吳磊 譚光輝 李杰章 覃媛鈺 張依裕 田琴



摘要:【目的】探討OCX-32基因對長順綠殼蛋雞蛋殼品質的遺傳效應,為長順綠殼蛋雞的保種選育及開發利用提供參考依據。【方法】以長順綠殼蛋雞為材料,采用PCR產物直接測序法篩選OCX-32基因SNP多態位點,實時熒光定量PCR檢測組織表達譜,運用SPSS 19.0廣義線性模型(GLM)分析SNP位點基因型或雙倍型與所測定性狀指標的相關性。【結果】在長順綠殼蛋雞OCX-32基因中檢測到3個SNPs位點,分別是位于內含子1上的g.22592323G>T及內含子3上的g.22597350T>C和g.22597555G>A。卡方(χ2)檢測結果發現,g.22597350T>C位點的基因型分布顯著偏離Hardy-Weinberg平衡(P<0.05,下同)。連鎖不平衡分析結果顯示,3個SNPs突變位點不存在強連鎖不平衡,共發現4種單倍型和8種雙倍型,單倍型H1和雙倍型H1H2頻率最高,分別為0.523和0.345。實時熒光定量PCR檢測結果顯示,OCX-32基因在長順綠殼蛋雞12個組織中存在不同程度的表達,表達量排序為腎臟>心臟>子宮>腹脂>小腸>脾臟>肝臟>腺胃>胸肌>胰腺>肺臟>肌胃。關聯分析結果顯示,g.22597350T>C位點CC基因型在蛋殼強度和蛋殼重2個品質指標上顯著高于CT基因型和TT基因型;雙倍型H4H4個體的蛋殼強度顯著高于其他7種雙倍型個體,蛋殼重顯著高于H2H4個體。【結論】OCX-32基因內含子變異能影響長順綠殼蛋雞蛋殼品質,檢測到的3個SNPs位點可作為雞蛋殼品質選擇的遺傳分子標記,其中突變位點g.22597350T>C的CC基因型和雙倍型H4H4是影響蛋殼強度和蛋殼重的關鍵基因型和雙倍型,有利改善蛋殼品質。
關鍵詞: 長順綠殼蛋雞;OCX-32基因;SNP;內含子;熒光定量PCR;蛋殼品質
中圖分類號: S831.91? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2020)08-1872-08
Effects of OCX-32 gene intron variation on eggshell quality
of Changshun green-eggshell laying hens
WU Lei, TAN Guang-hui, LI Jie-zhang, QIN Yuan-yu, ZHANG Yi-yu*, TIAN Qin
(College of Animal Science, Guizhou University/Key Laboratory of Genetics, Breeding and Reproduction of Plateau Mountain Animals, Ministry of Education/Key Laboratory of Animal Genetics, Breeding and Reproduction
of Guizhou Province, Guiyang? 550025, China)
Abstract:【Objective】To explore the genetic effects of OCX-32 gene on eggshell quality of Changshun green-shell laying hens,and to provide data support for breeding,development and utilization of Changshun green-eggshell laying hens. 【Method】Using Changshun green-eggshell laying hens as material,the SNP polymorphic site of OCX-32 gene was screened by direct sequencing of PCR products,and the tissue expression profile was detected by real-time fluorescence quantitative PCR. SPSS19.0 generalized linear model(GLM) was used to analyze the correlation between SNP locus genotype or diplotype and the tested traits. 【Result】Three SNPs loci were detected in OCX-32 gene of Changshun green-eggshell laying hens,which were located in g.22592323G>T mutation in intron 1,g.22597350T>C mutation in intron 3 and g.22597555G>A mutation in intron 3,respectively. Chi-square(χ2) test showed that the genotype distribution of g.22597350T>C mutation site significantly deviated from Hardy-Weinberg equilibrium(P<0.05, the same below). The results of linkage disequilibrium analysis showed that there was no strong linkage disequilibrium at the three SNPs mutation sites. Four haplotypes and eight diplotypes were found. Haplotype H1 and diplotype H1H2 had the highest frequencies of 0.523 and 0.345,respectively. The results of real-time fluorescence quantitative PCR showed that OCX-32 gene was expressed in different degrees in 12 tissues of Changshun green-eggshell laying hens,and the order of expression was kidney>heart>uterus>abdominal fat>small intestine>spleen>liver>glandular stomach>chest muscle>pancreas>lung>mu-scle stomach. The results of association analysis showed that the eggshell strength and eggshell weight of CC genotype at g.22597350T>C were significantly higher than those of CT and TT genotypes,and the eggshell strength of diploid H4H4 was significantly higher than that of the other seven diplotypes,and the eggshell weight of diploid H4H4 was significantly higher than that of H2H4. 【Conclusion】The intron variation of OCX-32 gene can affect the eggshell quality of Changshun green-eggshell laying hens. The three SNPs loci detected can be used as genetic markers for eggshell quality selection. The CC genotype and diplotype H4H4 of the variation site g.22597350T>C are the key genotypes and diplotypes affecting eggshell strength and eggshell weight,which are more beneficial to improve eggshell quality.
