馬曉聞 周思泓 王丹玉 贠桂玲 侯玉霞



摘要:【目的】從轉錄水平分析牛心樸子在低溫脅迫下的差異表達基因,篩選響應低溫脅迫的轉錄因子家族,鑒定出牛心樸子低溫脅迫響應的關鍵調控基因,為全面解析逆境脅迫響應分子調控網絡及有效挖掘關鍵調控基因提供理論參考。【方法】通過高通量測序技術對低溫脅迫(CT組)和常溫處理(對照,CK組)的牛心樸子cDNA文庫進行轉錄組測序分析,對差異表達基因進行功能注釋和富集,鑒定出響應低溫脅迫的轉錄因子家族,并選取4個差異表達的轉錄因子基因進行實時熒光定量PCR檢測,以驗證轉錄組測序結果的可信度。【結果】從CK組和CT組共獲得30.50 Gb的原始數據,Cycle Q20平均值在96%以上,經數據過濾及去冗余后,拼接組裝獲得100006條Unigenes,但其功能注釋率較低,有47082條至少在一個數據庫中被功能注釋,占Unigenes總數的47.07%;而在NR、NT、KO、SwissProt、PFAM、GO和KOG數據庫中均被注釋的Unigene有7070條,僅占Unigenes總數的7.06%。GO功能富集分析篩選到5545個差異表達基因,其中,上調表達基因2039個,下調表達基因3506個,分別富集到生物過程、細胞組分和分子功能三大類別中。從牛心樸子Unigene中共鑒定到83個轉錄因子家族的1826個轉錄因子,其中,以MYB轉錄因子家族成員數目最多,為136個(占7.45%)。從差異表達基因中篩選到與低溫脅迫有關的66個轉錄因子家族的550個轉錄因子,其中MYB、C3H、bHLH、AP2-EREBP、C2H2、NAC、bZIP、CCAAT和WRKY等轉錄因子家族均有大量轉錄因子能被低溫脅迫誘導表達。基于實時熒光定量PCR的牛心樸子低溫脅迫下轉錄因子基因表達水平檢測結果與轉錄組測序分析結果基本一致。【結論】MYB、C3H、bHLH、AP2-EREBP、C2H2、NAC、bZIP、CCAAT和WRKY等轉錄因子家族成員在牛心樸子響應低溫脅迫時發(fā)揮主導作用,同時各家族轉錄因子間存在共表達性或協同作用,通過復雜的轉錄調控網絡發(fā)揮重要調節(jié)作用,進而提高牛心樸子對低溫脅迫的耐受性。
關鍵詞: 牛心樸子;轉錄組;轉錄因子;低溫脅迫;差異表達基因
中圖分類號: S567.239? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2020)05-0995-09
Cold-responsive transcription factor family in Cynanchum komarovii based on transcriptome data
Abstract:【Objective】In order to identify the cold-responsive transcription factors and screen the key regulatory genes of Cynanchum komarovii in response to cold stress,the transcriptome analysis on the differentially expressed genes(DEGs) in C. komarovii was analyzed,which provided a theoretical reference for the comprehensive analysis of the stress response molecular regulation network and the effective mining of key regulatory genes. 【Method】High-throughput sequencing technology was applied to detect the transcriptome sequencing data of the cDNA library of C. komarovii under cold stress treatment(CT) and normal atmospheric temperature treatment(control, CK). The DEGs were functionally annotated and enriched,and the cold-responsive transcription factor families were identified. Fourdifferentially expressed transcription factor genes were selected using real time fluorescent quantitative PCR for the determination to check the reliability of transcriptome sequencing. 【Result】30.50 Gb of sequencing data were obtained from CK and CT groups with the average Cycle Q20 over 96%. A total of 100,006 uni-genes were assembled after data filtering and elimination of redundancy, but the functional annotation rate was low. 47082 uni-genes had functional annotation in at least one database, accounting for 47.07% of total unigenes. By comparing the unigenes with all the public protein databases of NR,NT,KO,SwissProt,PFAM,GO,and KOG,only 7,070(7.06% of the total) were functionally annotated. GO enrichment analysis was performed and 5,545 differentially expressed genes were identified in three main GO terms including biological process,cellular component,and molecular function,among which 2,039 were up-regulated and 3,506 were down-regulated under cold stress conditions. A total of 1,826 transcription factors belonging to 83 families were identified in C. komarovii unigenes. The most abundant transcription factors families detected in the transcriptome was the MYB(136),accounting for 7.45%. Moreover,550 transcription factors in 66? transcription factor families related to cold stress were selected from differentially expressed genes, MYB,C3H,bHLH,AP2-EREBP,C2H2,NAC,bZIP,CCAAT,and WRKY families had abundant transcription factors that could be induced to express under cold stress. The transcription factor gene expression detection results of C. komarovii under cold stress based on real time fluorescent quantitative PCR was consistent with that by transcriptome sequencing analysis. 【Conclusion】The transcription factors families MYB,C3H,bHLH,AP2-EREBP,C2H2,NAC,bZIP,CCAAT,and WRKY in C. komarovii play a leading role in response to cold stress. There might have co-expression or synergistic effects among transcription factors of these family members, they regulate through complex transcription regulatory network,which can improve the tolerance of C. komarovii to cold stress.
