唐勇 米末 金榮華 林靜容



摘 ?要: Suzuki交叉偶聯反應是一類典型的形成碳-碳單鍵的反應,是以金屬鈀(Pd)為催化劑,鹵代芳烴與有機硼酸化合物進行的交叉偶聯反應.相對于傳統僅用價廉易得的氯代芳烴化合物為反應原料的Suzuki交叉偶聯反應,負載型Pd催化劑有著催化高效、分離簡便、可重復使用等優點.簡述了不同載體負載的Pd催化劑對于氯代芳烴的Suzuki交叉偶聯反應的研究進展.
關鍵詞: 負載型鈀(Pd)催化劑; 氯代芳烴; Suzuki交叉偶聯
中圖分類號: TQ 032.41 ? ?文獻標志碼: A ? ?文章編號: 1000-5137(2020)04-0422-11
Abstract: The palladium(Pd)-catalyzed cross-coupling reaction between organic boricacids and aryl halides provides a powerful and general method for the formation of carbon-carbon bonds known as the Suzuki cross-coupling.It was found that with the cheap and commercially availablearyl chlorides as reactants,the supported Pd catalysts exhibited high efficiency,easy separation,and reusability.This review describes some research progresses of the supported Pd catalysts for Suzuki cross-coupling reaction of aryl chlorides.
Key words: supported palladium(Pd) catalyst; aryl chlorides; Suzuki cross-coupling
0 ?引 ?言
碳-碳偶聯反應在有機合成中占有重要的地位,其中Suzuki交叉偶聯反應是構建碳-碳單鍵最有效和最靈活的方法之一[1-2].1979年,MIYAURA等[3]報道了在鈀(Pd)催化劑條件下鹵代芳烴與苯硼酸的合成反應[3].Suzuki交叉偶聯反應通常是指鹵代芳烴與有機硼酸試劑進行的交叉偶聯,芳烴上的取代基通常是鹵素,也可以是三氟甲基磺酸基和甲基磺酸基等,有機硼試劑的優點是無毒,對空氣穩定而且易得,同時兼容反應物上共存的多種官能團,因此被廣泛應用于制藥、催化、高分子和先進材料等領域[4].Suzuki交叉偶聯反應的反應通式如下:
R_1-B〖(R)〗_2+R_2-XR_1-R_2+X-B〖(R)〗_2,
其中,R1:alkyl,allyl,alkenyl,alkynyl,aryl;R:alkyl,OH,O-alkyl;R2:alkenyl,aryl,alkyl;X:Cl,Br,I,OTf,OPO(OR)2(enol phosphate);base:Na2CO3,Ba(OH)2,K3PO4,Cs2CO3,K2CO3,KF,Bu4F,NaOH.
盡管具有合成簡易和高轉化率的特點,但Suzuki交叉偶聯反應仍因為使用昂貴的溴代和碘代芳烴而嚴重受限,從而無法在工業上廣泛使用[5].由于氯代芳烴具有廉價和易得等優點,在過去的十幾年中,對Suzuki交叉偶聯反應的研究一直集中在使用氯代芳烴作為偶聯底物[6].另一方面,由于氯代芳烴的C-Cl鍵能比較大,Pd作為催化劑不容易插入C-Cl之間進行氧化加成,這在一定程度上限制了氯代芳烴在Suzuki交叉偶聯反應的發展.在這一領域中,均相Pd催化劑已經取得了很大進展,均相催化劑具有分散性好、催化活性高、選擇性好等優點,但是存在著均相催化劑難以分離、回收等問題[7-9],在大規模有機合成中,會對環境和經濟造成破壞.非均相Pd催化劑因其易分離和可循環利用等優點,成為解決這一問題的有效方法[10].已知的非均相催化體系有負載的Pd配合物[11]、負載的Pd納米顆粒[12]、沒有負載的Pd納米顆粒[13]等.因此,研究并開發高效的負載型Pd催化劑用于氯代芳烴的Suzuki交叉偶聯反應至關重要,也受到越來越多研究人員的重視.本文作者擬對不同載體負載的Pd催化劑催化氯代芳烴的Suzuki交叉偶聯反應進行簡單綜述.
