樊嘉琦 沈松霖 呂媛媛
(西京學院陜西省混凝土結構安全與耐久性重點實驗室,陜西 西安710123)
隧道工程問題在我國極具現實意義,隨著我國經濟的快速發展,我國山區建設的公路隧道和鐵路隧道越來越多。隧道的開挖不可避免的會改變土體的原始形態,在隧道開挖過程中引起土體的擾動,從而引起土體的變形,改變了土體的應力分布,并導致了隧道周圍塑性區的變化以及隧道周圍地表的沉降。由于地表發生沉降現象,地面上的建筑物及其基礎將會產生附加內力和變形,這會對既有建筑產生負面影響。在小凈距雙洞隧道工程施工過程中,兩條隧道間相互獨立的,又相互聯系的,小凈距雙洞隧道在施工過程中難度高于普通雙線獨立隧道。隧道開挖前后準確的確定土體的應力狀態和塑性區,將為隧道開挖過程以及隧道的支護等提供了必要的支持。
用于地下工程開挖數值仿真的方法主要是有限元單元法、離散單元法、有限差分法等。用于模擬仿真和分析隧道開挖過程的軟件主要有ANSYS、ABAQUS、COMSOL、FLAC、ADINA 等。近年來,采用有限元仿真分析隧道開挖越來越多。
近年來大量國內學者外在隧道開挖數值研究方面,進行了大量研究工作[1-6]。邵羽等[7]使用ABAQUS 有限元軟件仿真分析,基于地層損失率的位移有限元方法,對軟土地基中樁基兩側不同埋深深度的雙隧道研究不同開挖順序對鄰近樁基的影響。丁銳等[8]結合沿海軟土地區淺埋暗挖隧道的建設,利用有限元軟件進行數值非線性局部開挖模擬,分析了隧道開挖過程中的變形情況。
首先仿真分析無隧道開挖時的初始地應力,有現場測量方法和計算方法可以確定初始地應力的值。本次將Drucker-Prager模型用于本構關系,計算確定初始地應力。
在隧道開挖后的仿真分析中,初始地應變是第一步計算出來的數值。本構關系使用Drucker-Prager 模型。開挖后的幾何模型為去掉兩條隧道后的土體。
仿真計算后,在COMSOL 中得出隧道開挖后的應力云圖、地表沉降曲線和塑性區示意圖,與未開挖時的土體進行對比。
在如圖1 所示的的自由土體中開挖一組小凈距雙隧道。土體高50m,寬85m,第一個隧道中心距土體下端18m,距土體左端40m,另一個隧道中心距土體下端30m,距土體左端55m,兩條隧道的半徑均為6m。土體的下邊界設置為固定邊界,土體的左右邊界設置成輥軸邊界。隧道開挖后的圓柱面和上邊界均為自由面。本次研究的問題屬于平面應變問題。

圖1 土體中雙隧道示意圖
仿真計算分兩個步驟進行。首先模擬并計算出隧道開挖前土體的初始地應力,即由于其自重的作用而產生的應力狀態。然后模擬隧道開挖后土體的彈塑性力學行為。此時,第一步中獲得的應力場是分析第二步中的初始值。使用Drucker-Prager土體塑性材料模型,并且符合Mohr-Coulomb 準則。土體的力學參數為:彈性模量為12MPa,泊松比為0.495,密度為2000kg/m3,內聚力130kPa,內摩擦角30°。如圖2 所示,網格被自由三角形劃分。可以看出,靠近隧道的網格很密集,尤其是在隧道的下端,而在其余區域網格很稀疏。

圖2 土體中雙隧道的網格圖
開挖前后土體的Von Mises 應力云圖如圖3 和圖4 所示。開挖前的最大初始地應力為19.4 kPa,出現在土體的最下側。開挖后,土體中隧道附近的應力較大,最大應力為930kPa,發生在兩個隧道圓心連線的中間位置。

圖3 土體中為開挖初始地應力von mises 應力云圖

圖4 土體中小凈距雙隧道開挖后的von mises 應力云圖
隧道開挖中的塑性區直接影響施工中隧道的支護方案,因此塑性區的形狀和大小至關重要。圖5 顯示了開挖后的塑料區,該區域出現在兩條隧道的邊緣以及兩條隧道之間的區域。

圖5 小凈距雙隧道開挖后的等效塑性應變圖
地表的沉降對地面設施的安全有著很大的影響,所以隧道開挖模擬是非常重要的。地表的沉降如圖6 表和1 所示。表1 中的x 表示地表上從土體左端開始的坐標,v 表示土體的豎向位移,即對地表的沉降位移。圖6 的橫坐標表示地表上從土體左端開始的坐標,縱坐標表示地表沉降值。最大沉降位移發生在下部隧道的右端,其數值為576.52mm。而在遠離隧道處,地表沉降數值較小。

圖6 土體中小凈距雙隧道開挖后的地表沉降曲線

表1 小凈距雙隧道地表沉降數值表
經過對國內外隧道開挖理論和方法的研究,確定采用有限元軟件COMSOL 仿真計算小凈距雙隧道開挖。應用Drucker-Prager 本構模型對隧道開挖問題進行彈塑性力學分析。本文給出了采用COMSOL 軟件仿真小凈距雙隧道開挖的原理和過程,模擬了自由土體中隧道開挖的地表沉降和塑性區形狀。給出了應力云圖、地表沉降曲線和塑性區示意圖。得出的主要結論為:在自由土體開挖小凈距雙隧道后,隧道附近的應力相對較大,并產生了塑性區,最大應力出現在兩個隧道之間。