999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

DIFFERENCE HARNACK ESTIMATES FOR WEIGHTED NONLINEAR REACTION-DIFFUSION EQUATIONS ON WEIGHTED RIEMANNIAN MANIFOLDS

2020-11-26 13:50:40WANGYuzhaoWANGXueming
數學雜志 2020年6期

WANG Yu-zhao,WANG Xue-ming

(School of Mathematical Sciences,Shanxi University,Taiyuan 030006 China)

Abstract:In this paper,we study the problem of difference Harnack estimate on Riemannian manifolds.By using maximum principle and weighted p-Bochner formula,we derive the Li-Yau type difference Harnack estimate and Hamilton type estimate for the positive solutions to weighted nonlinear reaction-diffusion equation on compact weighted Riemannian manifold with curvature dimension condition CD(0,N),which generalizes the non-weighted case under the condition of nonnegative Ricci curvature.

Keywords: weighted nonlinear reaction diffusion equation;Li-yau type difference Harnack estimate;hamilton type difference Harnack estimate;curvature dimension condition;weighted p-Bochner formula

1 Introduction

LetMbe ann-dimensional compact Riemannian manifold with curvature dimension conditionCD(0,N).In this paper,we consider a weighted nonlinear reaction-diffusion equation(WNRDE)

onM,whereγ>0,p>1,q>0,?p,fu=efdiv(e?f|?u|p?2?u)is the weightedp-Laplacian ofu,andfis a smooth function.

Gradient estimate or differential Harnack estimate is an important tool in geometric analysis.In 1986,Li and Yau[1] first proved the sharp gradient estimate for positive solutions to heat equation on Riemannian manifolds.Since then,gradient estimate has been studied extensively by many scholars.Particularly in the last decade,more attention has been paid to the study of nonlinear equations.Kotschwar and Ni[2]established gradient estimates forp-harmonic functions and parabolicp-Lapalacian equation on Riemannian manifolds.In[3,4],the first author and coauthor improved Li-Yau type gradient estimates for the positive solutions to the weighted nonlinearp-heat equation on Riemannian manifolds withCD(?K,m)condition.In[5],the authors proved the Li-Yau type estimate for the porous medium equation and fast diffusion equation.In[6],the first author and coauthor got sharp global Li-Yau type gradient estimates for positive solutions to doubly nonlinear diffusion equation on compact Riemannian manifolds with nonnegative Ricci curvature.

In[7],we derived the global Li-Yau type and Hamilton type gradient estimate for positive solutions to the nonlinear reaction-diffusion equation.The purpose of this paper is to extend the work in[7],that is to prove the gradient estimates for weighted nonlinear reaction-diffusion equation(1.1)on Riemannian manifolds.

To show our results,we recall some necessary notations.Let(M,g,dμ)(dμ=e?fdV)be ann-dimensional compact weighted Riemannian manifold,dVbe the Riemannian volume measure,f∈C∞(M).Define a diffusion operatorL?f= ???f·?,andN-Bakry-mery Ricci curvature tensor

IfN=∞,then Bakry-mery Ricci curvaturewhich firstly studied by Bakry andmery[8].IfLsatisfies the curvature dimension conditionCD(K,N)if

Now we give the global Li-Yau type difference Harnack estimate for WNRDE(1.1)and its applications in Harnack inequalities.

Theorem 1.1LetMbe ann-dimensional compact weighted Riemannian manifold with theCD(0,N)condition.Assume thatuis a smooth nonnegetive solution to(1.1),andsatisfy equation(2.1)onM.Then for anyb>0,aˉ>0 andc(q?1)(q?1+b)≥0,we have

Remark 1.2Whenc=0 andf=const.,the estimate(1.2)reduces the Li-Yau type estimate of weighted doubly nonlinear diffusion equation in[6].

On the other hand,Hamilton[10]improved the elliptic type gradient estimate on a compact manifold.Yan and Wang[11]established elliptic type gradient estimates for positive solutions to the doubly nonlinear diffusion equation on Riemannian manifolds.Recently,the authors[7]derived Hamilton type gradient estimates for nonlinear reaction-diffusion equation on compact Riemanian manifold with nonnegative Ricci curvature.In this paper,we can prove Hamilton type estimate for WNRDE(1.1)onn-dimensional compact weighted Riemannian manifold withCD(0,N)condition.

Theorem 1.3LetMbe ann-dimensional compact weighted Riemannian manifold with theCD(0,N)condition.Suppose thatuis a smooth positive solution to(1.1)andvsatisfy equation(2.1)onM.Then for anyp>1,andκ(p(m+1)?1)>0,

wherevMaxmaxMvm.