1 ?無機載體負載的Pd催化劑在氯代芳烴Suzuki交叉偶聯反應中的應用
1.1 含鎂材料負載的Pd催化劑
1.1.1 Mg-Al負載的催化劑LDH-Pd0
層狀二氫氧化物(LDH)在材料、陰離子交換劑以及催化劑上有許多用途[14],其以LDH為載體,不僅可以穩定納米Pd顆粒,還可以為Pd0提供足夠的電子密度,以促進氯代芳烴進行Suzuki偶聯反應[15-16].CHOUDARY等[17]發現將PdCl42-交換到用氯化物飽和的LDH上,可得到深棕色的LDH-PdII,然后用水合肼進行還原,得到對空氣穩定的黑色納米Pd催化劑LDH-Pd0粉末.用LDH-Pd0催化劑進行氯代芳烴和芳硼酸的Suzuki交叉偶聯反應,如圖1所示.
在LDH-Pd0催化的氯代芳烴的Suzuki交叉偶聯反應中,具有極性溶劑、帶給電子取代基的氯代芳烴和缺電子的芳硼酸有利于催化劑的反應活性,產物的收率為80%~90%.LDH-Pd0納米催化劑可循環使用5次,催化劑的反應活性和選擇性保持不變.
1.1.2 MgO負載的納米晶體催化劑NAP-Mg-Pd0
由于納米氧化鎂晶體(NAP-MgO)本身具有強堿性和高比表面積,所負載的Pd催化劑在反應中無需額外加入堿,就能表現出很高的催化活性.KANTAM等[18]通過納米MgO晶體對PdCl42-進行反離子穩定化,然后還原制得的NAP-Mg-Pd0催化劑在氯代芳烴的Suzuki偶聯反應中表現出優異的催化活性,可催化生成不對稱的聯苯,如圖2所示.
在NAP-Mg-Pd0催化的氯代芳烴的Suzuki交叉偶聯反應中,產物的收率達90%左右,帶吸電子基團的氯代芳烴和給電子基團的芳硼酸有利于催化劑的反應活性,該催化劑以平均85%的收率可循環使用4次.
1.2 介孔材料負載的Pd催化劑
1.2.1 中孔方鈉石和介孔萘乙酸(NaA)沸石負載的Pd催化劑
將Pd0納米顆粒或Pd2+負載在碳、沸石、介孔二氧化硅(SiO2)等多孔固體材料上的報道已有很多[19-25].CHOI等[26-28]通過將有機硅烷表面活性劑添加到常規的方鈉石和NaA沸石中,合成介孔方鈉石和介孔NaA沸石,然后在Pd2+水溶液中進行離子交換,設計了Pd2+交換的介孔方鈉石和NaA沸石[29],該催化劑具有很高的熱穩定性和催化活性,并且不需要加堿,用于氯代芳基的Suzuki交叉偶聯反應,如圖3所示.
在中孔Sodalite-Pd/NaA-Pd催化劑催化的氯代芳烴的Suzuki交叉偶聯反應中,使用體積小的氯代芳烴,產物的收率可達96%左右,使用體積較大的氯代芳烴,產物的收率也可達85%左右,催化劑可循環使用5次,催化反應的收率保持在85%左右.
1.2.2 中孔LTA沸石(MP-LTA)負載的Pd催化劑(Pd@MP-LTA)
LEE等[30-31]制備了Pd@MP-LTA催化劑用于氯代芳基的Suzuki交叉偶聯反應,如圖4所示.首先用2,4-戊二酮和3-氨基丙基三乙氧基硅烷反應生成烯弗堿,然后再與Pd2(μ-Cl2)Me2(PPh3)2作用形成含硅基的Pd配位化合物,最后將含硅基的Pd配合物水解沉積在中孔結構的LTA沸石上,得到Pd@MP-LTA催化劑.
所制備的Pd@MP-LTA催化劑用于氯代芳烴的Suzuki交叉偶聯反應中,可以在乙醇/水溶液中使用,催化反應活性受底物取代基的影響很小,也可以用氯代雜環化合物進行Suzuki交叉偶聯反應,產物的收率在89%~95%之間,催化劑可循環使用10次,未見失活.