Key words: Cynanchum komarovii; transcriptome; transcription factor; cold stress; differentially expressed genes
Foundation item: National Key Research and Development Program(2017YFD0201900)
0 引言
【研究意義】低溫是影響植物生長與分布的重要環(huán)境因素之一,嚴重威脅農作物產量的形成,制約著農業(yè)生產的發(fā)展(張健等,2019)。牛心樸子(Cynanchum komarovii)是一種荒漠草本植物,對低溫強光、干旱高溫的荒漠環(huán)境具有極強的適應性,擁有潛在的抗逆基因資源待挖掘,是研究植物抗逆機制的良好材料(馬曉聞,2016)。在逆境脅迫響應過程中,轉錄因子作為關鍵調控蛋白控制著下游大量抗逆相關功能基因的表達,是一類在轉錄調控過程中發(fā)揮重要作用的蛋白(朱玉賢等,2013)。因此,研究抗逆相關轉錄因子的功能及特性,并篩選出優(yōu)良候選基因,利用其綜合改良作物的抗逆性已成為農作物抗逆育種的重要途徑(王薇,2009)。通過轉錄組測序分析牛心樸子在低溫脅迫下的差異表達基因,鑒定響應低溫脅迫相關轉錄因子,發(fā)掘出耐低溫關鍵調控基因,對培育農作物耐冷新品種及減少生產損失具有重要意義。【前人研究進展】基于高通量測序技術的轉錄組測序已成為發(fā)掘缺乏基因組信息物種功能基因的重要手段,被廣泛應用于篩選植物抗逆關鍵基因(唐玉娟等,2018)。目前,已有較多針對植物低溫逆境脅迫轉錄組分析的研究報道。Zhao等(2012)基于高通量測序平臺對冷脅迫下具有極強耐冷能力的高山冰緣植物高山離子芥(Chorispora bungeana)進行轉錄組分析,結果發(fā)現MYB(v-myb avian myeloblastosis viral oncogene homolog)、AP2/ERF(APETALA2/ethylene-responsive factor)、WRKY和NAC等轉錄組因子家族成員參與低溫脅迫響應時的表達量差異顯著。Xu等(2014)研究低溫環(huán)境下正常生長的山葡萄(Vitis amurensis)抗冷相關基因,通過轉錄組測序鑒定出38個與抗冷相關的轉錄因子家族,推測這些轉錄因子與該物種獨特的耐冷能力有關。Wang等(2014)對我國東北地區(qū)嚴寒條件下正常生長的卷丹百合(Lilium lancifolium)在低溫脅迫不同時段的基因轉錄水平進行Solexa測序分析,初步解析了鈣信號和脫落酸(ABA)依賴與非依賴途徑的差異性表達,結果發(fā)現冷誘導相關基因ICE、鈣依賴而鈣素不依賴蛋白激酶基因CDPK、干旱應答元件的結合蛋白基因DREB、AP2/EREBP基因等表達顯著上調,推測這些基因是響應低溫脅迫的主要調控基因。Wang等(2015)通過高通量測序技術分析耐寒植物枳[Poncirus trifoliate(L.) Raf.]在低溫脅迫下的應答基因,結果發(fā)現5177個基因受低溫脅迫誘導發(fā)生差異表達,其中有60個與冷脅迫應答相關的轉錄因子,且上調表達基因主要參與植物激素信號轉導、次生代謝產物生物合成途徑。Wei等(2015)研究發(fā)現,抗冷植物結縷草(Zoysia japonica)在低溫脅迫處理后,其應答基因數量最多的是DREBs轉錄因子家族成員,且參與淀粉水解、脯氨酸合成、抗壞血酸代謝、超氧化物歧化酶(SOD)激活的基因均顯著上調表達。Yang等(2015)利用高通量測序技術對水稻抗冷品種TNG67與冷敏感品種TCN1幼苗進行轉錄組測序分析,結果表明,TNG67和TCN1在冷應答轉錄因子基因表達量、激素相關基因表達量及脅迫響應相關基因應答時間等方面均存在明顯差異,可能是造成品種間抗冷性差異的主要原因。