999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SYNCHRONIZATION OF COMPLEX NETWORKS VIA A SIMPLE AND ECONOMICAL FIXED-TIME CONTROLLER

2020-11-26 13:50:38LINaWUXiaoQun
數(shù)學(xué)雜志 2020年6期

LI Na,WU Xiao-Qun

(1.School of Mathematics and Statistics,Henan University,Kaifeng 475004,China)

(2.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

1 Introduction and Main Results

Consider the following differential equation

where x∈Rndenotes the state variable of system(1.1),f:Rn→Rnis a nonlinear vector field and x0is the initial value of the system.

Definition 1.1[1]The origin of system(1.1)is said to be globally finite-time stable if for any of its solution x(t,x0),the following statements hold:

(i)Lyapunov stability:for anyε>0,there is aδ=δ(ε)>0 such thatkx(t,x0)k<εfor anykx0k≤δandt≥0.

(ii)Finite-time convergence:there exists a functionT:Rn{0}→(0,+∞),called the settling time function,such that limt→T(x0)x(t,x0)=0 and x(t,x0)≡0 for allt≥T(x0).

Definition 1.2[2]The origin of system(1.1)is said to be fixed-time stable if it is globally finite-time stable and the settling time functionT(x0)is bounded for any x0∈Rn,i.e.,there existsTmaxsuch thatT(x0)≤Tmaxfor all x0∈Rn.

Lemma 1.3[2]If there exists a continuous,positive definite and radically unbounded functionV(x(t)):Rn→R such that any solution x(t)of system(1.1)satisfies the inequality

fora,b,δ,θ,k>0 andδk>1,θk<1,then the origin of system(1.1)is fixed-time stable,and the settling timeT(x0)is upper bounded and satisfies

Lemma 1.4If there exists a continuous,positive definite and radically unbounded functionV(x(t)):Rn→R such that any solution x(t)of system(1.1)satisfies the inequality

in whichμ>0,1≤γ<2,then the origin of system(1.1)is globally fixed-time stable.In addition,for any initial state x0of system(1.1),the settling time is described as

Remark 1There have been plentiful literature investigating fixed-time synchronization in recent years.Lemma 1.3 is the most common one to prove synchronization within a settling time[2]–[3].However,the special case ofk=1 in lemma 1.3 is commonly applied to simplify the controller to be designed.In this situation,the form of Lemma 1.4 is much simpler than that in Lemma 1.3.Furthermore,the estimated settling time is more accurate than those in existing literature.

Consider a nonlinearly coupled complex network consisting ofNnodes described by

where xi(t)=(xi1(t),...,xin(t))>denotes the state vector of nodei,nonlinear function f(xi(t))=(f1(xi(t)),...,fn(xi(t)))>represents the dynamical behavior of thei-th node,c>0 is the coupling gain.g(xj(t))=(g1(xj1(t)),...,gn(xjn(t)))>∈Rnis the nonlinear coupling function.Besides,A=(aij)∈RN×Ndenotes the outer coupling matrix,in which,aij>0 if thei-th node can receive the information from nodej;otherwise,aij=0.In addition,aii=0.The Laplacian matrixL=(lij)∈RN×Nis defined asand the o ff-diagonal elementslij=?aij.Therefore,the controlled complex network can be written as

In this paper,complex network(1.5)is assumed to be symmetrical,the initial value is xi(0)=xi0,i=1,...,N,and complex network(1.5)is supposed to synchronize to the same state s(t)satisfying

in which s(t)=(s1(t),...,sn(t))>with initial value s(0)=s0.

Let ei(t)=xi(t)?s(t)be the error state,then one can get

In order to proceed further analysis,the controller is designed as

Remark 2In existing literature,the controller is usually designed as“ui(t)=?kei(t)?bsgn(ei(t))|ei(t)|α?csgn(ei(t))|ei(t)|β”,which consists of three terms:the first term is the linear feedback term,the index of the second term satisfies 0<α<1,and that of the last one satisfiesβ>1.Controller(1.8)proposed here only contains two terms,which is obviously more economical and practical.

(H1)The dynamical function f(·)of complex network(1.5)satisfies the usual Lipschitz condition.That is,for?u,v∈Rn,there exists a positive constantρsuch that

(H2) As for the nonlinear functiongk(·),k=1,...,n,we assume that there exist positive constants%k,such that for allx,y∈R,we have

Theorem 1.5Suppose that(H1)?(H2)holds.Then complex network(1.5)and target system(1.6)will reach fixed-time synchronization with controller(1.8),if there exist positive constantsksuch that

where Ψ =diag{%1,...,%n},ρa(bǔ)nd%k,k=1,...,npresented in(H1)and(H2),respectively.Furthermore,the settling time is estimated as

Remark 3From Theorem 1.5,condition(1.9)can be guaranteed ifk≥ρbased on the non-negative eigenvalues of matrixL.