Key words: Changshun green-eggshell laying hens; OCX-32 gene; SNP; intron; fluorescence quantitative PCR;eggshell quality
Foundation item: Guizhou Science and Technology Cooperation Planning Project(Qiankehe LH〔2016〕7454)
0 引言
【研究意義】雞蛋由59%蛋清、31%蛋黃和10%蛋殼構成(Mann and Mann,2015)。蛋殼是卵生動物的卵外殼,是抵御外界物理損傷和微生物侵染的重要屏障,構成蛋殼主要有兩部分:一是由蛋白纖維所構成的基質,二是在蛋白質基質上堆積鈣質的結晶物(Eddin et al.,2019)。蛋殼品質是影響家禽生產力的重要性狀,直接影響蛋的保存、運輸和孵化,禽類蛋殼由蛋殼膜、鈣化層和角質層組成,其生物學功能是保護胚胎發育時免受物理沖擊而導致損傷,同時通過遍布整個鈣化層的孔隙進行氣體交換(Solomon,2010)。當前,蛋雞養殖集約化水平越來越高,蛋殼品質呈現的問題也越來越嚴重。蛋殼品質受遺傳、營養和飼養環境等多種因素影響,常規的育種手段已難以獲得較高的遺傳進展,而從分子遺傳角度探明雞蛋殼品質形成的作用機制是提高蛋殼質量的根本途徑。【前人研究進展】蛋殼基質蛋白是禽類蛋殼中重要的有機成分,可能是影響蛋殼品質關鍵因素之一(Brionne et al.,2014)。眾多蛋殼基質蛋白中,以Ovocalyxin-32(OCX-32)和OC-116蛋白含量最高,推測這2個蛋白基因是影響蛋殼性能的關鍵控制基因(Rodriguez-Navarro et al.,2015)。OCX-32基因由輸卵管末端的上皮細胞所分泌,在輸卵管的峽部和子宮區域高水平表達,最終沉積到蛋殼中,其表達量隨蛋殼形成時間延長而遞增,且具有終止蛋殼鈣化的功能(Gautron et al.,2001,2011;Miksik et al.,2007)。雞OCX-32基因定位于9號染色體上,包含5個內含子和6個外顯子,編碼275個氨基酸殘基,分子量為32 kD,蛋殼形成末期在子宮液中高水平表達,是雞蛋防御外界微生物侵襲的第一道屏障(Kawasaki and Weiss,2010;Hincke et al.,2012)。肖俊峰等(2012)報道,OCX-32基因表達量與蛋殼質量呈反比。劉亞平和馬美湖(2015)研究表明,OCX-32基因在子宮部和輸卵管峽部中的表達量最高。張麗萍(2016)研究發現,OCX-32基因第4內含子的變異位點G6566A與靈昆雞蛋殼蛋白高度呈顯著相關,推測OCX-32基因內含子變異與靈昆雞的蛋殼品質密切相關。夏佳豪(2018)研究發現,OCX-32基因的第4內含子G6612A和第6外顯子G7158A變異位點分別與30周齡蛋殼比例、蛋殼厚度、蛋白高度和蛋白比例,以及50周齡蛋殼厚度和蛋白高度顯著相關,得出OCX-32基因SNP位點對汶上蘆花雞的蛋品質性狀有顯著影響。【本研究切入點】目前,國內外有關OCX-32基因在雞蛋殼品質方面研究相對較少,有待進一步證實OCX-32基因與蛋殼性狀的相關性。【擬解決的關鍵問題】以產蛋高峰期的長順綠殼蛋雞為研究對象,采用PCR產物直接測序法篩選其SNP位點,以實時熒光定量PCR檢測組織表達譜,分析其遺傳特異性,并計算單倍型、雙倍型與蛋殼品質的關聯性,探討OCX-32基因突變與雞蛋殼品質的關系,為長順綠殼蛋雞的保種選育和開發利用提供參考依據。
1 材料與方法
1. 1 試驗材料
隨機選擇飼養于貴州大學動物科學學院實驗農場的同日出雛、健康無病、同等管理條件下的45周齡長順綠殼蛋雞200羽,逐一記錄產蛋信息,根據《家禽生產學》(楊寧,2010)中蛋的構造和品質測定方法測定蛋形指數、蛋殼重、蛋殼強度、蛋重和蛋殼厚度等5個指標。每羽雞翅靜脈采血0.2~0.5 mL, -20 ℃保存備用。屠宰10羽,無菌采集子宮、心臟和肝臟等12個組織,-80 ℃保存備用。