1.3 磁性四氧化三鐵(Fe3O4)納米復合材料負載的Pd催化劑
1.3.1 磁性SiO2@Fe3O4納米顆粒負載的Pd@SiO2@Fe3O4催化劑
由于Fe3O4具有磁性,用Fe3O4作為載體的負載型催化劑可以通過外部永磁體與反應介質分離,磁性Fe3O4納米顆粒已成為非常具有應用前景的固載化載體[32].這避免了費時費力的分離步驟,并可實現連續化的催化反應.包裹有SiO2薄層的Fe3O4納米顆粒具有優異的特性,如不變的催化活性和穩定性[33].JIN等[34]通過將含三乙氧基硅基的Pd配位化合物水解聚合在SiO2@Fe3O4的表面上合成了Pd@SiO2@Fe3O4催化劑.
Pd@SiO2@Fe3O4催化劑可在水相中高效催化氯代芳烴的Suzuki交叉偶聯反應,如圖5所示.產物的收率在83%~93%之間.通常偶聯劑中含有氨基供電子體的話很難發生偶聯反應[35].但是,該催化劑在2-氯苯胺和3-氯苯胺的Suzuki交叉偶聯反應中,產物的收率可達82%~90%;在1-氯萘和9-氯蒽的偶聯反應中,收率高達92%~93%;位阻較大的底物2-氯-1,3-二甲基苯也能以71%~73%良好的收率進行偶聯反應.Pd@Fe3O4在循環使用10次以后,催化活性保持不變.
1.3.2 磁性Fe3O4@C(MFC)納米材料上負載的Pd/MFC催化劑
磁性可分離的納米催化劑已成為均相和非均相催化劑之間的橋梁[36].ZHU等[37]使用沉淀沉積方法將Pd納米顆粒固定在MFC載體上,制備了一種用碳包裹磁性Fe3O4的負載型Pd/MFC催化劑,用于氯代芳烴的Suzuki交叉偶聯反應,如圖6所示.該磁性納米材料既充當Pd納米顆粒的載體又充當穩定劑,防止了Pd粒子的團聚,提高了催化劑的重復使用性能[38-40].
Pd/MFC催化劑氯代芳烴的Suzuki交叉偶聯反應中,反應產物的收率最高可達95 %,催化劑可循環使用5次,催化活性沒有降低.
2 ?有機載體負載的Pd催化劑在氯代芳烴Suzuki交叉偶聯反應中的應用
2.1 聚苯胺納米纖維(PANI)負載的Pd/PANI催化劑
由于“半均相催化劑”的優勢[41],人們對金屬納米顆粒催化的興趣急劇增加.半均相催化將非均相催化的特性(可回收性和可循環性)與均相催化的特性(相對較低的催化劑負載量和良好的選擇性)結合在一起.聚苯胺(PA)作為一種新型的半均相催化載體,CHOUDARY等[42-43]對Pd納米粒子負載在PA上進行了研究.通常這些納米粒子是通過將Pd(II)鹽添加到PANI的水分散液中制備的[42].當界面聚合用于合成PANI時,會形成納米纖維[44].PANI納米纖維的高比表面積和孔隙率是制造金屬——PA納米催化劑的理想載體[45-46].利用這些特性,GALLON等[47]用硝酸Pd負載在PANI納米纖維上制備了Pd/PANI催化劑.KANTAM等[48]利用PA進一步合成了Pd/PANI,PA/Pd1,PA/Pd2,PA/Pd3,PA/Pd4,共5種催化劑.Pd/PANI催化劑對氯代芳烴的Suzuki交叉偶聯反應,如圖7所示.
在Pd/PANI催化的氯代芳烴的Suzuki交叉偶聯反應中,由于PANI可穩定水中的Pd納米顆粒,該催化反應可以在水相中進行,催化劑使用量非常少,這符合綠色化學的要求;同時偶聯反應產物的收率在88%~95 %之間,催化劑可循環使用10次,催化活性沒有降低,收率在90 %左右.