Tan等(2016)對低溫脅迫下豇豆(Vigna unguiculata subsp. sesquipedalis)的抗冷品種和冷敏感品種進行轉錄組測序分析,結果顯示冷應答DREBs轉錄因子家族與ICE1-CBF3-COR冷誘導信號間存在級聯交互,且其在豇豆應答低溫脅迫時發(fā)揮重要調控作用。Gong等(2018)對低溫脅迫處理的橡膠樹進行轉錄組測序分析,并篩選響應低溫脅迫相關的調節(jié)候選基因,結果發(fā)現9個轉錄因子家族的239個轉錄因子參與低溫脅迫響應。【本研究切入點】目前,針對牛心樸子響應逆境脅迫的研究主要集中在植株生理生化水平的適應性調節(jié)(陳翠云等,2012),而鮮見有關牛心樸子在低溫脅迫下的分子機理和轉錄組學的研究報道。【擬解決的關鍵問題】通過高通量測序技術對低溫處理和常溫處理(對照)的牛心樸子RNA文庫進行轉錄組測序分析,對差異表達基因進行功能注釋和富集,分析牛心樸子低溫脅迫相關轉錄因子的表達特性,以期篩選出牛心樸子低溫脅迫響應的關鍵調控基因,為全面解析逆境脅迫響應分子調控網絡及有效挖掘關鍵調控基因提供理論參考。
1 材料與方法
1. 1 試驗材料
供試植物材料為牛心樸子(C. komarovii)種子,采自寧夏靈武市瓷窯堡鎮(zhèn),由中國農業(yè)大學理學院分子生物學實驗室提供。TRIzol植物RNA提取試劑盒購自Invitrogen公司;文庫構建試劑盒(NEBNext UltraTM RNA Library Prep Kit)購自NEB公司;實時熒光定量PCR試劑盒[SYBR? Premix Ex TaqTM(Tli RNa-seH Plus)]購自TaKaRa公司。主要儀器設備:HITACHI高速低溫離心機、THERMO -86 ℃超低溫冰箱、Agilent 2100、Qubit Fluorometer 2.0、Illumina HiSeqTM 2000高通量測序儀、ABI 7500 Thermocycler熒光定量PCR儀、光照培養(yǎng)箱和無菌操作超凈工作臺。
1. 2 樣品處理及采集
牛心樸子種子經4%次氯酸鈉和75%乙醇浸泡消毒10~20 min,無菌水沖洗3次,播種于混合土(營養(yǎng)土∶蛭石=2∶1)中,在16 h光照/8 h黑暗,溫度25 ℃/22 ℃的條件下培養(yǎng)3周。將長勢一致的牛心樸子幼苗從土壤中轉移至Hoagland營養(yǎng)液中繼續(xù)培養(yǎng),在4 ℃低溫培養(yǎng)箱中進行低溫脅迫處理(CT組),以常溫為對照(CK組),每處理設3個生物學重復,在處理72 h后收集幼苗植株,-80 ℃超低溫冰箱保存?zhèn)溆谩?/p>
1. 3 測序樣品制備及高通量測序
采用TRIzol植物RNA提取試劑盒分別提取CT和CK組樣品總RNA,并進行RNA濃度、純度和完整性檢測。待檢測合格后,參照NEBNext UltraTM RNA Library Prep Kit說明構建cDNA文庫,最后使用Illumina 2000測序平臺(HiSeq/MiSeq)進行測序。
1. 4 轉錄組數據分析
測序所得的原始序列(Raw reads)經檢查過濾后獲得待分析數據(Clean reads),利用Trinity軟件對其進行組裝拼接以獲得轉錄本序列,取每個基因最長的轉錄本為Unigene,與公共數據庫比對分析后進行基因功能注釋(Moriya et al.,2007;Grabherr et al.,2011)。應用iTAK軟件預測植物轉錄因子家族成員,利用database中分類定義好的轉錄因子家族及其規(guī)則,通過hmmscan鑒定轉錄因子家族(Zheng et al.,2016)。鑒于試驗設有生物學重復,采用DESeq進行差異表達基因分析,篩選閾值為padj<0.05(Anders and Huber,2010)。
