石秀勇,段毅菲,馬 驍,張 周,康 楊,廖延蘇,倪計(jì)民
基于光學(xué)單缸機(jī)的含水乙醇汽油直噴燃燒特性分析
石秀勇1,段毅菲1,馬 驍2※,張 周2,康 楊1,廖延蘇1,倪計(jì)民1
(1. 同濟(jì)大學(xué)汽車學(xué)院,上海 201804; 2. 清華大學(xué)汽車節(jié)能與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100084)
含水乙醇與汽油混合能有效改善發(fā)動(dòng)機(jī)的燃燒和排放性能,而混合燃料的微觀火焰發(fā)展能夠揭示宏觀表現(xiàn)的機(jī)理。該研究以此為切入點(diǎn),采用光學(xué)單缸發(fā)動(dòng)機(jī)試驗(yàn),研究了不同噴油策略下,E10W(含水乙醇體積分?jǐn)?shù)為10%)、E20W(含水乙醇體積分?jǐn)?shù)為20%)和E100W(含水乙醇體積分?jǐn)?shù)為100%)3種含水乙醇汽油燃料的燃燒特性、火焰發(fā)展及碳煙生成特性。結(jié)果表明:正常噴油時(shí),缸壓峰值、放熱率、火焰?zhèn)鞑ニ俣入S含水乙醇比例的上升逐漸增大,其中E100W相比E10W缸壓峰值增加10%,燃燒相位提前2 °CA,火焰?zhèn)鞑ニ俣仍黾?5%,燃燒持續(xù)期縮短,E100W的循環(huán)變動(dòng)相比E10W下降了20%;推遲噴油后,燃燒相位相比正常噴油時(shí)大幅提前,燃燒循環(huán)變動(dòng)增大?;鹧姘l(fā)展過(guò)程表明,火焰亮度在火焰充滿燃燒室以后達(dá)到最大,前鋒面向燃油濕壁量較高一側(cè)偏置,池火燃燒劇烈區(qū)域黃褐色火焰較多,碳煙生成量較高。推遲噴油后缸內(nèi)火焰分區(qū)現(xiàn)象明顯,燃燒不均勻現(xiàn)象加劇,池火燃燒明顯增多,含水乙醇的添加使火焰?zhèn)鞑ジ鶆颍瑒×胰紵鼗饏^(qū)域減少,碳煙相對(duì)含量可降低90%。因此,缸內(nèi)直噴汽油機(jī)燃用含水乙醇與汽油的混合燃料,可以有效改善發(fā)動(dòng)機(jī)燃燒特性,加快火焰?zhèn)鞑ニ俣?,減少碳煙生成量,對(duì)提升直噴汽油機(jī)性能和改善顆粒物排放有較好的作用。
發(fā)動(dòng)機(jī);燃燒;試驗(yàn);可視化;含水乙醇;缸內(nèi)直噴汽油機(jī);碳煙
汽油缸內(nèi)直噴(gasoline direct injection,GDI)發(fā)動(dòng)機(jī)憑借其燃油經(jīng)濟(jì)性高、瞬態(tài)響應(yīng)快、熱效率高等優(yōu)勢(shì),在世界范圍內(nèi)得到大規(guī)模應(yīng)用[1-2]。但研究表明GDI發(fā)動(dòng)機(jī)的顆粒物排放比進(jìn)氣道噴射汽油機(jī)及帶顆粒捕集器的柴油機(jī)要大幅增加[3],目前,針對(duì)GDI發(fā)動(dòng)機(jī)顆粒物排放形成原因及減排措施的研究逐漸增多。其中,乙醇燃料由于自身含氧,對(duì)碳煙排放有一定緩解作用,理化特性也與汽油較為相似,可直接應(yīng)用于汽油機(jī)[4-5],能進(jìn)一步提高燃燒效率、改善排放。含水乙醇由于省去了復(fù)雜的脫水環(huán)節(jié),具有更好的經(jīng)濟(jì)效益[6]。
Turner等[7-8]通過(guò)試驗(yàn)研究發(fā)現(xiàn)乙醇汽油混合氣中的氧含量提高,乙醇層流火焰速度較高有助于縮短燃燒初始期,加快燃燒速度,提高燃燒穩(wěn)定性和熱效率。相關(guān)研究已表明乙醇除了作為替代燃料,還可作為抗爆添加劑,抑制發(fā)動(dòng)機(jī)爆震[9-11]。Ceviz等[12]研究了不同比例(0~20%)的乙醇汽油燃燒過(guò)程的循環(huán)變動(dòng),結(jié)果表明乙醇汽油有利于改善發(fā)動(dòng)機(jī)的燃燒穩(wěn)定性,降低燃燒過(guò)程的循環(huán)變動(dòng)率。Venugopal等[13]研究E10含水乙醇汽油和普通汽油在進(jìn)氣道噴射發(fā)動(dòng)機(jī)上的燃燒與排放特性時(shí)發(fā)現(xiàn),部分負(fù)荷下由于E10含水乙醇汽油著火界限更寬,循環(huán)變動(dòng)率更低,排氣能量損失亦更小。大量研究顯示乙醇的添加對(duì)碳煙排放有較好的緩解作用[14],Maricq等[15]在直噴汽油機(jī)上研究發(fā)現(xiàn),E20汽油比純汽油的顆粒物質(zhì)量(particulate mass,PM)排放降低20%,E32比純汽油的PM和顆粒物數(shù)量(particulate number,PN)排放降低30%~45%。Iorio等[16]發(fā)現(xiàn)相比于純汽油,乙醇的含氧特性能夠改善混合氣分布,提高燃燒效率,促進(jìn)碳煙的氧化,進(jìn)而降低了發(fā)動(dòng)機(jī)的顆粒物排放。Costagliola等[17]對(duì)比了乙醇汽油和純汽油的顆粒物排放,結(jié)果表明乙醇汽油顆粒物總數(shù)量排放降低了60%~90%,粒徑分布向小粒徑方向移動(dòng)。相關(guān)研究[18-21]也表明乙醇的含氧特性對(duì)降低HC和CO排放也有積極作用。許滄粟等[22]利用汽油機(jī)燃用乙醇汽油和普通汽油進(jìn)行對(duì)比試驗(yàn),發(fā)現(xiàn)汽油機(jī)燃用E10乙醇汽油時(shí)動(dòng)力性不會(huì)受較大影響,并能改善碳煙和CO的排放;何邦全等[23]研究了不同比例的乙醇汽油對(duì)汽油機(jī)排放性能的影響,結(jié)果表明隨著混合燃料中乙醇含量的增加,HC排放降低了30% ,大負(fù)荷時(shí)CO排放有所改善,NOx排放在中、小負(fù)荷時(shí)改善較明顯。從以上文獻(xiàn)可以看出,關(guān)于缸內(nèi)直噴汽油機(jī)燃用含水乙醇汽油的研究主要是基于宏觀特性[24-26]對(duì)燃燒特性、動(dòng)力性、經(jīng)濟(jì)性和排放特性進(jìn)行討論分析,很少?gòu)幕鹧姘l(fā)展和碳煙形成的微觀角度展開分析。
