張勁波 曾德生 駱金維


摘 要: 在塊匹配約束環境下,對云計算的波束進行快速分解時,如果云計算受到多線程過程干擾,那末波束形成和稀疏分解效果不好。提出基于塊匹配約束云計算波束快速稀疏算法。進行云計算的網絡拓撲結構構建和云計算任務信息流的信號模型構造,提高信息預處理能力。采用塊匹配約束方法進行云計算負載均衡設計,通過分段塊匹配約束濾波,直接對分段后的云就按數據進行抗干擾設計,實現波束快速稀疏分解,提高了云計算的數據并行處理效率和能力。仿真結果表明,采用該算法實現云計算任務信息流的波束快速稀疏分解,提高云計算并行處理效率和能力。
關鍵詞: 云計算; 波束形成; 稀疏分解; 塊匹配約束
中圖分類號: TP393 ? ? ?文獻標志碼: A
Abstract: In the environment of block matching constraint, when the beam of cloud computing is decomposed quickly, and the cloud computing is interfered by multi-thread process, the effect of beamforming and sparse decomposition is not good. A fast algorithm based on block matching constraint for cloud computing is proposed. We construct signal model of network topology construction of cloud computing and cloud computing tasks of information flow, and improve the ability of information preprocessing. The block matching constraint method is used for cloud computing load balancing design. Through the sub block matching constraint filtering, the segmented cloud data are directly designed according to the anti-jamming design, and the fast sparse decomposition of beams is then realized. It improves the cloud computing data parallel processing efficiency and ability. The simulation results show that the algorithm can achieve the fast beam sparse decomposition of the cloud computing task information flow, and improve the efficiency and capability of parallel processing.
Key words: cloud computing; beam forming; sparse decomposition; block matching constraint
0 引言
云計算的波束快速稀疏分解算法是波束形成算法的擴展,通過波束稀疏分解,提高云計算數據的波束集成和并行處理能力,云計算的波束快速稀疏算法在移動網絡通信和移動數字信息處理中應用較為廣泛,研究云計算信息數據流的波束形成和稀疏分解,對提高云計算的并行處理能力具有重要意義,相關算法研究受到廣大專家的重視[1]。移動云計算的波束快速稀疏分解為用戶的多樣性選擇提供必要的框架支撐,通過移動云計算波束快速稀疏分解和波束形成,提高移動通信的數據并行處理能力[2]。
傳統的波束稀疏分解方法采用Monte Carlo熵權決策方……