999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NONCONFORMING FINITE ELEMENT METHOD FOR THE NONLINEAR KLEIN-GORDON EQUATION WITH MOVING GRIDS

2020-08-13 10:32:00ZHANGFeiranZHUYan
數學雜志 2020年4期

ZHANG Fei-ran,ZHU Yan

(School of Mathematics and Statistics,Shangqiu Normal University,Shangqiu 476000,China)

Abstract:In this paper,the nonlinear Klein-Gordon equation is studied.By using the Crank-Nicolson moving grid nonconforming finite element method,the traditional Riesz projection operator is not needed,interpolation techniques and special properties of the element are used to obtain the corresponding convergence analysis and optimal error estimation.

Keywords:Klein-Gordon equation;anisotropy;moving grids;nonconforming;Crank-Nicolson scheme

1 Introduction

Moving grids method has important applications in a variety of physical and engineering areas such as solid and fluid dynamics,combustion,heat transfer,material science,etc.This method is more efficient than the fixed grids and does not increase computing cost.We usually apply the finite element methods to the spatial domain,but choose difference methods with respect to the time variable for solving evolution partial differential equations.At the same time,different meshes of domain are used at different time level.

Several moving grids techniques were studied.Such as[1]considered the moving grids finite element method;[2]and[3]constructed and analyzed this method for the oil-water two-phase displacement problem;[4–8]analyzed the parabolic,Stokes problems,parabolic integro-differential equations,generalized nerve conductive equations and fractional diffusion equations with moving grids nonconforming finite element scheme respectively.But the analysis in the above studies relies on the regular condition or quasi-uniform assumption for meshes.

The Klein-Gordon equation is the most basic equation used in relativistic quantum mechanics and quantum field theory to describe a spin-zero particle.The equation is closely related to the physical problem and plays an important role in the study of soliton.In[9],authors studied the existence of a unique global solution under the condition that the parameter is small enough.In[10],a display difference scheme was established for one-dimensional Klein-Gordon equation of unbounded region,and the results of stability and convergence of the scheme were obtained by the energy analysis method.In[11],the numerical solution of one-dimensional Klein-Gordon equation was studied.However,the finite element method for the Klein-Gordon equation is rare.

In this paper,we mainly focus on the convergence theory,the finite element method of moving grids is introduced,and the Crank-Nicolson discrete scheme of the nonlinear Klein-Gordon equation is analyzed without requiring the subdivision to satisfy the regular hypothesis,and the corresponding optimal error estimation of the moving grid approach is derived.It is worth mentioning that,in the usual finite element method of moving meshes,it is necessary to use the Riesz projection to approximate the solution of the original problem,and this paper makes use of the particularity of the element structure,that is,u?Πuand the elements in the finite element space are orthogonal in the sense of energy mode,and the Riesz projection is used to simplify the proof process of the previous documents.

2 Element Construction

3 The Moving Grids Approximation of Crank-Nicolson Discretization Scheme

We consider the nonlinear Klein-Gordon equation

whereX=(x,y),α>0,γ>0,g(u)satisfies the Lipschitz continuous conditionon on the variableu,and has the second order bounded partial derivative.

Letut=Q,(3.1)is equivalent to the following question

The variational formulation for problem(3.2)is written as:

Then the approximation problem corresponding to(3.3)reads as:finduh,Qh∈Vh,?vh∈Vh,such that

In this section we apply the idea of moving grids to problem(3.4)and develop the Crank-Nicolson discretization scheme for anisotropic finite element.Let 0=t0

Now,we introduce the Crank-Nicolson discretization scheme of anisotropic finite element to determine the function valuesas follows

4 Error Estimates

The main error between the solutionu(X,t)and the approximation solutionuh(X,t)consists of three parts:the interpolation error with respect to the finite element method,the difference error with respect to the time,and the error of moving grids.

主站蜘蛛池模板: 中文字幕亚洲精品2页| 老司国产精品视频91| 成人免费黄色小视频| 91精品最新国内在线播放| 欧美日韩资源| 国产精品色婷婷在线观看| 天天综合色网| 亚洲电影天堂在线国语对白| 成人亚洲天堂| 亚洲αv毛片| 无码AV动漫| 日韩一区二区三免费高清| 中文字幕资源站| 99热国产这里只有精品9九 | 欧美日韩va| 久久女人网| 精品国产成人高清在线| 亚洲欧美不卡视频| 国产日韩欧美在线播放| 久久免费视频6| 国产成本人片免费a∨短片| 一级一毛片a级毛片| 综合久久五月天| 色综合天天视频在线观看| 丰满的少妇人妻无码区| 免费国产小视频在线观看| 国产永久在线观看| 色综合久久无码网| 久久a毛片| 亚洲国产日韩欧美在线| 久久久四虎成人永久免费网站| 极品国产在线| 国产手机在线观看| 午夜福利免费视频| 思思99思思久久最新精品| 国产福利小视频高清在线观看| 性欧美久久| 亚洲国产成人无码AV在线影院L | 成人自拍视频在线观看| a毛片在线免费观看| 中文字幕人妻无码系列第三区| 美女啪啪无遮挡| 国产在线自乱拍播放| 99热6这里只有精品| 国产97公开成人免费视频| 在线精品自拍| 国产乱子伦精品视频| 欧美va亚洲va香蕉在线| 久久久久亚洲AV成人网站软件| 欧美日韩精品一区二区在线线| 另类综合视频| 国产第一色| 激情乱人伦| 亚洲91精品视频| 亚洲成a人片| 国产区在线看| 亚洲中字无码AV电影在线观看| 手机成人午夜在线视频| 国产成人夜色91| 成人免费网站久久久| 国产一级毛片yw| 国产91麻豆免费观看| 日韩在线网址| 色综合天天娱乐综合网| 亚洲日韩精品无码专区97| 国产午夜无码专区喷水| 中文字幕首页系列人妻| 国产成人午夜福利免费无码r| 91成人在线免费观看| 日韩精品免费一线在线观看| 性欧美久久| 狠狠色噜噜狠狠狠狠奇米777| 免费无码又爽又黄又刺激网站 | 亚洲,国产,日韩,综合一区| 91视频青青草| 国产在线视频二区| 国产成人亚洲日韩欧美电影| 国产精品福利尤物youwu| 亚洲第一区在线| 激情乱人伦| 国产激爽大片高清在线观看| 在线观看欧美国产|