隨著高速攝影等相關(guān)技術(shù)的發(fā)展,發(fā)動(dòng)機(jī)可視化技術(shù),如光學(xué)發(fā)動(dòng)機(jī)對(duì)實(shí)現(xiàn)缸內(nèi)燃燒過(guò)程的可視化起到了重要推進(jìn)作用[27-28]。結(jié)合高速攝影與圖像處理的方法,目前已經(jīng)能夠準(zhǔn)確而全面地提取每個(gè)曲軸轉(zhuǎn)角甚至更短時(shí)間間隔內(nèi)發(fā)生的現(xiàn)象特征[29],如火焰前鋒面?zhèn)鞑?、火焰整體結(jié)構(gòu)、火焰速度及循環(huán)波動(dòng)性等。本文正是以此為切入點(diǎn),通過(guò)光學(xué)發(fā)動(dòng)機(jī)可視化技術(shù)全面分析含水乙醇的添加對(duì)缸內(nèi)直噴汽油機(jī)宏觀燃燒特性、微觀火焰發(fā)展特性和碳煙生成過(guò)程的影響。
光學(xué)發(fā)動(dòng)機(jī)試驗(yàn)臺(tái)架主要包括四氣門噴霧引導(dǎo)式缸內(nèi)直噴單缸發(fā)動(dòng)機(jī)及相應(yīng)附屬控制系統(tǒng),臺(tái)架示意圖如圖1所示,主要測(cè)量設(shè)備為傳感器和高速攝像機(jī)。光學(xué)發(fā)動(dòng)機(jī)的缸徑與沖程為75 mm×89.2 mm,壓縮比為9.6,氣缸為活動(dòng)式圓筒型氣缸,噴油器安裝在進(jìn)氣門側(cè),活塞頂有石英玻璃視窗,在連桿下方安裝有反光鏡,可以觀察缸內(nèi)燃燒情況。光學(xué)發(fā)動(dòng)機(jī)燃燒過(guò)程采用高速攝像機(jī)對(duì)火焰發(fā)展過(guò)程進(jìn)行圖像采集,試驗(yàn)相機(jī)為PHOTRON公司的FASTCAM SA-X2高速相機(jī),相機(jī)最高拍攝幀率可達(dá)1.08×106幀/s,具有高度感光性能。試驗(yàn)過(guò)程中所用的高速相機(jī)的拍攝分辨率為896×984,幀率為14 400幀/s,拍攝起始時(shí)刻由點(diǎn)火信號(hào)觸發(fā),每隔0.5°CA 拍攝1次圖像,每循環(huán)拍攝150張(曲軸轉(zhuǎn)角間隔75°CA),共拍攝50個(gè)循環(huán),后續(xù)研究取50個(gè)循環(huán)的平均值進(jìn)行分析。缸壓和放熱率傳感器每隔1 °CA測(cè)量一次缸壓和放熱率。

圖1 光學(xué)發(fā)動(dòng)機(jī)試驗(yàn)臺(tái)架
含水乙醇汽油光學(xué)發(fā)動(dòng)機(jī)試驗(yàn)所需的燃料由市售95#汽油(E0)和含水乙醇(E100W,乙醇含量95%,水含量5%,含量為體積分?jǐn)?shù))配制而成。含水乙醇和汽油的理化性質(zhì)如表1所示。試驗(yàn)燃料以95#汽油為基礎(chǔ)燃料,在環(huán)境溫度為25 ℃的條件下分別摻混體積分?jǐn)?shù)為10%、20%的含水乙醇,制備成含水乙醇汽油E10W和E20W,并與體積分?jǐn)?shù)為100%的純含水乙醇E100W共同進(jìn)行試驗(yàn)。

表2 含水乙醇和汽油的理化性質(zhì)
參照相關(guān)國(guó)家標(biāo)準(zhǔn)[30],為使試驗(yàn)內(nèi)容更具代表性,設(shè)置試驗(yàn)轉(zhuǎn)速=1 200 r/min,負(fù)荷條件指示平均有效壓力(IMEP, indicated mean effective pressure)為0.4和0.46 MPa。各試驗(yàn)工況下保持點(diǎn)火時(shí)刻不變,點(diǎn)火提前角為?20 °CA(文中規(guī)定壓縮上止點(diǎn)為0 °CA),過(guò)量空氣系數(shù)為1,不同的IMEP對(duì)應(yīng)不同的噴油策略,其中均質(zhì)模式下采用正常噴油,噴油時(shí)刻(SOI, start of injection)為?280 °CA,分層模式采用晚噴策略,SOI=?90°CA。試驗(yàn)中由于燃料組分的不同導(dǎo)致混合燃料熱值不同,為保證燃用3種不同燃料時(shí)IMEP相同,3種燃料燃燒試驗(yàn)的進(jìn)氣量有所不同,為確保過(guò)量空氣系數(shù)恒等于1,3種燃料的噴油量不同,不同負(fù)荷下3種燃料的噴油脈寬如表2所示。

表2 不同負(fù)荷下混合燃料的噴油脈寬
注:IMEP為指示平均有效壓力,MPa。
Note: IMEP is the indicated mean effective pressure, MPa.