1. 5 實時熒光定量PCR檢測
選取4個差異表達轉錄因子基因進行實時熒光定量PCR檢測,以EF-1-α為內參基因,按照SYBR? Premix Ex TaqTM(Tli RNaseH Plus)試劑盒說明配制反應體系,擴增反應在ABI 7500 Thermocycler上進行(Wang et al.,2011)。擴增程序:95 ℃預變性30 s;95 ℃ 5 s,60 ℃ 34s,進行40個循環(huán);95 ℃ 15 s,60 ℃ 1 min,95 ℃ 15 s。采用2-ΔΔCt法換算目的基因的相對表達量。4個差異表達轉錄因子基因的實時熒光定量PCR擴增因引物如表1所示。
2 結果與分析
2. 1 測序分析及Unigene功能注釋結果
從CK組和CT組共獲得30.50 Gb的原始數據,Cycle Q20平均值在96%以上,表明測序數據質量較好,可用于后續(xù)分析。經數據過濾及去冗余后,對高質量Clean reads進行拼接組裝后獲得轉錄本序列,取每個基因最長的轉錄本作為Unigene,最終獲得100006條Unigenes,平均長度為649 bp,N50為1129 bp。由表2可知,100006條Unigenes在NR、GO、PFAM、SwissProt、NT、KOG、KO等數據庫中注釋的Unigenes分別為34682(占34.67%)、33935(占33.93%)、333363(占33.36%)、30771(占30.76%)、21017(占21.01%)、20214(占20.21%)和17695條(占17.69%)。有47082條Unigenes至少在一個數據庫中得到功能注釋,占Unigenes總數的47.07%;而在以上7個數據庫均被注釋的Unigenes僅有7070條,僅占Unigenes總數的7.06%。可見,牛心樸子Unigenes功能注釋率較低。
2. 2 牛心樸子響應低溫脅迫的基因差異表達分析結果
采用DESeq進行差異表達基因分析,共獲得7742個差異表達基因。將這些差異表達基因進行GO富集分析,最終篩選得到5545個差異表達基因,其中,上調表達基因2039個,下調表達基因3506個,可富集到生物過程(Biological process,BP)、細胞組分(Cellular component,CC)和分子功能(Molecular function,MF)三大類別中。將牛心樸子響應低溫脅迫時差異表達基因按照不同的功能進行歸類和注釋,可為后續(xù)分析差異表達基因中的轉錄因子家族功能提供參考。
對上調表達基因進行GO富集分析,結果(圖1-A)發(fā)現,富集在MF的上調表達基因主要分子功能為結合、金屬離子結合和陽離子結合;富集在BP的上調表達基因主要參與環(huán)狀化合物、雜環(huán)化合物和芳香族化合物的生物合成過程,且參與各化合物生物合成過程的差異表達基因數量為200~400個;富集在CC的上調表達基因中,有132個基因富集于轉錄因子復合物,推測這些基因差異表達是響應低溫脅迫,參與調節(jié)合成代謝。
對下調表達基因進行GO富集分析,結果(圖1-B)發(fā)現,下調表達基因主要富集在BP和CC兩大類別中。其中,富集在BP的下調表達基因主要參與有機物生物合成過程(有機氮化合物及酰胺生物合成等)、細胞生物合成和蛋白代謝過程、有機物代謝過程;富集在CC的下調表達基因中以富集于細胞和細胞部分的基因最多,推測這些基因表達被低溫脅迫所抑制,且低溫脅迫使植物的細胞成分和結構、生物合成及代謝受到一定程度的影響。
2. 3 牛心樸子轉錄因子家族分析結果