2.2 聚苯乙烯負載的Pd配合物Pd/PS催化劑
SCHWEIZER等[49]和INADA等[50-51]報道了利用叔丁基鋰、二氯苯基膦、可溶性Pd(PPh3)4等物質合成了叔丁基苯基膦甲基聚苯乙烯(PS)負載的Pd催化劑,如圖8所示.該催化劑用于代氯代芳烴的Suzuki交叉偶聯反應,如圖9所示.
在Pd/PS催化的氯代芳烴的Suzuki交叉偶聯反應中,偶聯反應產物的收率在78%~90%之間,催化劑可以用于體積較大的2,6-二取代、2,6,2-三取代的聯苯和氯代雜環化合物的交叉偶聯反應.催化劑可循環使用7次以上,催化活性未見降低.
2.3 氮(N)雜環卡賓主鏈有機金屬聚合物負載的Pd(NHC-Pd-MCOPs)催化劑
在Pd催化的Suzuki交叉偶聯反應中,用N-雜環卡賓(NHC)替代對空氣敏感的膦配體越來越受到關注[52].與傳統的叔膦配體相比,NHC配體具有低毒性、可調節的空間體積、拓撲結構和強供電子等特點,與金屬Pd結合牢固,催化劑穩定性好.KHORAMOV等[53]報道了NHC-MCOPs的制備方法, KARIMI等[54]在文獻[53]的基礎上,用Pd(OAc)2處理二咪唑鎓鹽溴化物,再負載在NHC-MCOPs載體上制備NHC-Pd-MCOPs的催化劑,用于氯代芳烴的Suzuki交叉偶聯反應,如圖10所示.
在NHC-Pd-MCOPs催化的氯代芳烴的Suzuki交叉偶聯反應中,催化反應可以在水相中進行,同時偶聯反應產物的收率在88%~94%之間,催化劑可循環使用6次以上,催化活性未見降低,收率在92%左右.
3 ?其他類型催化劑在氯代芳烴Suzuki交叉偶聯反應中的應用
3.1 N-二苯基膦基-2-氨基吡啶的PdCl2加合物(L1-PdCl2)催化劑
先前已廣泛報道了帶有P,N型,或者P,O型半不穩定配體的配合物的合成和催化活性,帶有大基團的P-和N-供體配體由于其穩定過渡金屬催化劑的能力而受到關注[55].XU等[56]利用P,N型雙齒配體N-苯基磷烷基甲基-2-氨基吡啶(L1)和PdCl2成功設計了L1-PdCl2催化劑,并將其用于氯代芳烴的Suzuki交叉偶聯反應中,如圖11所示.偶聯反應產物的收率在82%~98%之間,該催化體系催化效率更高和適用更多的底物[57-65].
3.2 在復雜硅材料上負載的Pd催化劑
3.2.1 SiO2負載的卡賓Pd配合物催化劑P
GURBUZ等[66]將富電子的氮雜環卡賓Pd配合物嫁接在硅材料的表面,制備出的負載Pd催化劑P應用于氯代芳烴的Suzuki交叉偶聯反應中,如圖12所示.以碳酸銫為堿,二惡烷為溶劑,反應收率大于85%,催化劑可循環使用4次,活性略有降低.
3.2.2 空殼結構的SiO2手性雙功能催化劑
SHU等[67]利用空殼結構的SiO2,將Pd中心固定在納米籠中,而將共價鍵固定的手性Ru中心固定在納米通道中,從而構建了手性雙功能催化劑Me@IPrPdBF4@mesityleneRuArDPEN@HSMSNs,如圖13所示.由于空殼SiO2中Pd-Ru活性位點的分離和協同作用[68],所制備的手性雙功能Pd-Ru/SiO2催化劑,實現了氯代苯乙酮的Suzuki交叉偶聯反應和不對稱氫轉移(ATH)一鍋法串聯反應,如圖14所示,得到了手性產物.
手性雙功能Me@IPrPdBF4@mesityleneRuArDPEN@HSMSNs催化劑在氯代苯乙酮的Suzuki交叉偶聯-ATH串聯反應中,能以高達97%收率和96%的對映體過量(ee)值得到手性聯芳醇.