1. 2 基因組DNA和總RNA提取及cDNA合成
按照血液/組織/細胞基因組提取試劑盒(DP304)操作說明提取血液DNA,以1.2%瓊脂糖凝膠電泳和NANODROP 2000 DNA濃度測定儀(美國Thermo Scientific公司)聯合評估提取質量,稀釋成100 ng/μL后保存備用。采用常規TRIzol提取方法對每個個體的各組織樣品進行總RNA提取,檢測其濃度后稀釋成100 ng/μL。按照2×T5 Fast qPCR Mix(SYBR Green I) Master Mix操作說明反轉錄合成cDNA。
1. 3 引物設計
根據雞OCX-32基因序列(GenBank登錄號NC-006096),利用Primer 3.0設計3對多態引物S1(外顯子1和內含子1)、S2(外顯子2和內含子2)和S3(外顯子3和內含子3),以及1對表達引物OE和1對內參引物β-Actin,引物序列信息見表1。
1. 4 長順綠殼蛋雞OCX-32基因表達檢測
采用常規PCR檢測長順綠殼蛋雞OCX-32基因和β-Actin基因表達引物的特異性,反應體系10.0 μL:RNase-Free Water 3.5 μL,2×Taq PCR Master Mix 5.0 μL,10 pmol/μL上、下游引物各0.5 μL,500 ng/μL cDNA模板0.5 μL。擴增程序:95 ℃預變性5 min;95 ℃ 30 s,60 ℃ 30 s,72 ℃ 45 s,進行35個循環;72 ℃延伸5 min。PCR產物采用1.3%瓊脂糖凝膠電泳進行檢測。
以β-Actin基因作內參對照,實時熒光定量PCR檢測長順綠殼蛋雞OCX-32基因在各組織中的表達情況。實時熒光定量PCR反應體系10.0 μL:2×Ts Fast qPCR Mix 5.0 μL,500 ng/μL cDNA模板0.5 μL,10 pmol/μL上、下游引物各0.5 μL,ddH2O補足至10.0 μL。每個樣品設3個重復。擴增程序:95 ℃預變性10 min;95 ℃ 15 s,60 ℃ 45 s,進行39個循環。
1. 5 長順綠殼蛋雞OCX-32基因多態性檢測
對長順綠殼蛋雞OCX-32基因多態引物進行PCR擴增,反應體系20.0 μL:RNase-Free Water 7.0 μL,2×Taq PCR Master Mix 10.0 μL,10.0 pmol/μL上、下游引物各1.0 μL,100 ng/μL DNA 1.0 μL。擴增程序:94 ℃預變性6 min;94 ℃ 45 s,退火(表1)45 s,72 ℃ 50 s,進行35個循環;72 ℃延伸6 min。電泳檢測后選取條帶明亮的PCR產物送至昆泰銳(武漢)生物技術有限責任公司進行測序。
1. 6 統計分析
采用2-△△Ct法計算OCX-32基因在長順綠殼蛋雞各組織中的相對表達量。運用SHEsis(http://analysis.bio-x.cn/)計算SNP位點的等位基因頻率、基因型頻率、基因型分布卡方值(χ2)、單倍型頻率及連鎖不平衡的D'和γ2;參照Nei和Roychoudhury(1974)、Botstein等(1980)的方法計算有效等位基因數(Ne)、雜合度(He)和多態信息含量(PIC);運用SPSS 19.0中的廣義線性模型(GLM)分析SNP位點基因型或雙倍型與所測性狀指標的相關性,模型為Y=μ+G+e,其中Y為性狀觀測值,μ為群體均值,G為基因型效應或雙倍型效應,e為隨機殘差;采用最小顯著性差異法(LSD)進行多重比較。
2 結果與分析
2. 1 長順綠殼蛋雞OCX-32基因SNP位點鑒定結果
通過生物軟件進行序列比對,結合測序峰圖篩選SNP位點,結果在長順綠殼蛋雞OCX-32基因中共檢測到3個新的SNPs位點:位于內含子1上的g.22592323G>T突變能產生2種基因型GG和GT;位于內含子3上的g.22597350T>C突變和g.22597555G>A突變則均產生3種基因型,序列峰見圖1。