使用iTAK軟件對牛心樸子100006條Unigenes進行轉錄因子家族鑒定,結果共鑒定出1826個轉錄因子,隸屬于83個轉錄因子家族(表3)。其中,以MYB轉錄因子家族成員數量最多,為136個(占7.45%),成員數量排前15位的家族共有1091個轉錄因子,占轉錄因子總數的59.75%。
2. 4 牛心樸子響應低溫脅迫的轉錄因子分析結果
從低溫脅迫牛心樸子轉錄組已鑒定且注釋功能的差異表達基因中,共鑒定出550個轉錄因子,隸屬于66個轉錄因子家族,其中有15個轉錄因子家族成員數量較多(表4),占轉錄因子總數的58.91%,尤其是MYB、C3H、bHLH、AP2-EREBP、Orphans、HB、C2H2、NAC、bZIP、CCAAT和WRKY等家族均有大量轉錄因子被低溫脅迫誘導,是研究牛心樸子低溫脅迫響應機制中調控功能較多、參與代謝通路調控較多的轉錄因子家族,將是后續(xù)研究工作的重點。
2. 5 實時熒光定量PCR檢測結果
為驗證轉錄組測序結果的可信度,隨機選取4個差異表達的轉錄因子基因,以EF-1-α基因為內參基因進行實時熒光定量PCR檢測,結果如表5所示。雖然因方法學上的差異導致結果略有偏倚,但實時熒光定量PCR檢測出的基因表達模式與轉錄組測序分析獲得的基因表達趨勢基本一致,表明轉錄組測序數據結果可信度較高。
3 討論
本研究發(fā)現,高通量測序技術可有效挖掘牛心樸子中的大量轉錄信息及差異表達基因,但牛心樸子Unigene功能注釋率較低,僅有47.07%的Unigene至少被一個數據庫進行功能注釋。Long等(2014)對荒漠地區(qū)極為抗旱、耐熱的超旱生固沙植物梭梭(Haloxylon ammodendron)進行干旱脅迫轉錄組分析,結果發(fā)現僅有37.52%的Unigene至少被一個數據庫功能注釋。Dang等(2013)、Wu等(2014)、滿玲娟等(2019)也研究發(fā)現,強抗逆植物長葉紅砂、沙冬青和梭梭分別有41.91%、59.3%和53.9%的Unigene至少在一個數據庫中得到功能注釋,其原因是這些植物屬于無基因組測序數據公布的非模式植物,公共數據庫中親緣關系相近物種遺傳信息缺乏或不足,無法與基因組已測序公布的擬南芥、玉米、棉花、水稻和煙草等物種相對比。因此,本研究通過高通量測序技術對未知基因進行組裝拼接及功能注釋,為親緣關系相近植物提供了大量參考數據,對研究植物逆境下的基因表達調控和抗逆育種具有重要意義。
轉錄因子在植物逆境信號轉導和基因表達調控中均發(fā)揮重要作用。大量研究證實,MYB、ZFP、bHLH、NAC、AP2/EREBP、bZIP、WRKY、CAMTA、EIN3、HSF、YABBYs、GATA、GRAS和TCP等轉錄因子家族參與響應低溫脅迫應答及調控相關功能表達基因(劉潮等,2017;周麗霞和曹紅星,2018;張健等,2019)。Pang等(2013)對冷馴化條件下的沙冬青進行轉錄組測序分析,結果鑒定出720個差異表達基因參與轉錄調控,其中數量最多的轉錄因子家族為ERF、bHLH、C2H2、HD-ZIP和WRKY。Wu等(2014)利用轉錄組測序技術分析沙冬青在低溫脅迫下差異表達基因的表達情況,結果發(fā)現,隸屬于AP2/EREBP、NAC、WRKY、bHLH、C2H2、C3H、bZIP、GRAS和TCP等轉錄因子家族的差異表達基因在低溫脅迫下顯著上調表達。Chen等(2014)使用Solexa測序技術對4 ℃和-4 ℃的胡楊葉片進行轉錄組測序分析,結果發(fā)現AP2/ERF、WRKY、NAC、C3H、bHLH和HD-ZIP等轉錄因子家族的基因差異表達。本研究發(fā)現,牛心樸子響應低溫脅迫的差異表達基因大多數隸屬于MYB、C3H、bHLH、AP2-EREBP、C2H2、NAC、bZIP、CCAAT和WRKY等轉錄因子家族,其與植物抗性密切相關。盡管與沙冬青、胡楊逆境脅迫轉錄組研究結果在轉錄因子家族數量和排序上存在差異,但均鑒定到相同類型的抗逆相關功能轉錄因子家族成員,說明不同荒漠植物在受到低溫脅迫時具有共同的響應調節(jié)機制,從而增強植物的耐受能力。