4 ?展 ?望
上文簡述了一些不同類型載體負載的Pd催化劑在氯代芳烴Suzuki交叉偶聯反應中的研究進展.雖然氯代芳烴在Suzuki交叉偶聯反應中C-C鍵更難斷開,但卻是廉價易得的化合物,現已成為熱門的研究課題.由于介孔材料和有機聚合物的獨特優勢,它們作為負載的載體已經得到了很大的發展.展望未來并希望:1) 制備出更多具有功能化的負載型的Pd非均相催化劑,研究出具有更長壽命的催化劑,提高催化效率,降低催化劑的成本;2) 開發出更多高效環境友好的催化劑,可以在水相進行反應,減少對環境的污染;3) 研制出更多具有手性雙功能負載型金屬催化劑,進行一鍋法偶聯——ATH串聯反應,利用這些反應合成更多有用的天然有機化合物和藥物等,為社會和人類作更多的貢獻.
參考文獻:
[1] YIN L,LIEBSCHER J.Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts [J].Chemical Reviews,2007,107(1):133-173.
[2] RANJAN J,TEJAS P P,SIGMAN M S.Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners [J].Chemical Reviews,2011,111(3):1417-1492.
[3] MIYAURA N,YANAGI T,SUZUKI A.The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases [J].Synthetic Communications,1981,11(7):513-519.
[4] LIU S Y,LI H M,SHI M M,et al.Pd/C as a clean and effictive heterogeneous catalyst for C-C coupling toward highly pure semiconducting polymers [J].Macromolecules,2012,45(22):9004-9007.
[5] SPENCER A.Homogeneous palladium-catalysed arylation of activated alkenes with aryl chlorides [J].Journal of Organometallic Chemistry,1984,270(1):115-120.
[6] ANDERSON K W,BUCHWALD S L.General catalysts for the Suzuki-Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water [J].Angewandte Chemie International Edition,2005,44(38):6173-6177.
[7] MONGUCHI Y,FUJITA Y,HASHIMOTO S,et al.Palladium on carbon-catalyzed solvent-free and solid-phase hydrogenation and Suzuki-Miyaurareaction [J].Tetrahedron,2011,67(45):8628-8634.
[8] MOZHGAN N,NASRIN R,BARAHAMN M,et al.Palladium(II)-schiff base complex supported on multi-walled carbon nanotubes:aheterogeneous and reusable catalyst in the Suzuki-Miyaura and copper-free Sonogashira-Hagihara reactions [J].Journal of Organometallic Chemistry,2013,743:63-69.
[9] FORTEA-PERWZ F R,SCHLEGEL I,JULVE M,et al.Sustainable carbon-carbon bond formation catalyzed by new oxamate-containing palladium (II) complexes in ionic liquids [J].Journal of Organometallic Chemistry,2013,743:102-108.
[10] PHAN N T S,VAN DER SLUYS M,JONES C W.On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura couplings-homogeneous or heterogeneous catalysis:a critical review [J].Advanced Synthesis and Catalysis,2006,348(6):609-679.
[11] QIU H,SARKAR S M,LEE D H,et al.Highly effective silica gel-supported N-heterocyclic carbene-Pd catalyst for Suzuki-Miyaura coupling reaction [J].Green Chemistry,2008,10(1):37-40.
[12] PROCH S,MEI Y,VILLANUEVA J M R,et al.Suzuki‐and Heck‐type cross-coupling with palladium nanoparticles immobilized on spherical polyelectrolyte brushes [J].Advanced Synthesis and Catalysis,2008,350(3):493-500.
[13] SAWAI K,TATUMI R,NAKAHODO T,et al.Asymmetric Suzuki-Miyaura coupling reactions catalyzed by chiral palladium nanoparticles at room temperature [J].Angewandte Chemie International Edition,2008,47(36):6917-6919.
[14] PARKER L M,MILESTONE N B,NEWMAN R H.The use of hydrotalcite as an anion absorbent [J].Industrial & Engineering Chemistry Research,1995,34(4):1196-1202.
