劉玥 孫國強



摘要:傳統字符識別方法缺乏對污染車牌字符正確識別的能力,難以有效分辨易混淆字符等。針對這些弊端,采用MATLAB對真實車牌字符圖像進行處理,提出一種基于離散Hopfield神經網絡的改進算法(CLP-HNN),對車牌字母及數字進行識別。實驗結果表明,該算法對污染車牌字符識別率達93.3%,不僅可有效降低污染車牌錯誤識別的風險,而且可提高易混淆字符正確辨別率,對減少車牌誤識別引起的交通安全及秩序問題有較大參考價值。
關鍵字:污染車牌;字符識別;Hopfield神經網絡
DOI:10. 11907/rjdk. 192300 開放科學(資源服務)標識碼(OSID):
中圖分類號:TP301文獻標識碼:A 文章編號:1672-7800(2020)007-0032-04
Contaminated License Plate Character Recognition
Based on Discrete Hopfield Neural Network
LIU Yue, SUN Guo-qiang
(School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China)
Abstract: To improve the disadvantages of traditional character recognition methods which lack of ability of correctly recognizing contaminated license plate characters and effectively distinguishing the confusing characters, this paper utilizes MATLAB to process the real license plate character images and proposed the contaminated license plate-Hopfield neural network(CLP-HNN) which is a modified algorithm based on discrete Hopfield neural network to recognize the letters and numbers of contaminated license plate. Experiment results have shown that the recognition rate of contaminated license plate characters by CLP-HNN algorithm can reach 93.3%. It indicates the method proposed in this paper can not only effectively decrease the risk of misrecognition of contaminated license plates but also improve the correct discrimination rate of confusing characters, which is of great significance for reducing traffic safety problems caused by license plate recognition.
Key Words: contaminated license plate; characters recognition; Hopfield neural network
0 引言
智能交通系統(Intelligent Transportation System,ITS)的主要目標是在交通運輸管理系統中運用先進的信息、通信、計算機等技術使系統更加實時高效[1-2]。車牌識別技術作為城市智能交通中采集分析信息的重要方式,承擔了極其重要的任務[3-4]。常規車牌識別技術一般分為3個環節:定位[5]、分割[6]及識別[7],環環相扣。由于車牌字符正確識別率直接關系到車牌識別系統性能,所以成為完善智能交通管理系統的關鍵。
然而現實場景中車牌大多受到程度不一的污染,比如雨雪污泥沾染、人為惡意改動以及長期使用造成的質量退化等,這種車牌通常被稱為“污染車牌”,也是當前車牌識別難點之一。大多數車牌字符識別是針對正常車牌的,對污染字符缺少成熟的手段,無法確保結果準確、高效。因此,如何從這些殘缺、改動、模糊的字符中獲取正確完整的字符信息是識別的關鍵問題。鑒于字母及數字字符的人為污染可能性及對識別結果的影響程度均大于漢字字符,所以本文主要針對字母和數字進行研究。
目前常用車牌字符識別技術主要分為基于模板匹配的字符識別算法[8-9]、基于神經網絡的字符識別算法[10-12]、基于特征統計匹配法[13]等。文獻[14]提出基于數學形態學的模糊模板匹配方法,但是對質量差的字符識別效果欠佳;肖曉等[15]通過細化字符字庫,提出一種改進的模版匹配算法,在一定程度上克服了傳統模版匹配無法識別殘缺字符的缺點;Parekh等[16]提出一種新的識別算法,它以動態生成的車牌字符作為數據庫模板,對字符進行識別;高強[17]利用張量積小波分解高頻子圖具有方向性的特點,提取字符筆畫特征,得到反映字符結構和統計特征的聯和特征向量,從而實現字符;Masood等[18]詳細介紹了一種全自動車牌檢測識別系統,該系統核心技術由深度卷積神經網絡(CNN)等算法結合而成;Zhang等[19]使用自然圖像訓練Hopfield神經網絡,以實現自然圖像的有效壓縮和恢復;Soni等[20]提出一種使用云Hopfield神經網絡識別低分辨率灰度面部圖像的方法,該網絡可以處理變形面部,例如戴太陽鏡或口罩遮住部分面龐的人。
對于學習率[η],當訓練樣本為50、訓練次數為80時,學習率為0.9,識別率最高。如表1所示。
對于訓練次數,當學習率為0.9,訓練樣本數為50時,訓練次數為75和80時識別率均比較高,但識別率為80時,時延較小,如表2所示。所以本文取學習率為0.9,訓練次數為80。
2.3 算法評估
為驗證算法效果,對算法進行綜合對比:首先對改進的Hopfield神經網絡與傳統Hopfield進行縱向對比;然后,將本文算法與其它算法進行對比。
表3中的字符“0”極易認為改動為“C”、“G”、“Q”、“8”等,“8”易改動為“0”等,以這些字符為例展示識別結果更具有說服力。由表3實驗結果表明,傳統Hopfield神經網絡不能很好地識別污染車牌,改進的Hopfield神經網絡在識別結果上有明顯優勢,尤其對于相似字符本文方法識別率明顯更高。
不同算法在相同測試集下的實驗結果如表4所示。
仿真結果與實驗數據表明,對于測試集中的字符識別率而言,模板匹配算法是最不理想的,由于算法本身特性導致其對于易混淆字符的識別錯誤率較高;神經網絡算法對于該類污染字符的識別更加有效,而本文提出的CLP-HNN算法識別率最高,污染車牌識別效果最好。
3 結語
本文提出一種CLP-HNN算法實現對污染車牌字符的識別,避免了傳統離散Hopfield神經網絡存在的弊端。MATLAB模擬結果表明,CLP-HNN對污染車牌的缺失、改動及不完整信息有良好的容錯性,聯想記憶成功率也較其它算法更高,識別結果更加貼近準確字符,具有優越的污染車牌字符識別能力。本文實驗僅考慮了數字和字母字符,尚未驗證CLP-HNN算法是否符合漢字識別,因此將針對該方向繼續深入研究。
參考文獻:
[1] ZHU L, YU F R. Big data analytics in intelligent transportation systems: a survey [J].? IEEE Transactions on Intelligent Transportation Systems, 2018, 20(1):383-398.