在提高作物抗性的分子研究中,與導入個別單一功能基因以提高某種抗性相比,導入轉錄因子基因提高作物抗性更有效,其原因是通過轉錄因子能促使多個功能基因發(fā)揮作用,從而實現供試植株性狀獲得綜合改良的效果。Pang等(2013)研究發(fā)現,逆境脅迫處理下,轉沙冬青AmDREB2C和AmNAC11基因的植株表現出較強的低溫、干旱和高溫耐受能力。這些強抗逆植物的相關研究初步探明轉錄因子在抗逆中的功能,為改良植物抗逆性狀提供了新基因和新思路。前人對牛心樸子的研究主要集中于單一功能基因鑒定,對具有調節(jié)功能的轉錄因子研究鮮見報道。馬曉聞(2016)對牛心樸子進行干旱轉錄組測序分析,并克隆CCAAT家族的CkNF-YB1基因,結果發(fā)現該基因參與植物對滲透脅迫的應答反應,其過表達不僅會增強植物的抗氧化能力,減輕膜損傷程度,還能提高光合速率、降低自身水分散失,致使植物對逆境具有更強的耐受能力。此外,過表達擬南芥AtNF-YB1(Nelson et al.,2007)、玉米ZmNF-YB2(Nelson et al.,2007)、胡楊PdNF-YB7(Han et al.,2013)、大豆GmNFYA3(Ni et al.,2013)及青扦NF-YB3(Zhang et al.,2015)等基因,均能提高轉基因植株對逆境的抗性。本研究從牛心樸子差異表達基因中鑒定出17個響應低溫脅迫CCAAT轉錄因子家族成員,表明可能還存在大量與CkNF-YB1抗逆功能相似的其他家族成員基因。可見,CCAAT轉錄因子家族成員具有多種抗逆功能,可從綜合抗逆性強的種質資源中發(fā)掘該家族抗逆基因。本研究為探究植物逆境脅迫調控機制提供了龐大的轉錄因子基因資源,隨著研究的深入,將鑒定出更多植物抗逆相關的轉錄因子,為進一步培育農作物耐冷新品種打下理論基礎。
4 結論
MYB、C3H、bHLH、AP2-EREBP、C2H2、NAC、bZIP、CCAAT和WRKY等轉錄因子家族成員在牛心樸子響應低溫脅迫時發(fā)揮主導作用,同時各家族轉錄因子間存在共表達性或協同作用,通過復雜的轉錄調控網絡發(fā)揮重要調節(jié)作用,進而提高牛心樸子對低溫脅迫的耐受性。
參考文獻:
陳翠云,趙昕,李新榮. 2012. 干旱脅迫下牛心樸子的滲透調節(jié)機制研究[J]. 中國沙漠,32(5):1275-1282. [Chen C Y,Zhao X,Li X R. 2012. Osmotic adjustment mechanism of Cynanchum komarovii under drought stress[J]. Journal of Desert Research,32(5):1275-1282.]
劉潮,韓利紅,宋培兵,王德琴. 王海波,唐利洲. 2017. 桑樹WRKY轉錄因子的全基因組鑒定及生物信息學分析[J]. 南方農業(yè)學報,48(9):1691-1699. [Liu C,Han L H,Song P B,Wang D Q,Wang H B,Tang L Z. 2017. Genome-wide identification and bioinformatics analysis for mulberry WRKY transcription factors[J]. Journal of Southern Agriculture,48(9):1691-1699.]