2. 2 長順綠殼蛋雞OCX-32基因SNP位點遺傳特性
對長順綠殼蛋雞OCX-32基因3個SNPs位點進行遺傳特性分析,結果見表2。由表2可知,長順綠殼蛋雞OCX-32基因g.22592323G>T位點的G等位基因和GG基因型分別為優勢等位基因和優勢基因型,對應的頻率為0.910和0.820,呈低度多態性;g.22597350T>C位點的T等位基因和TT基因型分別為優勢等位基因和優勢基因型,對應的頻率為0.923和0.865,呈低度多態性;g.22597555G>A位點的G等位基因和GG基因型分別為優勢等位基因和優勢基因型,對應的頻率為0.690和0.470,呈中度多態性。χ2檢測結果表明,g.22597350T>C位點的基因型分布顯著偏離Hardy-Weinberg平衡(P<0.05,下同),而g.22592323G>T和g.22597555G>A位點尚未偏離Hardy-Weinberg平衡(P>0.05,下同)。
2. 3 長順綠殼蛋雞OCX-32基因SNP位點的連鎖不平衡、單倍型及雙倍型分析結果
對長順綠殼蛋雞OCX-32基因3個SNPs位點(g.22592323G>T、g.22597350T>C和g.22597555G>A)進行連鎖不平衡分析,結果(表3)顯示3個SNPs位點間的D'均小于0.800,γ2小于0.330。根據Ardlie等(2002)、Slatkin(2008)的報道,當|D'|>0.800和γ2>0.330時認為SNP位點間存在強連鎖不平衡,說明本研究發現的3個SNPs位點間不存在強連鎖不平衡。
對長順綠殼蛋雞OCX-32基因3個SNPs位點進行單倍型和雙倍型分析,結果(表4)顯示,在長順綠殼蛋雞OCX-32基因中,g.22592323G>T、g.22597350T>C和g.22597555G>A位點存在4種單倍型[H1(GTG)、H2(GTA)、H3(TTG)和H4(GCG)],頻率分別為0.523、0.310、0.090和0.077;共檢測到8種雙倍型,其中H1H2(GGTTAG)頻率最高,為0.345,其次是H1H1(GGTTGG),頻率為0.250,而H4H4(GGCCGG)頻率最低,為0.020。
2. 4 長順綠殼蛋雞OCX-32基因實時熒光定量PCR檢測結果
OCX-32基因在長順綠殼蛋雞組織中的相對表達量測定結果(圖2)顯示,OCX-32基因在長順綠殼蛋雞12個組織中均有不同程度的表達。其中,在腎臟、心臟和子宮呈高度特異表達,顯著高于在其他組織的相對表達量;在腹脂、小腸、肝臟和脾臟呈中度表達,顯著高于在腺胃、胸肌、胰腺、肌胃和肺臟中的相對表達量。OCX-32基因在長順綠殼蛋雞各組織中的相對表達量排序依次為腎臟>心臟>子宮>腹脂>小腸>脾臟>肝臟>腺胃>胸肌>胰腺>肺臟>肌胃。
2. 5 OCX-32基因SNP位點與長順綠殼蛋雞蛋殼品質的關聯分析結果
長順綠殼蛋雞蛋殼品質測定結果見表5。對長順綠殼蛋雞OCX-32基因3個SNPs位點g.22592323G>T、g.22597350T>C和g.22597555G>A進行蛋殼品質的關聯分析,結果見表6和表7。由表6可知,g.22597350T>C位點CC基因型在蛋殼強度和蛋殼重2個品質指標上顯著高于CT基因型和TT基因型。由表7可知,3個SNPs位點聯合產生的雙倍型對蛋殼品質指標蛋殼強度和蛋殼重的影響達顯著水平,其中雙倍型H4H4個體的蛋殼強度顯著高于其他7種雙倍型個體,蛋殼重顯著高于H2H4個體,其余雙倍型個體的各指標間差異均未達顯著水平。
夏佳豪. 2018. 汶上蘆花雞蛋品質及其候選基因遺傳效應分析[D]. 泰安:山東農業大學. [Xia J H. 2018. Analyses on charicteristics of egg quality and genetic effects of its candidate genes in Wenshang barred chicken[D]. Taian:Shandong Agricultural University.]