As applications of two estimates in Theorem 1.1 and 1.3,by integrating along minimizing geodesic paths,we can derive the corresponding Harnack inequalities.

Corollary 1.4LetMbe ann-dimensional compact weighted Riemannian manifold with theCD(0,N)condition,ube a positive solution to(1.1)andvsatisfy the equation(2.1).Given anyx1,x2∈M,0≤t10,we have:

Corollary 1.5LetMbe ann-dimensional compact weighted Riemannian manifold with theCD(0,N)condition,ube a positive solution to(1.1)andvsatisfy the equation(2.1).Given anyx1,x2∈M,we have:

The organization of this paper is as follows.In Section 2,using the weightedp-Bochner formula,we will give the proof of Li-Yau type difference Harnack estimate(1.2).In section 3,we will prove Hamilton type estimate(1.3).In Section 4,two Harnack inequalities are derived as applications of two type estimates.

2 Global Li-Yau Type difference Harnack Estimate

In this paper,let?and div be the gradient operator and divergence operator onM.Assume thatuis a positive solution to(1.1),the pressure transform introduced by the first author in[6],

The WNRDE can be rewritten as

and corresponding pressure equation forvsatisfies

and its parabolic operator iswherew=|?v|2>0,and

Lemma 2.6Let

Then

ProofFor a constantβ,combining the equation(2.1)and the definition ofLin(2.2),we have

3 Global Hamilton Type difference Harnack Estimate

In this section,we establish a Hamilton type difference Harnack estimate for positive solutions to WNRDE(1.1)on weighted Riemannian manifolds.

4 Applications of difference Harnack Estimates


登錄APP查看全文

主站蜘蛛池模板: a级毛片一区二区免费视频| 理论片一区| 找国产毛片看| 久操中文在线| 国产日韩丝袜一二三区| 国产精品久久久精品三级| 亚洲欧美在线综合一区二区三区| 欧美色视频网站| 欧美 国产 人人视频| 亚洲国产成人精品无码区性色| 中文字幕有乳无码| 国产成人精品一区二区不卡| 亚洲AV无码久久精品色欲| 国产一区二区精品高清在线观看| 福利片91| 一级爱做片免费观看久久| 久久99精品久久久大学生| 欧美色视频在线| 91精品国产一区自在线拍| 国产无码性爱一区二区三区| 特级精品毛片免费观看| 国产又粗又猛又爽视频| 日本黄网在线观看| 88av在线看| 欧美曰批视频免费播放免费| 日韩久久精品无码aV| 特级毛片免费视频| 精品人妻无码区在线视频| 欧美三级日韩三级| 一本无码在线观看| 久久综合干| 亚洲av无码牛牛影视在线二区| 幺女国产一级毛片| 久久青青草原亚洲av无码| 伊人久久久大香线蕉综合直播| 国产精品一区在线观看你懂的| 久久成人18免费| 国产91高跟丝袜| 国产精品亚洲专区一区| 三上悠亚一区二区| 国产美女无遮挡免费视频| 国产乱子伦一区二区=| 激情综合网激情综合| 亚洲第一精品福利| 免费一级毛片在线播放傲雪网| 成人福利在线视频免费观看| 久久夜色精品国产嚕嚕亚洲av| 免费Aⅴ片在线观看蜜芽Tⅴ| 久久99久久无码毛片一区二区| 99久久国产自偷自偷免费一区| 亚洲视频四区| 久久精品91麻豆| 久久久久免费精品国产| 最新国产高清在线| 久久激情影院| 亚洲欧美日韩成人在线| 丁香五月激情图片| 在线观看的黄网| 自偷自拍三级全三级视频| 亚洲第一综合天堂另类专| 免费一级全黄少妇性色生活片| 国产精品久久久久久久久久久久| 午夜视频www| 亚洲av无码人妻| 国产成人a在线观看视频| 少妇精品在线| 97国产在线视频| 国产日本欧美亚洲精品视| 久久人搡人人玩人妻精品一| 欧美在线一级片| 尤物精品视频一区二区三区| 日本欧美在线观看| 久久青草精品一区二区三区| 国内毛片视频| 伊伊人成亚洲综合人网7777| 无码久看视频| 久久人搡人人玩人妻精品| 中文字幕亚洲乱码熟女1区2区| 亚洲第七页| 亚洲另类第一页| 精品久久久久久久久久久| 欧美 亚洲 日韩 国产|