為了深入研究含水乙醇汽油的燃燒過(guò)程,從燃燒瞬態(tài)過(guò)程的角度,利用可視化的試驗(yàn)方法開展光學(xué)單缸發(fā)動(dòng)機(jī)試驗(yàn),以更加直觀的方式描述含水乙醇汽油對(duì)GDI發(fā)動(dòng)機(jī)燃燒特性的影響。試驗(yàn)設(shè)備準(zhǔn)備就緒后,均勻平穩(wěn)的增加倒拖速度至試驗(yàn)轉(zhuǎn)速工況,同步控制系統(tǒng)發(fā)出指令,進(jìn)行噴油和點(diǎn)火等動(dòng)作;控制數(shù)據(jù)采集設(shè)備、高速相機(jī)、噴油、點(diǎn)火等各系統(tǒng)同步工作,進(jìn)行缸壓、燃燒圖像等試驗(yàn)數(shù)據(jù)的采集,當(dāng)高速相機(jī)拍攝達(dá)到預(yù)設(shè)循環(huán)數(shù)后自動(dòng)停止拍攝;試驗(yàn)數(shù)據(jù)采集完畢后,均勻的減小發(fā)動(dòng)機(jī)轉(zhuǎn)速至零,存儲(chǔ)拍攝圖像和缸壓、放熱率等數(shù)據(jù)。通過(guò)對(duì)試驗(yàn)數(shù)據(jù)的處理,分析含水乙醇的添加對(duì)直噴發(fā)動(dòng)機(jī)瞬態(tài)燃燒過(guò)程和碳煙生成的影響。
均質(zhì)模式(SOI=?280 °CA)下3種燃料E10W、E20W和E100W的燃燒特性如圖2所示。其中,缸內(nèi)燃燒循環(huán)變動(dòng)[31]以缸內(nèi)最高燃燒壓力為代表,選用缸壓峰值的循環(huán)變動(dòng)率COVmax作為評(píng)價(jià)標(biāo)準(zhǔn),計(jì)算公式為

注:均質(zhì)模式,噴油時(shí)刻為-280 °CA,轉(zhuǎn)速為1 200 r·min-1,指示平均有效壓力為0.4 MPa。CA10為發(fā)動(dòng)機(jī)累積放熱率達(dá)到10%時(shí)的曲軸轉(zhuǎn)角;CA50為發(fā)動(dòng)機(jī)累積放熱率達(dá)到50%時(shí)的曲軸轉(zhuǎn)角;COVmax為缸內(nèi)最高燃燒壓力循環(huán)變動(dòng)系數(shù);E10W和E20W分別代表含水乙醇體積分?jǐn)?shù)為10%和20%的含水乙醇汽油混合燃料;E100W代表純含水乙醇燃料。下同。
Note: Homogeneous mode, injection time is -280 °CA, engine speed is 1 200 r·min-1, indicated mean effective pressure is0.4 MPa. CA10 is the crank angle when the cumulative heat release rate of the engine reaches 10%; CA50 is the crank angle when the cumulative heat release rate of the engine reaches 50%. COVmaxis the cyclic variation coefficient of the highest combustion pressure in the cylinder. E10W and E20W represent hydrous ethanol gasoline blends with hydrous ethanol volume ratios of 10% and 20%, respectively, and E100W represents pure hydrous ethanol fuel. The same below.
圖2 正常噴油策略下3種燃料的燃燒特性
Fig.2 Combustion characteristics of three fuels under normal fuel injection strategy
從圖中可以看出,隨著含水乙醇摻混比的增加,E100W的缸壓峰值相比E0增加了10%,同時(shí)放熱率峰值亦有增加,放熱速率加快,峰值時(shí)刻逐漸提前,燃燒過(guò)程提前,E100W的變化更加明顯。CA10和CA50時(shí)刻隨著含水乙醇比例的上升而減小,燃燒相位提前2 °CA,燃燒持續(xù)期縮短。從燃燒過(guò)程的循環(huán)變動(dòng)可以看出,E20W比E10W的缸壓峰值循環(huán)變動(dòng)率略有增大,而E100W的缸壓峰值變動(dòng)率相比前兩者下降20%,表明燃燒過(guò)程的循環(huán)變動(dòng)隨著乙醇摻混比的增大先增大而后減小。根據(jù)以上分析可知,含水乙醇的火焰?zhèn)鞑ニ俣容^快,有助于改善混合燃料的燃燒特性,同時(shí)含水乙醇的含氧特性能夠進(jìn)一步優(yōu)化燃燒環(huán)境。二者同時(shí)作用使得初期燃燒過(guò)程的CA10峰值時(shí)刻提前,較快的火焰發(fā)展有助于加快整個(gè)燃燒過(guò)程的進(jìn)程,最終實(shí)現(xiàn)CA50峰值時(shí)刻提前。
盡管含水乙醇的低熱值比汽油小,隨著含水乙醇摻混比的增加,整體放熱量會(huì)降低,但是含水乙醇含有大量的活性羥基(OH基),能夠縮短低溫反應(yīng)時(shí)間,同時(shí)乙醇本身的含氧特性會(huì)使氣缸內(nèi)混合氣變得稀薄,在確保發(fā)動(dòng)機(jī)燃燒穩(wěn)定的情況下,缸內(nèi)相對(duì)稀薄的混合氣的燃燒能提高熱效率,含水乙醇能提高火焰?zhèn)鞑ニ俣龋龠M(jìn)燃料燃燒,從而使缸內(nèi)壓力上升速度加快,因此含水乙醇摻混比的增加使得缸壓及放熱率峰值增加,對(duì)應(yīng)的曲軸轉(zhuǎn)角提前。
而汽油和含水乙醇燃料特性的差異以及水分增加對(duì)燃燒穩(wěn)定性造成不利影響,導(dǎo)致E20W的燃燒循環(huán)變動(dòng)比E10W略微增大,但是純含水乙醇(E100W)相比于含水乙醇汽油混合燃料含氧量大大增加,燃燒穩(wěn)定性更好,在均質(zhì)模式下缸內(nèi)混合氣均勻性較好,同時(shí)受到乙醇燃料促進(jìn)燃燒的影響,燃燒等容度較高,循環(huán)變動(dòng)率會(huì)降低。
圖3為3種燃料在分層混合氣模式下的缸內(nèi)燃燒變動(dòng)情況。

注:分層模式,噴油時(shí)刻為-90 °CA,轉(zhuǎn)速為1 200 r·min-1,指示平均有效壓力為0.46 MPa。