馬曉聞. 2016. 牛心樸子草逆境脅迫轉錄組分析與CkNF-YB1,CkEDS1的功能研究[D]. 北京:中國農業(yè)大學. [Ma X W. 2016. Transcriptome analysis of stress response in Cynanchum komarovii and functional study of the genes CkNF-YB1 and CkEDS1[D]. Beijing:China Agricultural University.]
滿玲娟,張樺,姚正培,宗興風,李志強. 2019. 梭梭同化枝及其葉苞狀蟲癭的轉錄組差異表達分析[J]. 南方農業(yè)學報,50(8):1657-1664. [Man L J,Zhang H,Yao Z P,Zong X F,Li Z Q. 2019. Differential expression analysis of transcriptome of assimilating branches and leafy-bracted galls of Haloxylon ammodendron[J]. Journal of Southern Agriculture,50(8):1657-1664.]
唐玉娟,黃國弟,羅世杏,周俊岸,莫永龍,李日旺,趙英,張宇,宋恩亮,寧琳. 2018. 芒果2個不同花芽分化時期轉錄組分析[J]. 南方農業(yè)學報,49(7):1257-1264. [Tang Y J,Huang G D,Luo S X,Zhou J A,Mo Y L,Li R W,Zhao Y,Zhang Y,Song E L,Ning L. 2018. Transcriptome of Mangifera indica L. in two different flower bud differentiation stages[J]. Journal of Southern Agriculture,49(7):1257-1264.]
王薇. 2009. 抗逆相關轉錄因子基因GmDREB3啟動子分析及兼抗白粉病、條銹病小麥分子標記檢測[D]. 烏魯木齊:新疆農業(yè)大學. [Wang W. 2009. Promoter analysis of stress-related transcription factor gene,GmDREB3 and characterization of wheat line resistant to powdery mildew and stripe rust by molecular markers[D]. Urumqi:Xinjiang Agricultural University.]
張健,唐露,冉啟凡,黃德均. 2019. 植物響應低溫脅迫轉錄組測序研究進展[J/OL]. 分子植物育種. http://kns.cnki.net/kcms/detail/46.1068.S.20190418.0935.023.html. [Zhang J,Tang L,Ran Q F,Huang D J. 2019. Advances in RNA sequencing in response to low temperature stress in plants[J/OL]. Molecular Plant Breeding. http://kns.cnki.net/kcms/detail/46.1068.S.20190418.0935.023.html.]
周麗霞,曹紅星. 2018. 低溫脅迫下油棕WRKY轉錄因子基因的表達特性分析[J]. 南方農業(yè)學報,49(8):1490-1497. [Zhou L X,Cao H X. 2018. Expression characteristics of WRKY transcription factor genes in oil plam under low temperature[J]. Journal of Southern Agriculture,49(8):1490-1497.]
朱玉賢,李毅,鄭曉峰,郭紅衛(wèi). 2013. 現代分子生物學[M]. 第4版. 北京:高等教育出版社. [Zhu Y X,Li Y,Zheng X F,Guo H W. 2013. Modern molecular biology[M]. The 4th Edition. Beijing:Higher Education Press.]
Anders S,Huber W. 2010. Differential expression analysis for sequence count data[J]. Genome Biology,11(10):R106-R110.
Chen J H,Tian Q Q,Pang T,Jiang L B,Wu R L,Xia X L,Yin W L. 2014. Deep-sequencing transcriptome analysis of low temperature perception in a desert tree,Populus euphratica[J]. BMC Genomics,15(1):1-15.
Dang Z H,Zheng L L,Wang J,Gao Z,Wu S B,Qi Z,Wang Y C. 2013. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna[J]. BMC Genomics,14(1):29.
Gong X X,Yan B Y,Hu J,Yang C P,Li Y J,Liu J P,Liao W B. 2018. Transcriptome profiling of rubber tree(Hevea brasiliensis) discovers candidate regulators of the cold stress response[J]. Genes & Genomics,40(11):1181-1197.
Grabherr M G,Haas B J,Yassour M,Levin J Z,Thompson D A,Amit I,Chen Z. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology,29(7):644-652.
Han X,Tang S,An Y,Zheng D C,Xia X L,Yin W L. 2013. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis[J]. Journal of Experimental Botany,64(14):4589-4601.