[15] CHOUDARY B M,CHOWDARI N S,JYOTHI K,et al.Catalytic asymmetric dihydroxylation of olefins with reusable OsO42- on ion-exchangers:the scope and reactivity using various cooxidants [J].Journal of the American Chemical Society,2002,124(19):5341-5349.
[16] SELS B,DE VOS D,BUNTINX M,et al.Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination [J].Nature,1999,400:855-857.
[17] CHOUDARY B M,MADHI S,CHOWDARI N S,et al.Layered double hydroxide supported nanopalladium catalyst for Heck-,Suzuki-,Sonogashira-,and Stille-type coupling reactions of chloroarenes [J].Journal of the American Chemical Society,2002,124(47):14127-14136.
[18] KANTAM M L,ROY S,ROY M,et al.Nanocrystalline magnesium oxide-stabilized palladium (0):an efficient and reusable catalyst for Suzuki and Stille cross-coupling of aryl halides [J].Advanced Synthesis and Catalysis,2005,347(15):2002-2008.
[19] DE VRIES J G.A unifying mechanism for all high-temperature Heck reactions:the role of palladium colloids and anionic species [J].Dalton Transactions,2006(3):421-429.
[20] REETZ M T,DE VRIES J G.Ligand-free Heck reactions using low Pd-loading [J].Chemical Communications,2004(14):1559-1563.
[21] KAWAMURA M,SATO K.Magnetic nanoparticle-supported crown ethers [J].Chemical Communications,2007(32):3404-3405.
[22] SCHMIDT A F,SMIRNOV V V.Simple method for enhancement of the ligand-free palladium catalyst activity in the Heck reaction with non-activated bromoarenes [J].Journal of Molecular Catalysis A:Chemical,2003,203(1/2):75-78.
[23] SCHMIDT A F,SMIRNOV V V.Concept of “magic” number clusters as a new approach to the interpretation of unusual kinetics of the Heck reaction with aryl bromides [J].Topics in Catalysis,2005,32(1/2):71-75.
[24] YIN L,IEBSCHER J.Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts [J].Chemical Reviews,2007,107(1):133-173.
[25] ROSSI L M,SILVA F P,VONO L L R,et al.Superparamagnetic nanoparticle-supported palladium:a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions [J].Green Chemistry,2007,9(4):379-385.
[26] CHOI M,CHO H S,SRIVASTAVA R,et al.Amphiphilicorganosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J].Nature Materials,2006,5(9):718-723.
[27] SHETTI V N,KIM J,SRIVASTAVA R,et al.Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures [J].Journal of Catalysis,2008,254(2):296-303.
[28] CHOI M,SRIVASTAVA R,RYOO R.Organosilane surfactant-directed synthesis of mesoporousaluminophosphates constructed with crystalline microporous frameworks [J].Chemical Communications,2006(42):4380-4382.
[29] CHOI M,LEE D H,NA K,et al.High catalytic activity of palladium (II)-exchanged mesoporoussodalite and NaA zeolite for bulky aryl coupling reactions:reusability under aerobic conditions [J].Angewandte Chemie International Edition,2009,48(20):3673-3676.
[30] LEE D H,JUNG J Y,LEE I M,et al.(β‐Oxoiminato)(phosphanyl) palladium complexes as highly active catalysts in Suzuki-Miyaura coupling reactions [J].European Journal of Organic Chemistry,2008,2008(2):356-360.
[31] LEE D H,CHOI M,YU B W,et al.Expanded heterogeneous Suzuki-Miyaura coupling reactions of aryl and heteroaryl chlorides under mild conditions [J].Advanced Synthesis and Catalysis,2009,351(17):2912-2920.
[32] CHOUHAN G,WANG D,ALPER H.Magnetic nanoparticle-supported proline as a recyclable and recoverable ligand for the CuI catalyzed arylation of nitrogen nucleophiles [J].Chemical Communications,2007(45):4809-4811.
[33] DENG Y D,QI D W,ZHAO D Y,et al.Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicul arly aligned mesoporous SiO2 shell for removal of microcystins [J].Journal of the American Chemical Society,2008,130(1):28-29.
[34] JIN M J,LEE D H.A practical heterogeneous catalyst for the Suzuki,Sonogashira,and Stille coupling reactions of unreactive aryl chlorides [J].Angewandte Chemie International Edition,2010,49(6):1119-1122.