從圖3可以看出,相比于正常噴油下的均質(zhì)混合氣模式,通過(guò)推遲噴油產(chǎn)生分層混合氣后的燃燒特性產(chǎn)生了明顯的差異。正常噴油時(shí)E100W的缸壓峰值相比E10W提高了10%,晚噴后E100W與E10W的缸壓峰值相差5%,而且峰值時(shí)刻的偏差降低,這主要是由于負(fù)荷的增大增加了噴油量,并且推遲噴射會(huì)縮短缸內(nèi)混合氣的形成時(shí)間并產(chǎn)生分層現(xiàn)象,導(dǎo)致缸內(nèi)混合氣產(chǎn)生局部濃區(qū),此時(shí)含水乙醇的含氧特性不再占優(yōu)勢(shì),對(duì)于燃燒特性的改善作用降低,導(dǎo)致含水乙醇摻混比增大時(shí)缸壓和放熱率的變化不明顯。
晚噴分層模式工況下,由于混合氣形成時(shí)間較短,活塞上行使得活塞頂部油束碰壁概率增加,燃油濕壁量增加,混合氣分布不均的分層現(xiàn)象也使得靠近火花塞附近區(qū)域的混合氣較濃,使得點(diǎn)火后缸內(nèi)核心區(qū)域燃燒較快,導(dǎo)致CA10和CA50的峰值時(shí)刻相比正常噴射條件下大幅提前。對(duì)于E10W和E20W混合燃料而言,含水乙醇摻混比的增加使得混合燃料的汽化潛熱升高,缸內(nèi)溫度下降,燃料的蒸發(fā)和汽化速率略有降低,著火延遲期延長(zhǎng),導(dǎo)致E20W的燃燒相位相比E10W略有推遲;而E100W由于乙醇含量很高,含氧特性再一次起主導(dǎo)作用,使得混合氣分布不均的影響相比E10W和E20W減弱,燃燒過(guò)程中的活性O(shè)H基對(duì)燃燒的促進(jìn)作用更強(qiáng)[32],因此E100W的燃燒相位相比E20W提前。但同時(shí)因?yàn)橥七t噴油導(dǎo)致的混合氣分層以及含水乙醇比例的升高帶來(lái)的燃料中含水量上升等因素,使得火焰?zhèn)鞑ゲ痪鶆?,燃燒不穩(wěn)定性增強(qiáng),最終表現(xiàn)為缸壓峰值的循環(huán)變動(dòng)率急劇增大至原來(lái)的2倍。
3.2.1 缸內(nèi)火焰圖像處理
通過(guò)高速攝像機(jī)拍攝光學(xué)直噴發(fā)動(dòng)機(jī)燃燒過(guò)程的圖像,提取火焰發(fā)展?fàn)顟B(tài)、火焰半徑和碳煙生成量等圖像信息,對(duì)比分析不同配比的含水乙醇汽油燃燒瞬態(tài)過(guò)程的火焰特征與碳煙生成特性。試驗(yàn)選取50個(gè)循環(huán)的燃燒圖像,為減少各種試驗(yàn)誤差的不利影響,本文利用MATLAB軟件的圖像處理功能,首先對(duì)50個(gè)循環(huán)的圖像照片作平均值,之后對(duì)均值圖像進(jìn)行去背景、降噪等處理,以獲得清晰平滑的火焰輪廓圖像,進(jìn)而提取火焰面積和火焰?zhèn)鞑ニ俣葦?shù)值。因?yàn)橐话阏J(rèn)為黃色火焰由碳煙熾光產(chǎn)生[33],因此通過(guò)統(tǒng)計(jì)黃色火焰信號(hào)強(qiáng)度以反映碳煙濃度變化。具體操作流程如圖4所示。
火焰?zhèn)鞑ニ俣鹊挠?jì)算:將火焰近似看作球形,通過(guò)統(tǒng)計(jì)火焰發(fā)展過(guò)程中氣缸橫截面的火焰面積,計(jì)算對(duì)應(yīng)時(shí)刻的火焰半徑,火焰半徑的變化速率即為火焰?zhèn)鞑ニ俣榷x[17],計(jì)算公式為

式中S代表火焰?zhèn)鞑ニ俣龋瑀為火焰半徑,A為火焰面積。
碳煙生成量:通過(guò)統(tǒng)計(jì)火焰圖像中黃色火焰信號(hào)強(qiáng)度來(lái)表征碳煙相對(duì)含量。通常直接拍攝得到的圖片有R、G、B三個(gè)顏色通道,其中黃色火焰主要由R通道呈現(xiàn),每張圖片的黃色火焰信號(hào)強(qiáng)度計(jì)算公式為

式中為帶有黃色火焰的像素個(gè)數(shù),R為第個(gè)黃色火焰像素的R通道灰度值,為火焰圖像像素個(gè)數(shù),為常值(802816),最后將50個(gè)循環(huán)的黃色火焰信號(hào)強(qiáng)度進(jìn)行平均,得到平均黃色火焰信號(hào)強(qiáng)度。
3.2.2 正常噴油策略下3種燃料的火焰發(fā)展過(guò)程
通過(guò)對(duì)比3種燃料在IMEP=0.4 MPa、均質(zhì)混合氣模式下火焰的發(fā)展過(guò)程,分析不同含水乙醇摻混比對(duì)直噴發(fā)動(dòng)機(jī)火焰發(fā)展特性的影響,試驗(yàn)結(jié)果如圖5所示。
為清楚地看出缸內(nèi)火焰發(fā)展態(tài)勢(shì),從經(jīng)處理過(guò)的150張圖片中選取50張(相鄰照片的曲軸轉(zhuǎn)角間隔為1.5 °CA)展示整個(gè)燃燒過(guò)程的火焰發(fā)展變化情況,如圖5所示。對(duì)比3種燃料火焰發(fā)展圖像可知,不同燃料的火焰?zhèn)鞑ミ^(guò)程較為相似,燃燒開始后火花塞附近形成火核,火焰前鋒面逐漸到達(dá)缸壁,燃燒溫度逐漸達(dá)到最高,火焰亮度亦達(dá)到最大。燃燒過(guò)程火焰亮度都是先升高后降低,火焰?zhèn)鞑ミ^(guò)程前鋒面呈不規(guī)則的弧形,并且會(huì)向燃油濕壁較多的一側(cè)偏置,最大火焰亮度在火焰充滿整個(gè)燃燒室之后出現(xiàn)。圖6所示的火焰?zhèn)鞑ニ俣葘?duì)比也較好地反映了此現(xiàn)象,火焰?zhèn)鞑ニ俣榷际窍仍龃蠛鬁p小,燃燒初始時(shí)刻反應(yīng)不夠劇烈,火焰?zhèn)鞑ニ俣容^慢,隨著火核的形成以及火焰前鋒面的擴(kuò)大,燃燒速率加快;當(dāng)部分火焰接觸缸壁后速度降為0,火焰前鋒面的傳播速度從峰值逐漸下降,火焰?zhèn)鞑ニ俣戎饾u為0以后表面火焰已經(jīng)充滿整個(gè)燃燒室,燃燒過(guò)程進(jìn)入平穩(wěn)期。


注:均質(zhì)模式,噴油時(shí)刻為-280 °CA,轉(zhuǎn)速為1 200 r·min-1,指示平均有效壓力為0.4 MPa。
Note: Homogeneous mode, the injection time is-280 °CA, the engine speed is 1 200 r/min, and the indicated mean effective pressure is 0.4 MPa.