Long Y,Zhang J W,Tian X J,Wu S S,Zhang Q,Zhang J P,Dang Z H,Pei X W. 2014. De novo assembly of the de-sert tree Haloxylon ammodendron(CA Mey.) based on RNA-Seq data provides insight into drought response,gene discovery and marker identification[J]. BMC Genomics,15(1):1111-1122.
Moriya Y,Itoh M,Okuda S,Yoshizawa A C,Kanehisa M. 2007. KAAS:An automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research,35:182-185.
Nelson D E,Repetti P P,Adams T R,Creelman R A,Wu J,Warner D C,Anstrom D C,Bensen R J,Castiglioni P P,Donnarummo M G,Hinchey B S,Kumimoto R W,Maszle D R,Canales R D,Krolikowski K A,Dotson S B,Gutterson N,Ratcliffe O J,Heard J E. 2007. Plant nuclear factor Y(NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres[J]. Proceedings of the National Academy of Sciences of the United States of America,104(42):16450-16455.
Ni Z Y,Hu Z,Jiang Q Y,Zhang H. 2013. GmNFYA3,a target gene of miR169, is a positive regulator of plant tole-rance to drought stress[J]. Plant Molecular Biology,82(1-2):113-129.
Pang T,Ye C Y,Xia X L,Yin W L. 2013. De novo sequen-cing and transcriptome analysis of the desert shrub,Ammopiptanthus mongolicus,during cold acclimation using Illumina/Solexa[J]. BMC Genomics,14(1):488-503.
Tan H Q,Huang H T,Tie M M,Tang Y,Lai Y S,Li H X. 2016. Transcriptome profiling of two asparagus bean(Vigna unguiculata subsp. sesquipedalis) cultivars differing in chilling tolerance under cold stress[J]. PLoS One,11(3):e0151105.
Wang J M,Yang Y,Liu X H,Huang J,Wang Q,Gu J H,Lu Y M. 2014. Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium[J]. BMC Genomics,15(1):203.
Wang M,Zhang X N,Liu J H. 2015. Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata(L.) Raf.) in response to cold stress[J]. BMC Genomics,16(1):555.
Wang Q H,Li F G,Zhang X,Zhang Y A,Hou Y X,Zhang S R,Wu Z X. 2011. Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity[J]. PLoS One,6(2):e16930.
Wei S J,Du Z L,Gao F,Ke X,Li J X,Liu J X,Zhou Y J. 2015. Global transcriptome profiles of ‘Meyer Zoysiagrass in response to cold stress[J]. PLoS One,10(6):e0131153.
Wu Y Q,Wei W,Pang X Y,Wang X F,Zhang H L,Dong B,Xing Y P,Li X G,Wang M Y. 2014. Comparative transcriptome profiling of a desert evergreen shrub,Ammopiptanthus mongolicus,in response to drought and cold stresses[J]. BMC Genomics,15(1):671.
Xu W R,Li R M,Zhang N B,Ma F L,Jiao Y T,Wang Z P. 2014. Transcriptome profiling of Vitis amurensis,an extremely cold-tolerant Chinese wild Vitis species,reveals candidate genes and events that potentially connected to cold stress[J]. Plant Molecular Biology,86(4-5):527-541.
Yang Y W,Chen H C,Jen W F,Liu L Y,Chang M C. 2015. Comparative transcriptome analysis of shoots and roots of TNG67 and TCN1 rice seedlings under cold stress and following subsequent recovery:Insights into metabo-lic pathways,phytohormones,and transcription factors[J]. PLoS One,10(7):e0131391.
Zhang T,Zhang D,Liu Y J ,Luo C B,Zhou Y N,Zhang L Y. 2015. Overexpression of a NF-YB3 transcription factor from Picea wilsonii confers tolerance to salinity and drought stress in transformed Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,94:153-164.
Zhao Z G,Tan L L,Dang C Y,Zhang H,Wu Q B,An L Z. 2012. Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant,Chorispora bungeana[J]. BMC Plant Biology,12(1):222-222.
Zheng Y,Jiao C,Sun H,Rosli H G,Pombo M A,Zhang P,Zhao P X. 2016. iTAK:A program for genome-wide prediction and classification of plant transcription factors,transcriptional regulators,and protein kinases[J]. Molecular Plant,9(12):1667-1670.
(責任編輯 陳 燕)