肖俊峰,武書庚,張海軍,岳洪源,齊廣海. 2012. 四種殼基質蛋白研究進展[J]. 中國家禽,34(9):44-47. [Xiao J F,Wu S G,Zhang H J,Yue H Y,Qi G H. 2012. Search on four shell matrix proteins[J]. Chinese Poultry,34(9):44-47.]
楊寧. 2010. 家禽生產學[M]. 北京:中國農業出版社. [Yang N. 2010. Poultry production[M]. Beijing:China Agriculture Press.]
楊智青,陳應江,金崇富,丁海榮,時凱,陳長寬. 2013. 防護林散養草雞不同產蛋期蛋形、蛋殼指數比較[J]. 畜牧獸醫雜志,32(6):12-14. [Yang Z Q,Chen Y J,Jin C F,Ding H R,Shi K,Chen C K. 2013. Comparative research on egg shape and eggshell index of different laying period in shelterbelt[J]. Journal of Animal Science and Veterinary Medicine,32(6):12-14.]
葉幼榮,孫杰,張璐,趙宗勝. 2015. 蛋雞不同產蛋期生殖器官中OC17,OC116和OCX32 mRNA相對定量研究[J]. 中國獸醫學報,35(9):1518-1525. [Ye Y R,Sun J,Zhang L,Zhao Z S. 2015. Relative quantification of OC17,OC116 and OCX32 mRNA in reproductive organs of hens in different laying periods[J]. Chinese Journal of Veterinary Science,35(9):1518-1525.]
張麗萍,曾濤,盧立志,劉均,周樹和,林興欽,田勇. 2015. 靈昆雞視黃醇結合蛋白(CRBP4)和蛋殼基質蛋白(OCX-32)基因多態性與產蛋性狀的相關性研究[J]. 農業生物技術學報,23(10):1343-1349. [Zhang L P,Zeng T,Lu L Z,Liu J,Zhou S H,Lin X Q,Tian Y. 2015. Correlation analysis of single nucleotide polymorphisms of Cellular retionol-binding protein 4(CRBP4) and Ovocalyxin-32(OCX-32) genes with egg production traits in Lingkun chicken(Gallus gallus)[J]. Journal of Agricultural Biotechnology,23(10):1343-1349.]
張麗萍. 2016. 靈昆雞CRBP4、OCX-32、VLDLR和CTSD基因與產蛋性狀的關聯分析[D]. 金華:浙江師范大學. [Zhang L P. 2016. Correlation analysis between CRBP4,OCX-32,VLDLR and CTSD genes and egg production traits in Lingkun chicken[D]. Jinhua:Zhejiang Normal University.]
張躍博,蒲蕾,張金山,顏華,王立剛,侯欣華,劉欣,高紅梅,王立賢,張龍超. 2018. 杜洛克豬HLCS基因組織表達分析及其編碼區多態性與剩余采食量的關聯[J]. 畜牧獸醫學報,49(6):1108-1115. [Zhang Y B,Pu L,Zhang J S,Yan H,Wang L G,Hou X H,Liu X,Gao H M,Wang L X,Zhang L C. 2018. Tissue expression profiles of HLCS gene and its association with residual feed intake in Duroc[J]. Acta Veterinaria Et Zootechnica Sinica, 49(6):1108-1115.]
Ardlie K G,Kruglyak L,Seielstad M. 2002. Patterns of linka-ge disequilibrium in the human genome[J]. Nature Reviews Genetics,3(4):299-309.
Botstein D,White R L,Skolnick M,Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,32(3):314-331.
Brionne A,Nys Y,Hennequet-Antier C,Gautron J. 2014. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process[J]. BMC Genomics,15(1):220-223.
Dunn I C,Joseph N T,Bain M,Edmond A,Wilson P W,Milona P,Nys Y,Gautron J,Schmutz M,Preisinger R,Waddington D. 2008. Polymorphisms in eggshell organic matrix genes are associated with eggshell quality measurement in pedigree Rhode Island Red hens[J]. Animal Genetics,40(1):110-114.