2 Numerical Example

Example 1Theorem 1.5 is verified in this section.Consider a network consisting of 10 nodes,with the dynamics of each node being described by a three-dimensional complex network[4],where the inner coupling matrix Γ =I3,dynamical function f(xi(t))=?Cxi(t)+Mh(xi(t)),h(xi(t))=0.5(|xi1+1|?|xi1?1|,|xi2+1|?|xi2?1|,|xi3+1|?|xi3?1|)>,and

nonlinearly coupled function is defined as

Based on ei(t)=xi(t)?s(t),the controlled error system is

The evolution of 2-norm of the error states is shown in Panel(a)of Fig.1.Obviously,the error systems will not stabilize to the origin if no controllers are exerted.In the following,we consider the controlled network(1.5).

Figure 1 (a)Evolution of the 2-norm of the error states without controllers;(b)Evolution of error system(2.1).

According to the definitions of f(xi(t))and g(xi(t)),takingρ=7.7,Ψ =diag{1.8,2.5,1.7}to satisfy(H1)and(H2),respectively.Therefore,k=7.7 is chosen to make Eq.(1.9)hold.The evolutions of the state variables with controller(1.8)are shown in Panel(b)withγ=1.5 andμ=0.1.

Panel(b)in Fig.1 shows that stability of error network(2.1)can be realized withint=0.7.Actually,T≈548 according to the settling time estimated in Theorem 1,which is larger than the real synchronization time,but is smaller than the conventional estimations[2]–[3].


登錄APP查看全文

主站蜘蛛池模板: 婷婷五月在线| 国产XXXX做受性欧美88| 国产成人免费手机在线观看视频 | 激情五月婷婷综合网| 国产成人无码AV在线播放动漫 | 九九视频免费看| 日本人又色又爽的视频| 亚洲va精品中文字幕| 国产免费久久精品44| 老司机午夜精品网站在线观看| 亚国产欧美在线人成| 久久黄色毛片| 综合五月天网| 九九精品在线观看| 一级毛片免费不卡在线视频| 九九香蕉视频| 成人小视频在线观看免费| 天堂va亚洲va欧美va国产| 手机精品福利在线观看| 精品福利视频导航| 国产日韩精品一区在线不卡 | 国产精品19p| 中文字幕免费播放| 四虎精品国产AV二区| 日韩精品无码免费专网站| 欧美色视频在线| 亚洲精品色AV无码看| 色综合天天操| 国产精品香蕉| 91青青视频| 91久久精品日日躁夜夜躁欧美 | 人妻少妇乱子伦精品无码专区毛片| 成人一区在线| 午夜毛片福利| 试看120秒男女啪啪免费| 国产电话自拍伊人| 国产精品爽爽va在线无码观看 | 伊伊人成亚洲综合人网7777| 国内视频精品| 亚洲无码高清一区二区| 自慰高潮喷白浆在线观看| 国产成人AV大片大片在线播放 | 亚洲第一在线播放| www.亚洲一区| a毛片在线播放| 久久久亚洲色| 国产91导航| 免费在线视频a| a免费毛片在线播放| 一级毛片a女人刺激视频免费| 小说 亚洲 无码 精品| 亚洲天堂精品在线观看| 久久99国产综合精品1| 亚洲高清无在码在线无弹窗| 精品伊人久久久大香线蕉欧美| 视频一本大道香蕉久在线播放 | 欧美日韩国产系列在线观看| 亚洲日韩第九十九页| 国产永久免费视频m3u8| 理论片一区| 国产成人综合在线观看| 国产一级小视频| 二级特黄绝大片免费视频大片| 一区二区无码在线视频| 亚洲熟女中文字幕男人总站| 无码久看视频| 久久国产黑丝袜视频| 亚洲AⅤ波多系列中文字幕| 无码中文字幕加勒比高清| 亚洲三级影院| 在线免费观看AV| 亚洲中文无码av永久伊人| 亚洲永久色| 久久精品人人做人人爽97| 国产成年女人特黄特色毛片免| 亚洲天堂啪啪| 亚洲第一区欧美国产综合 | 国产亚洲欧美在线中文bt天堂| 亚洲欧美另类专区| 一级毛片在线播放免费观看| 欧美亚洲欧美| 成·人免费午夜无码视频在线观看 |