[35] BILLINGSLEY K L,ANDERSON K W,BUCHWALD S L.A highly active catalyst for Suzuki-Miyauracross-coupling reactions of heteroaryl compounds [J].Angewandte Chemie International Edition,2006,45(21):3484-3488.
[36] SHYLESH S,SCHUNEMANN V,THIEL W R.Magnetically separable nanocatalysts:bridges between homogeneous and heterogeneous catalysis [J].Angewandte Chemie International Edition,2010,49(20):3428-3459.
[37] ZHU M,DIAO G.Magnetically recyclable Pd nanoparticles immobilized on magnetic Fe3O4@C nanocomposites:preparation,characterization,and their catalytic activity toward Suzuki and Heck coupling reactions [J].The Journal of Physical Chemistry C,2011,115(50):24743-24749.
[38] ZHU Y,SHEN J,ZHOU K,et al.Multifunctional magnetic composite microspheres with in situ growth Au nanoparticles:a highly efficient catalyst system [J].The Journal of Physical Chemistry C,2010,115(5):1614-1619.
[39] GE J,ZHANG Q,ZHANG T,et al.Core-satellite nanocomposite catalysts protected by a porous silica shell:controllable reactivity,high stability,and magnetic recyclability [J].Angewandte Chemie International Edition,2008,47(46):8924-8928.
[40] DENG Y,CAI Y,SUN Z,et al.Multifunctional mesoporous composite microspheres with well-designed nanostructure:a highly integrated catalyst system [J].Journal of the American Chemical Society,2010,132(24):8466-8473.
[41] ASTRUC D,LU F,ARANZAES J R.Nanoparticles as recyclable catalysts:the frontier between homogeneous and heterogeneous catalysis [J].Angewandte Chemie International Edition,2005,44(48):7852-7872.
[42] CHOUDARY B M,ROY M,ROY S,et al.Preparation,characterization and catalytic properties of polyaniline-supported metal complexes [J].Advanced Synthesis and Catalysis,2006,348(12/13):1734-1742.
[43] HOUDAYER A,SCHNEIIDER R,BILLUAD D,et al.Heck and Suzuki-Miyaura couplings catalyzed by nanosized palladium in polyaniline [J].Applied Organmetallic Chemistry,2005,19(12):1239-1248.
[44] HUANG J,KANER R B.A general chemical route to polyanilinenanofibers [J].Journal of the American Chemical Society,2004,126(3):851-855.
[45] HUANG J,KANER R B.The intrinsic nanofibrillar morphology of polyaniline [J].Chemical Communications,2006(4):367-376.
[46] WANG H L,LI W,JIA Q X,et al.Tailoring conducting polymer chemistry for the chemical deposition of metal particles and clusters [J].Chemistry of Materials,2007,19(3):520-525.
[47] GALLON B J,KOJIMA R W,KANER R B,et al.Palladium nanoparticles supported on polyaniline nanofibers as a semi‐heterogeneous catalyst in water [J].Angewandte Chemie International Edition,2007,46(38):7251-7254.
[48] KANTAM M L,ROY M,ROY S,et al.Polyaniline supported palladium catalyzed Suzuki-Miyaura cross-coupling of bromo-and chloroarenes in water [J].Tetrahedron,2007,63(33):8002-8009.
[49] SCHWEIZER S,BECHT J M,LE DRIAN C.Highly efficient reusable polymer-supported Pd catalysts of general use for the Suzuki reaction [J].Tetrahedron,2010,66(3):765-772.
[50] INADA K,MIYAURA N.The cross-coupling reaction of arylboronic acids with chloropyridines and electron-deficient chloroarenes catalyzed by a polymer-bound palladium complex [J].Tetrahedron,2000,56(44):8661-8664.
[51] MIYAURA N,SUZUKI A.Palladium-catalyzed cross-coupling reactions of organoboroncompounds [J].Chemical Reviews,1995,95(7):2457-2483.
[52] CORBET J P,MIGNANI G.Selected patented cross-coupling reaction technologies [J].Chemical Reviews,2006,106(7):2651-2710.