圖5 正常噴油策略下不同燃料的火焰發(fā)展
Fig.5 Flame development of different fuels under normal fuel injection strategy

注:均質(zhì)模式,噴油時(shí)刻為-280 °CA,轉(zhuǎn)速為1 200 r·min-1,指示平均有效壓力為0.4 MPa。
通過(guò)火焰發(fā)展圖像和傳播速度的對(duì)比可以看出,E10W和E20W的燃燒前期火焰呈淡藍(lán)色,亮度隨火焰發(fā)展逐漸增大,E10W和E20W的火焰在10 °CA 左右充滿燃燒室,隨后火焰亮度達(dá)到最大,進(jìn)入燃燒后期后火焰亮度逐漸下降,在右側(cè)缸壁附近觀察到明顯的池火燃燒現(xiàn)象,這也與火焰前鋒面偏置方向一致。E20W的火焰發(fā)展時(shí)刻比E10W略有提前,火焰?zhèn)鞑ニ俣认噍^E10W略快,整體過(guò)程差異不明顯,E20W的火焰燃燒亮度略有提高,主燃期更短,并且E20W的缸壁池火燃燒現(xiàn)象比E10W略有減少;E100W燃燒過(guò)程火焰最為明亮,呈淺黃色,火焰?zhèn)鞑ニ俣让黠@較快,速度峰值相比E10W和E20W約提高15%,在7 °CA左右火焰已經(jīng)充滿燃燒室,相比E10W和E20W提前3 °CA,燃燒后期E100W的缸壁油膜池火現(xiàn)象較少,但活塞頂面的池火現(xiàn)象比E10W和E20W高,池火亮度較低,分布均勻。
火焰發(fā)展對(duì)比結(jié)果表明,乙醇較快的燃燒速度和含氧特性對(duì)燃燒環(huán)境的改善,使得混合燃料隨著含水乙醇比例的提高,火焰發(fā)展過(guò)程縮短,傳播速度加快,火焰亮度逐漸增大,燃燒后期火焰消減速度加快,燃燒持續(xù)期縮短,燃燒相位提前。但含水乙醇中含水量的升高,對(duì)燃燒溫度有所抑制,導(dǎo)致乙醇對(duì)燃燒速度加快的影響減弱。同時(shí)水分增多會(huì)影響噴霧質(zhì)量和混合氣的形成,也會(huì)對(duì)后續(xù)燃燒產(chǎn)生影響。壁面油膜池火燃燒現(xiàn)象也隨摻混比升高而略有減少,分析認(rèn)為噴霧碰壁現(xiàn)象的改善以及含氧特性使混合氣局部濃區(qū)減少,燃燒過(guò)程更完全。火焰發(fā)展的對(duì)比分析也進(jìn)一步驗(yàn)證了缸壓和放熱率等宏觀燃燒特性的變化現(xiàn)象。
3.2.3 晚噴策略下3種燃料的碳煙含量對(duì)比
為了研究含水乙醇摻混比的不同對(duì)碳煙生成的影響,通過(guò)增大負(fù)荷(IMEP=0.46 MPa)和推遲噴油時(shí)刻(SOI=?90 °CA)使碳煙生成量顯著增加,并統(tǒng)計(jì)黃色火焰信號(hào)強(qiáng)度來(lái)表征碳煙相對(duì)含量。圖7為3種燃料在大負(fù)荷推遲噴油條件下的火焰發(fā)展情況。
圖7中每相鄰2張圖像的曲軸轉(zhuǎn)角間隔為1.5 °CA,共計(jì)50張。從中可以看出,3種燃料在分層模式下燃燒不均勻的分區(qū)現(xiàn)象明顯,火焰發(fā)展過(guò)程更為劇烈,后期池火燃燒現(xiàn)象明顯增多。觀察E10W和E20W的火焰發(fā)展可以發(fā)現(xiàn),在推遲噴油時(shí)刻后火焰呈2種分區(qū)狀態(tài),在混合氣分布較為均勻的區(qū)域火焰發(fā)展較為平緩,火焰呈淡藍(lán)色,以預(yù)混燃燒為主;而在壁面和活塞油膜較多區(qū)域,由于油膜蒸發(fā)使局部混合氣過(guò)濃,池火燃燒現(xiàn)象更明顯,以擴(kuò)散燃燒為主,火焰亮度較高,呈黃褐色狀態(tài),并且可以觀察到局部產(chǎn)生了碳煙。E20W相比于E10W的淡藍(lán)色火焰區(qū)域比例更高,池火燃燒現(xiàn)象略弱,后期火焰消減更快。觀察E100W的火焰發(fā)展可以看出,在推遲噴射的條件下燃燒呈淺黃色火焰,火焰?zhèn)鞑ミ^(guò)程更為迅速,當(dāng)火焰充滿整個(gè)燃燒室后火焰分布比E10W和E20W更為均勻,分區(qū)現(xiàn)象也減弱,燃燒后期由于推遲噴射造成的活塞表面燃油濕壁量較多,活塞上的池火較多,但池火分布比E10W和E20W更加均勻,且E100W更高的氧碳比使得碳煙氧化作用增強(qiáng),過(guò)濃區(qū)域碳煙生成量反而降低。
圖8為分層模式下3種燃料的火焰?zhèn)鞑ニ俣群吞紵熛鄬?duì)含量。由圖8可知,3種燃料燃燒相位差距不明顯,E10W的火焰?zhèn)鞑ニ俣确逯底罡?,相比正常噴油,火焰在上止點(diǎn)前已充滿整個(gè)燃燒室,火焰速度波動(dòng)較大,燃燒不穩(wěn)定性增強(qiáng)。碳煙相對(duì)含量的對(duì)比表明含水乙醇比例升高會(huì)降低碳煙生成量,受燃燒溫度較高等因素影響E100W的峰值碳煙相對(duì)含量高于E10W和E20W,峰值時(shí)刻也因?yàn)槿紵辔坏奶崆岸崆?,但是E100W的碳煙生成持續(xù)時(shí)間短,碳煙含量的下降速度更快。
