張平


摘 ?要:傅里葉變換在信號處理中起著至關重要的作用,而傅里葉變換的性質又是同學們學習的難點。該文詳細地研究了傅里葉變換的對偶性質,利用對偶性質、平移性質、微分性質和卷積定理得到了一些復雜信號的傅里葉變換,揭示了傅里葉變換各個性質之間的關系,這將使同學們更能靈活地掌握并運用傅里葉變換的各種性質進行信號處理,同時對信號與系統的學習提供技術支撐
關鍵詞:傅里葉變換 ?對偶性 ?頻域平移 ?卷積定理
中圖分類號:O172.2 ? 文獻標識碼:A 文章編號:1672-3791(2020)06(c)-0255-02
Abstract: Fourier transform plays an important role in signal processing, and the properties of Fourier transform are difficult for students to learn. In this paper, the dual properties of Fourier transform are studied in detail.By using the dual properties, translation properties, differential properties and convolution theorem,the ?Fourier transform of some complicated signals is obtained, and the relationship between various properties of Fourier transform is revealed. So that students can more flexibly grasp and use the various properties of Fourier transform for signal processing, and provide technical support for the study of signal and system.
Key Words: Fourier transform; Duality; Frequency domain translation; Convolution theorem
1 ?引言
傅里葉變換[1-6]是大學生學習的難點,靈活掌握傅里葉變換的性質至關重要,該文就此問題進行了深入探討,總結了一些典型例題,希望對《信號與系統》等課程的學習有所裨益。
2 ?傅里葉變換的性質應用
傅里葉變換與逆變換之間存在著對偶性,利用對偶性可以得到許多信號的傅里葉變換。
參考文獻
[1] 賈曉峰.微積分與數學模型(上冊)[M].3版.北京:高等教育出版社,2015:400-427.
[2] 同濟大學數學系.高等數學(下冊)[M].7版.北京:高等教育出版社,2014:307-327.
[3] 賈云濤.復變函數與積分變換[M].7版.北京:清華大學出版社,2018:47-67.
[4] 華中科技大學數學與統計學院.復變函數與積分變換[M].4版.北京:高等教育出版社,2013:183-212.
[5] 賈君霞.復變函數與積分變換[M].西安:西安電子科技大學出版社,2017.
[6] Nakhle H.Asmar.Partial Differential Equations with Fourier Series and Boundary Value Problems[M].2nd Section.Prentice Hall,2004.