[53] KHORAMOV D M,BOYDSTON A J,BIELAWSKI C W.Synthesis and study of janusbis(carbene)s andtheir transition-metal complexes [J].Angewandte Chemie International Edition,2006,45(37):6186-6189.
[54] KARIMI B,AKHAVAN P F.Main-chain NHC-palladium polymer as a recyclable self-supported catalyst in the Suzuki-Miyaura coupling of aryl chlorides in water [J].Chemical Communications,2009(25):3750-3752.
[55] SAIKIA B,ALI A A,BORUAH P R,et al.Pd (OAc)2 and (DHQD)2 PHAL as a simple,efficient and recyclable/reusable catalyst system for Suzuki-Miyaura cross-coupling reactions in H2O at room temperature [J].New Journal of Chemistry,2015,39(4):2440-2443.
[56] XU L Y,LIU C Y,LIU S Y,et al.Suzuki-Miyaura cross-coupling reaction of aryl chlorides with aryl boronic acids catalyzed by a palladium dichloride adduct of N-diphenyl phosph anyl-2-aminopyridine [J].Tetrahedron,2017,73(22):3125-3132.
[57] LIU G,LIU C,HAN F,et al.Highly active palladium catalysts containing a 1,10-phenanthroline analogue N-heterocyclic carbene for room temperature Suzuki-Miyaura coupling reactions of aryl chlorides with arylboronic acids in aqueous media [J].Tetrahedron Letters,2017,58(8):726-731.
[58] MARCHENKO A,KOIDAN G,HURIEV A A,et al.Palladium(II) complexes with chelating N-phosphanyl acyclic diamino carbenes:synthesis,characterization and catalytic performance in Suzuki couplings [J].Dalton Transactions,2016,45(5):1967-1975.
[59] MARCHENKO A,KOIDAN G,HURIEVA A N,et al.Chelate palladium (II) complexes with saturated N-phosphanyl-N-heterocyclic carbene ligands:synthesis and catalysis [J].Organometallics,2016,35(5):762-770.
[60] BARAN T,MENTES A.Construction of new biopolymer (chitosan)-based pincer-type Pd (II) complex and its catalytic application in Suzuki cross coupling reactions [J].Journal of Molecular Structure,2017,1134:591-598.
[61] SCHAARSCHMIDT D,LANG H.P,O-Ferrocenes in Suzuki-Miyaura C,C couplings [J].ACS Catalysis,2011,1(4):411-416.
[62] MUTHUMARI S,RAMESH R.Highly efficient palladium (II) hydrazone based catalysts for the Suzuki coupling reaction in aqueous medium [J].RSC Advances,2016,6(57):52101-52112.
[63] BORAH M,BHATTACHARYYA P K,DAS P.Iron carbonyl complex containing bis[2-(diphenylphosphino) phenyl] ether enhancing efficiency in the palladium-catalyzed Suzuki-Miyaura reaction [J].Applied Organmetallic Chemistry,2012,26(3):130-134.
[64] NING J J,WANG J F,REN Z G,et al.Versatile palladium(II)-catalyzed Suzuki-Miyaura coupling in ethanol with a novel,stabilizing ligand [J].Tetrahedron,2015,71(23):4000-4006.
[65] HEJAZIFAR M,EARLE M,SEDDON K R,et al.Ionic liquid-based microemulsions in catalysis [J].The Journal of Organic Chemistry,2016,81(24):12332-12339.
[66] GURBUZ N,?ZDEMIR I,SECKIN T,et al.Surface modification of inorganic oxide particles with a carbene complex of palladium:a recyclable catalyst for the Suzuki reaction [J].Journal of Inorganic and Organometallic Polymers,2014,14(2):149-159.
[67] SHU X,JIN R,ZHAO Z,et al.An integrated immobilization strategy manipulates dual active centers to boost enantioselective tandem reactions [J].Chemical Communications,2018,54(94):13244-13247.
[68] SOLED S.Silica-supported catalysts get a new breath of life [J].Science,2015,350(6265):1171-1172.
(責任編輯:郁 ?慧,包震宇)