進(jìn)一步分析可知,發(fā)動(dòng)機(jī)負(fù)荷增大使得噴油量增加,推遲燃油噴射,活塞壓縮上行過(guò)程中噴霧碰壁概率增加,混合氣形成時(shí)間變短造成分布不均勻現(xiàn)象加劇,燃燒過(guò)程火焰?zhèn)鞑ゲ痪鶆?。加之壁面油膜蒸發(fā)造成的池火燃燒會(huì)加劇這種現(xiàn)象,使得燃燒后期火焰產(chǎn)生明顯的分區(qū)現(xiàn)象。含水乙醇摻混比例的提高會(huì)增加含氧成分,改善混合氣當(dāng)量比分布,減少局部濃區(qū),加快燃燒速度,削弱了壁面油膜的池火燃燒現(xiàn)象,使得火焰?zhèn)鞑ジ鶆?,分區(qū)現(xiàn)象明顯減少。由于負(fù)荷的升高和噴油時(shí)刻的推遲導(dǎo)致的混合氣質(zhì)量的下降使得燃燒過(guò)程不穩(wěn)定,因此含水乙醇汽油火焰?zhèn)鞑ニ俣炔▌?dòng)較大,并且E10W和E20W火焰分區(qū)和劇烈燃燒的影響使得火焰?zhèn)鞑ニ俣确逯蹈哂贓100W。直噴發(fā)動(dòng)機(jī)碳煙生成的主要原因是混合氣局部濃區(qū)的不完全燃燒和壁面油膜的池火燃燒所產(chǎn)生,E100W碳煙瞬時(shí)濃度峰值較高是因?yàn)槠淙紵俾瘦^快、反應(yīng)劇烈,燃燒溫度較高會(huì)使得燃油裂解速率加快導(dǎo)致碳煙瞬態(tài)濃度相對(duì)偏高,但其含氧組分濃度高,燃燒后期的氧化作用更強(qiáng),使得其碳煙瞬時(shí)濃度下降速度加快,碳煙相對(duì)含量較E10W和E20W降低90%之多。E20W比E10W碳煙相對(duì)含量較高是由于混合燃料在分層模式下燃油碰壁概率增加,混合氣不均勻,燃燒過(guò)程火焰分區(qū)明顯,使得乙醇對(duì)燃燒的改善作用不夠明顯,同時(shí)含水乙醇在混合燃料中比例升高會(huì)增加含水量,影響噴霧效果以及燃燒效率。綜合以上分析,通過(guò)控制合適的摻混比和噴油策略等條件,含水乙醇汽油能夠有效改善直噴汽油機(jī)的碳煙排放。

注:分層模式,噴油時(shí)刻為-90 °CA,轉(zhuǎn)速為1 200 r·min-1,指示平均有效壓力為0.46 MPa。
Note: Stratified mode, the injection time is -90 °CA, the engine speed is 1200 r·min-1, the indicated mean effective pressure is 0.46 MPa.
圖7 晚噴策略下不同燃料的火焰發(fā)展
Fig.7 Flame development of different fuels under the late injection strategy

注:分層模式,噴油時(shí)刻為-90 °CA,轉(zhuǎn)速為1 200 r·min-1,指示平均有效壓力為0.46 MPa。
為了分析含水乙醇汽油燃燒過(guò)程火焰發(fā)展和碳煙生成的瞬態(tài)特性進(jìn)行了光學(xué)單缸發(fā)動(dòng)機(jī)試驗(yàn),研究發(fā)現(xiàn):
1)隨著含水乙醇比例的增加,燃燒相位提前,缸壓峰值增大,火焰發(fā)展速度加快,E100W相比E10W缸壓峰值增大10%,燃燒相位提前2 °CA,火焰?zhèn)鞑ニ俣仍黾?5%,燃燒持續(xù)期縮短,推遲噴油后含水乙醇摻混比的增大對(duì)燃燒特性影響不明顯,燃燒循環(huán)變動(dòng)增大。
2)火焰發(fā)展特性表明含水乙醇汽油的火焰亮度在火焰前鋒面到達(dá)缸壁后達(dá)到最大,前鋒面向混合氣濃區(qū)偏置,與壁面池火區(qū)域一致,隨著含水乙醇比例的增加池火燃燒現(xiàn)象減少。
3)推遲噴油后缸內(nèi)火焰分區(qū)現(xiàn)象明顯,燃燒不均勻現(xiàn)象加劇,油膜池火燃燒明顯增多,含水乙醇可以改善燃燒特性,使火焰?zhèn)鞑ジ鶆颍紵熛鄬?duì)含量降低90%。因此,在缸內(nèi)直噴汽油機(jī)中添加適當(dāng)比例的含水乙醇實(shí)現(xiàn)混合燃燒,可以在節(jié)約化石能源的同時(shí)改善直噴汽油機(jī)的燃燒和碳煙生成特性。
[1] 王坤. 直噴增壓發(fā)動(dòng)機(jī)的性能分析與優(yōu)化[D]. 重慶:重慶理工大學(xué),2018.
Wang Kun. Performance Analysis and Optimization of TGDI Engine[D]. Chongqing: Chongqing University of Technology, 2018. (in Chinese with English abstract)
[2] Potenza Marco, Marco Milanese, Arturo de Risi. Effect of injection strategies on particulate matter structures of a turbocharged GDI engine. Fuel, 2019, 237: 413-428.
[3] 方鐵鋼,王利兵,王志. 汽油直噴發(fā)動(dòng)機(jī)的顆粒物排放研究綜述(英文)[J]. 汽車安全與節(jié)能學(xué)報(bào),2017,8(3):226-238.
Fang Tiegang, Wang Libing, Wang Zhi. Particulate matter emissions from gasoline direct injection engines: research review[J]. Journal of Automotive Safety and Energy, 2017, 8(3): 226-238. (in Chinese with English abstract)
[4] 劉巖磊,孫嵐,張英鴿. 粒徑小于2.5微米可吸入顆粒物的危害[J]. 國(guó)際藥學(xué)研究雜志,2011,38(6):428-431.
Liu Yanlei, Sun Lan, Zhang Yingge. Hazards of inhalable particulates PM2.5 on human health[J]. Journal of International Pharmaceutical Research, 2011, 38(6): 428-431. (in Chinese with English abstract)
[5] 孫姣. GDI汽油機(jī)燃用含水乙醇汽油的燃燒與排放特性研究[D]. ??冢汉D洗髮W(xué),2015.
