiley, 1998.

[23] REN Likun, L Weimin, JIANG Shiwei, et al. Fault diagnosis using a joint model based on sparse representation and SVM[J]. IEEE Transactions on Instrumentations and Measurement, 2016, 65(10): 2313.

[24] 劉學(xué)藝, 宋春躍, 李平. 基于VapnikChervonenkis泛化界的極限學(xué)習(xí)機(jī)模型復(fù)雜性控制[J]. 控制理論與應(yīng)用, 2014, 31(5): 644.

LIU Xueyi, SONG Chunyue, LI Ping. Model complexity control of extreme learning machine using VapnikChervonenkis generalization bounds[J]. Control Theory & Applications, 2014, 31(5): 644.

[25] ANGUITA D, GHIO A, ONETO L, et al. Insample and outofsample model selection and error estimation for support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 1390.

(編輯:賈志超)

主站蜘蛛池模板: 91亚洲精选| 国产精品成人AⅤ在线一二三四 | 亚洲综合日韩精品| 亚洲天堂网在线观看视频| 为你提供最新久久精品久久综合| 久久夜色撩人精品国产| 欧美精品亚洲精品日韩专| 97超级碰碰碰碰精品| 亚洲中文字幕在线观看| 亚洲成aⅴ人在线观看| 欧美激情第一区| 91久久大香线蕉| 亚洲一区二区三区国产精华液| 亚洲成人免费看| 亚洲第一黄片大全| 五月婷婷激情四射| 久久精品国产精品国产一区| 国产美女精品人人做人人爽| 日本道综合一本久久久88| 亚洲天天更新| 亚洲综合经典在线一区二区| 国产精品嫩草影院视频| 亚洲人成色77777在线观看| 久久亚洲国产视频| 女人av社区男人的天堂| 国产精品女在线观看| 国产91精品久久| 国产精品亚洲欧美日韩久久| 永久成人无码激情视频免费| 久久中文电影| 尤物特级无码毛片免费| 免费日韩在线视频| 日本不卡视频在线| 亚洲精品国产综合99| 97视频免费看| 999国内精品视频免费| 在线精品视频成人网| 大陆精大陆国产国语精品1024 | 久久国产精品影院| 丁香婷婷在线视频| 99re在线观看视频| yjizz国产在线视频网| 激情综合图区| 孕妇高潮太爽了在线观看免费| 精品视频第一页| 免费A级毛片无码无遮挡| 国产在线自揄拍揄视频网站| 国产精品对白刺激| 亚洲永久色| 97se亚洲综合在线| 亚洲性影院| 亚洲国产一成久久精品国产成人综合| 欧美一区二区人人喊爽| 亚洲V日韩V无码一区二区| 亚洲天堂免费观看| 手机精品视频在线观看免费| 在线观看无码a∨| 老司国产精品视频91| 亚洲一级色| 特级精品毛片免费观看| 精品一区二区三区视频免费观看| 91丝袜在线观看| 好紧太爽了视频免费无码| 国产成人综合在线观看| 色噜噜久久| 试看120秒男女啪啪免费| 91成人免费观看在线观看| 亚洲成人网在线播放| 嫩草影院在线观看精品视频| 亚洲视频无码| 97国产在线视频| 国产又粗又猛又爽| 亚洲国产精品人久久电影| 波多野结衣无码AV在线| 久久综合一个色综合网| 欧美啪啪网| 国产精品一区二区国产主播| 免费国产小视频在线观看| a色毛片免费视频| 九月婷婷亚洲综合在线| 成年A级毛片| 国产精品区视频中文字幕|