[2] MAIMARIS A, PAPAGEORGIOU G. A review of intelligent transportation systems from a communications technology perspective[C].? Rio de Janeiro: IEEE International Conference on Intelligent Transportation Systems, 2016.
[3] LAN C, LI F, JIN Y. Research on the license plate recognition based on image processing [C].? Qinhuangdao: Fifth International Conference on Instrumentation & Measurement, 2015.
[4] MOLINA-MORENO M,GONZáLEZ-DíAZ I,DíAZ-DE-MARíA F. Efficient scale-adaptive license plate detection system[J]. IEEE Transactions on Intelligent Transportation Systems,2018,(99):1-13.
[5] RAJPUT H, SOM T, KAR S. An automated vehicle license plate recognition system[J]. Computer,2015(48):56-61.
[6] WANG N, ZHU X, ZHANG J. License plate segmentation and recognition of Chinese vehicle based on BPNN[C]. Wuxi: The 12th International Conference on Computational Intelligence and Security,2016.
[7] KHAN M A, SHARIF M, JAVED M Y. License number plate recognition system using entropy-based features selection approach with SVM [J].? IET Image Processing,2018,12(2):200-209.
[8] WANG C M, LIU J H. License plate recognition system [C].? Zhangjiajie: The 2th International Conference on Fuzzy Systems and Knowledge Discovery, 2015.
[9] PURANIC A,DEEPAK K,UMADEVI V. Vehicle number plate recognition system: a literature review and implementation using template matching [J].? International Journal of Computer Applications,2016, 134(1):12-16.
[10] YAO D,ZHU W,CHEN Y. Chinese license plate character recognition based on convolution neural network[C]. Jinan: 2017 Chinese Automation Congress, 2017.
[11] 董峻妃,鄭伯川,楊澤靜. 基于卷積神經網絡的車牌字符識別[J]. 計算機應用, 2017, 37(7):2014-2018.
[12] GUAN X Z, ZHANG L. License plate recognition based on improved BP neural network[J]. Techniques of Automation & Applications. 2015, 34(7):66-68.
[13] ZHAO D, SONG J Y, MOUSAVINEZHAD S H. Research on recognition algorithm of free handwritten numerals based on combined structural features [C]. SanDiego: IEEE International Conference on Electro-Information Technology, 2013.
[14] RUAN Z Y,SHEN Y J,LIU F L. An application of mathematical morphology based fuzzy set theory in license plate characters recognition [J].? Computer Engineering & Science,2016,38(3):562-568.
[15] 肖曉,陳杰,邵慧,等. 基于二次模版庫的車牌殘缺字符識別[J]. 安徽建筑大學學報,2017,25(4):33-37.
[16] PAREKH R, CHAKRABORTY S. An improved template matching algorithm for car license plate recognition[J].? International Journal of Computer Applications, 2015, 118(25):16-22.
[17] 高強,劉斌.? 基于提升小波的矩不變量車牌字符識別方法 [J].? 量子電子學報, 2016, 33(6):662-670.
[18] MASOOD S Z, SHU G. DEHGHAN A. License plate detection and recognition using deeply learned convolutional neural networks [J].? Computer Vision and Pattern Recognition, 2017.
[19] ZHANG J, ZHUANG T. A novel approach to design weight matrix of Hopfield network[C].? Shanghai: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006.
[20] SONI N, SINGH N,KAPOOR A. Face recognition using cloud Hopfield neural network[C]. Chennai:2016 International Conference on Wireless Communications,Signal Processing and Networking, 2016.
[21] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of National Academy of Sciences, 1982, 79(8): 2554-2558.
(責任編輯:江 艷)