Sun Jiao. Study on the Combustion and Emission Characteristics of Gasoline Direct Injection Engine Fueled with Hydrous Ethanol Gasoline Blended Fuel[D]. Haikou: Hainan University, 2015. (in Chinese with English abstract)
[6] 張永光. 醇類燃料的發(fā)展及在我國(guó)的應(yīng)用(上)[J]. 節(jié)能與環(huán)保,2003(12):5-8.
Zhang Yongguang. Development and application of alcohol fuels in China (Part one)[J]. Energy Conservation and Environmental Protection, 2003(12) : 5-8. (in Chinese with English abstract)
[7] Turner D, Xu H, Cracknell R F, et al. Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine[J]. Fuel, 2011, 90(5): 1999-2006.
[8] Park C, Choi Y, Kim C, et al. Performance and exhaust emission characteristics of a spark ignition engine using ethanol and ethanol-reformed gas[J]. Fuel, 2010, 89(8): 2118-2125.
[9] 張志進(jìn). 直噴汽油機(jī)廢氣再循環(huán)氛圍下燃燒與排放特性研究[D]. 天津:天津大學(xué),2014.
Zhang Zhijin. Combustion and Emission Characteristics of A Direct Injection Spark Ignition Engine with Exhaust Gas Recirculation[D]. Tianjin: Tianjin University, 2014. (in Chinese with English abstract)
[10] Varde K, Jones A, Knutsen A, et al. Exhaust emissions and energy release rates from a controlled spark ignition engine using ethanol blends[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2007, 221(8): 933-941.
[11] Caton P A, Hamilton L J, Cowart J S. An experimental and modeling investigation into the comparative knock and performance characteristics of E85, gasohol [E10] and regular unleaded gasoline [87(R+M)/2][J]. Sae TechnicalPapers, 2007.
[12] Ceviz M A, Yüksel F. Effects of ethanol–unleaded gasoline blends on cyclic variability and emissions in an SI engine[J]. Applied Thermal Engineering, 2005, 25(5): 917-925.
[13] Venugopal T, Sharma A, Satapathy S, et al. Experimental study of hydrous ethanol gasoline blend (E10) in a four stroke port fuel‐injected spark ignition engine[J]. International Journal of Energy Research, 2013, 37(6): 638-644.
[14] Karavalakis G, Short D, Vu D, et al. The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines[J]. Energy, 2015, 82: 168-179.
[15] Maricq M M, Szente J J, Jahr K. The impact of ethanol fuel blends on pm emissions from a light-duty GDI vehicle[J]. Aerosol Sci and Tech, 2012, 46(5): 576-583.
[16] Iorio S D, Lazzaro M, Sementa P, et al. Particle size distributions from a di high performance si engine fuelled with gasoline-ethanol blended fuels[J]. Sae Technical Papers, 2011.
[17] Costagliola M A, De Simio L, Iannaccone S, et al. Combustion efficiency and engine out emissions of a SI engine fueled with alcohol/gasoline blends[J]. Applied Energy, 2013, 111: 1162-1171.
[18] De Melo T C C, Machado G B, Belchior C R P, et al. Hydrous ethanol-gasoline blends-combustion and emission investigations on a flex-fuel engine[J]. Fuel, 2012, 97: 796-804.
[19] Hsieh W D, Chen R H, Wu T L, et al. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels[J]. Atmospheric Environment, 2002, 36(3): 403-410.
[20] 劉少華,申立中,葉年業(yè),等. E10含水乙醇汽油對(duì)汽油機(jī)性能及排放的影響研究[J]. 內(nèi)燃機(jī)工程,2012,33(5):46-51.
Liu Shaohua, Shen Lizhong, Ye Nianye, et al. Research on effects of E10 hydrous ethanol gasoline blend on performance and emissions of gasoline engine[J]. Chinese Internal Combustion Engine Engineering, 2012, 33(5): 46-51. (in Chinese with English abstract)
[21] 許滄粟,杜德興. 含水乙醇在內(nèi)燃機(jī)的應(yīng)用研究[J]. 內(nèi)燃機(jī)工程,2004,25(4):46-49.
Xu Cangsu, Du Dexing. Study of water contended ethanol in IC engines[J]. Chinese Internal Combustion Engine Engineering, 2004, 25(4): 46-49. (in Chinese with English abstract)
[22] 許滄粟,杜德興. 汽油機(jī)燃用乙醇和含水乙醇與汽油的混合燃料的試驗(yàn)研究[J]. 太陽(yáng)能學(xué)報(bào),2005,26(2):253-257.
Xu Cangsu, Du Dexing. Experiments of the gasoline enging fueled with blends of gasoline and ethanol or aquiferous ethanol[J]. Acta Energiae Solaris Sinica, 2005, 26(2): 253-257. (in Chinese with English abstract)
[23] 何邦全,閆小光,王建昕,等. 電噴汽油機(jī)燃用乙醇-汽油燃料的排放性能研究[J]. 內(nèi)燃機(jī)學(xué)報(bào),2002,20(5):399-402.
He Bangquan, Yan Xiaoguang, Wang Jianxin, et al. A study on the emission characteristics of an efi engine with ethanol blended gasoline fuel[J]. Transactions of CSICE, 2002, 20(5): 399-402. (in Chinese with English abstract)
[24] Bayraktar H. Theoretical investigation of flame propagation process in an SI engine running on gasoline-ethanol blends[J]. Renewable Energy, 2007, 32(5): 758-771.
[25] Richard STONE,陳龍飛,Nathan HINTON. 燃用乙醇、汽油混合物和含水乙醇的GDI發(fā)動(dòng)機(jī)運(yùn)行[J]. 汽車安全與節(jié)能學(xué)報(bào),2012,3(3):257-264.
Richard STONE, Chen Longfei, Nathan HINTON. GDI engine operation with ethanol/gasoline blends and aqueous ethanol[J]. Journal of Automotive Safety and Energy, 2012, 3(3): 257-264. (in Chinese with English abstract)
[26] 陳男,顏文勝,陳泓,等. E30w含水乙醇汽油對(duì)電噴汽油機(jī)性能和排放的影響[J]. 小型內(nèi)燃機(jī)與摩托車,2010,39(5):80-82.
Chen Nan, Yan Wensheng, Chen Hong, et al. Effects of E30w hydrous gasoline ethanol on the performances and emissions of electric injection gasoline engine[J]. Small Internal Combustion Engine and Motorcycle, 2010, 39(5): 80-82. (in Chinese with English abstract)
[27] Parag S, Raghavan V. Experimental investigation of burning rates of pure ethanol and ethanol blended fuels[J]. Combustion & Flame, 2009, 156(5): 997-1005.