Eddin A S,Ibrahim S A,Tahergorabi R. 2019. Egg quality and safety with an overview of edible coating application for egg preservation[J]. Food Chemistry,296(1):29-39.
Flint-Garcia S A,Thornsberry J M,Buckler E S. 2003. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology,54:357-374.
Fulton J E,Soller M,Lund A R,Arango J,Lipkin E. 2012. Variation in the ovocalyxin-32 gene in commercial egg-laying chickens and its relationship with egg production and egg quality traits[J]. Animal Genetics,43(S1):102-113.
Gautron J,Hincke M T,Mann K,Panheleux M,Bain M,Mc-Kee M D,Solomon S E,Nys Y. 2001. Ovocalyxin-32,a novel chicken eggshell matrix protein. Isolatton,amino acid sequencing,cloning,and immunocytochemical loca-lization[J]. Journal of Biological Chemistry,276(42):39243-39252.
Gautron J,Rehault-Godbert S,Nys Y,Mann P G,Righetti G. 2011. Use of high-throughput technology to identify new egg components[J]. Improving the Safety and Quality of Eggs and Egg Products,3(1):133-150.
Hincke M T,Nys Y,Gautron J,Mann K,Rodriguez-Navarro A B,McKee M D. 2012. The eggshell:Structure,composition and mineralization[J]. Frontiers in Biocience(Landmark Edition),17(1):1266-1280.
Kawasaki K,Weiss K M. 2010. Evolutionary genetics of vertebrate tissue mineralization:The origin and evolution of the secretory calcium-binding phosphoprotein family[J].Journal of Experimental Zoology. Part B:Molecular and Developmental Evolution, 306(3):295-316.
Mann K,Mann M. 2015. Proteomic analysis of quail calcified eggshell matrix:A comparison to chicken and turkey eggshell proteomes[J]. Proteome Science,13(1):22-25.
Miksik I,Eckhardt A,Sedláková P,Mikulikova K. 2007. Proteins of insoluble matrix of avian(Gallus gallus) eggshell[J]. Connect Tissue Research,48(1):1-8.
Nei M,Roychoudhury A. 1974. Sampling variances of heterozygosity and genetic distance[J]. Genetics,76(2):379-390.
Rodriguez-Navarro A B,Marie P,Nys Y,Hincke M T,Gautron J. 2015. Amorphous calcium carbonate controls avian eggshell mineralization:A new paradigm for understan-ding rapid eggshell calcification[J]. Journal of Structural Biology,190(3):291-303.
Slatkin M. 2008. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future[J]. Nature Reviews Genetics,9(6):477-485.
Solomon S E. 2010. The eggshell:strength,structure and function[J]. British Poultry Science,51(1):52-59.
Takahashi H,Yang D,Sasaki O,Furukawa T,Nirasawa K. 2010. Mapping of quantitative trait loci affecting eggshell quality on chromosome 9 in an F2 intercross between two chicken lines divergently selected for eggshell strength[J]. Animal Genetics,40(5):779-782.
Tuiskula-Haavisto M,Honkatukia M,Dunn I C,Bain M M,de Koning D J,Preisinger R,Schmutz M,Arango J,Fischer D, Vilkki J. 2018. Validated quantitative trait loci for eggshell quality in experimental and commercial la-ying hens[J]. Animal Genetics,49(4):1247-1464.
van Mourik S,Alders B P G J,Helderman F,van de Ven L J F,Groot Koerkamp P W. 2016. Predicting hairline fractures in eggs of mature hens[J]. Poultry Science,96(6):1956-1962.
Xing J,Wellman-Labadie O,Gautron J,Hincke M T. 2007. Recombinant eggshell ovocalyxin-32:Expression,purification and biological activity of the glutathione S-transferase fusion protein[J]. Comparative Biochemistry and Physiology. Part B:Biochemistry and Molecular Biology,147(2):172-177.
(責任編輯 羅 麗)
收稿日期:2019-09-11
基金項目:貴州省科技合作計劃項目(黔科合LH字〔2016〕7454號)
作者簡介:*為通訊作者,張依裕(1976-),副教授,主要從事動物遺傳資源保護與利用研究工作,E-mail:zyy8yyc@163.com。吳磊(1993-),研究方向為畜牧養殖,E-mail:1475715385@qq.com