[28] Breaux B B, Acharya S. The effect of elevated water content on swirl-stabilized ethanol/air flames[J]. Fuel, 2013, 105(1): 90-102.
[29] 尚勇,何旭,劉福水,等. 燃燒光學(xué)可視化技術(shù)在內(nèi)燃機(jī)測(cè)試中的應(yīng)用研究[J]. 小型內(nèi)燃機(jī)與車輛技術(shù),2016,45(5):1-7.
Shang Yong, He Xu, Wang Jianxin. Research on the application of combustion optical visualization technology in the test of internal combustion engine[J]. Small Internal Combustion Engine and Vehicle Technique, 2016, 45(5): 1-7. (in Chinese with English abstract)
[30] 全國(guó)汽車標(biāo)準(zhǔn)化委員會(huì). 汽車發(fā)動(dòng)機(jī)性能試驗(yàn)方法:GB/T 18297-2001[S]. 北京:國(guó)家質(zhì)量技術(shù)監(jiān)督局,2001.
[31] 周寶龍,劉忠長(zhǎng),高宗英. 內(nèi)燃機(jī)學(xué)[M]. 北京:機(jī)械工業(yè)出版社,2010:67-72.
[32] 汪映,白元啟,王鵬,等. 高辛烷值組分對(duì)正庚烷著火燃燒特性的影響[J]. 西安交通大學(xué)學(xué)報(bào),2018,52(11):30-36,80.
Wang Ying, Bai Yuanqi, Wang Peng, et al. Effects of high-octane components on the ignition characteristics of N-heptane[J]. Journal of Xi’an Jiaotong University, 2018, 52(11): 30-36, 80. (in Chinese with English abstract)
[33] Anna H, De A, Violi A. Detailed modeling of the molecular growth process in aromatic and aliphatic premixed flames[J]. Energy & Fuels, 2005, 19(1): 79-86.
Analysis of direct injection combustion characteristics of hydrous ethanol gasoline based on optical single cylinder engine
Shi Xiuyong1, Duan Yifei1, Ma Xiao2※, Zhang Zhou2, Kang Yang1, Liao Yansu1, Ni Jimin1
(1.201804,; 2.100084,)
In recent years, gasoline direct injection (GDI) engines have been promoted worldwide by virtue of its advantages of economy and efficiency, but their particulate emissions are increased significantly compared to port fuel injection (PFI) engines. Ethanol has good research prospects due to its advantages such as high-octane number, low pollution and renewability. At the same time, ethanol has a certain effect on reducing particulate emissions from the engine. The existing research on the application of aqueous ethanol gasoline in GDI engine mainly focuses on the combustion and emission characteristics based on macroscopic characteristics, and there are few microscopic analysis of the flame development and soot formation. On basis of this, this paper studied the cylinder pressure, heat release rate and combustion phase of E10W (10% hydrous ethanol by volume ratio), E20W (20% hydrous ethanol by volume ratio) and E100W (pure hydrous ethanol) under different fuel injection strategies by optical single cylinder engine test, and analyzed the flame development and soot formation characteristics of the combustion process of hydrous ethanol gasoline. It was found that under the normal fuel injection strategy (start of injection, SOI=-280°CA), the peak value of cylinder pressure and heat release rate gradually increased with the increase of the proportion of hydrous ethanol, the cylinder pressure peak value of E100W increases by 10% compared to E10W, while the heat release rate did not increase significantly. The combustion phase angle advanced by 2°CA, the flame propagation speed increased by 15% and the combustion duration was shortened. The combustion coefficient of variation of E100W was 20% lower than that of the E10W and E20W. After delaying fuel injection (SOI=-90°CA), the change of the proportion of hydrous ethanol had no obvious effect on the combustion characteristics. The cylinder pressure peak value of E100W increased by 5%, the combustion phase was significantly advanced compared with the normal injection, and the combustion coefficient of variation increased to twice as much. The flame development characteristics showed that the flame brightness reached the maximum after the flame filled in the combustion chamber, and the flame front was biased toward the rich side of the mixture, which was consistent with the pool fire burning area on the wall. There were more yellow brown flames in the intense pool fire area, and the soot production was higher. Increasing the mixing ratio of the hydrous ethanol could accelerate the flame development speed. The time when E100W flame filled the combustion chamber was 3 ° CA ahead that of E10W and E20W, and the flame brightness increased. At the same time, after the fuel injection was delayed, the flame partitioning phenomenon in the cylinder was obvious, the uneven combustion phenomenon was intensified, and the combustion in the oil film pool was increased obviously. The addition of hydrous ethanol can improve the combustion characteristics, make the flame spread more uniform, reduce the area of pool fire burning intensely, and the relative content of soot can be reduced by 90%. Therefore, using a mixture of hydrous ethanol and gasoline as the fuel of GDI engines can effectively improve the combustion characteristics of the engine, accelerate the flame propagation speed and reduce the amount of soot, and have a better effect on improving the performance of GDI engines and reduce PM emissions.
engines; combustion; experiment; visualization; hydrous ethanol; gasoline direct injection engine; soot
2019-10-08
2020-01-19
國(guó)家自然科學(xué)基金(51506111),上海市自然科學(xué)基金(16ZR1438500)
石秀勇,副教授,博士,研究方向?yàn)槠嚢l(fā)動(dòng)機(jī)燃燒節(jié)能與排放控制。Email:shixy@tongji.edu.cn
馬 驍,助理教授,博士,研究方向?yàn)榘l(fā)動(dòng)機(jī)噴霧和燃燒光學(xué)診斷。Email: max@tsinghua.edu.cn
10.11975/j.issn.1002-6819.2020.05.007
TK417
A
1002-6819(2020)-05-0059-10
石秀勇,段毅菲,馬 驍,張 周,康 楊,廖延蘇,倪計(jì)民. 基于光學(xué)單缸機(jī)的含水乙醇汽油直噴燃燒特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):59-68. doi:10.11975/j.issn.1002-6819.2020.05.007 http://www.tcsae.org
Shi Xiuyong, Duan Yifei, Ma Xiao, Zhang Zhou, Kang Yang, Liao Yansu, Ni Jimin. Analysis of direct injection combustion characteristics of hydrous ethanol gasoline based on optical single cylinder engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 59-68. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.05.007 http://www.tcsae.org