王偉權 李樹俊 朱欣琪 丘志慧 施力汛 張哲



摘要 以甘藍型油菜幼苗為材料,根據油脂蛋白Oleosin(O20)基因的啟動子序列設計引物,PCR擴增了長度為935 bp的片段,把該片段連接到pBI101載體,GUS瞬時染色結果表明,該片段可以驅動GUS基因在油菜幼苗根部特異性表達。油菜油脂蛋白是一個蛋白質家族,為進一步鑒別擴增到的935 bp油脂蛋白啟動子,該研究利用油菜基因組信息進行序列對比,結果表明935 bp的啟動子和Oleosin(O20)的啟動子序列之間有較多的變異,但和油菜1號染色體上的序列完全一致;1號染色體上緊跟的編碼框序列和油脂蛋白Oleosin(O20)的編碼框序列也完全一致,但油脂蛋白Oleosin(O20)的基因組序列要比油菜1號染色體的基因組序列短。通過PLACE和PlantCARE軟件對935 bp啟動子進行了掃描預測,結果表明該啟動子中含有許多順式作用元件,尤其是脫落酸、茉莉酸甲酯和水楊酸這3個與激素有關的元件;將該研究擴增到的另一個928 bp長度的啟動子與935 bp的啟動子相比,前者啟動子區域水楊酸順式作用元件缺少了1個堿基,同時也缺失了1個堿基的片段,這些序列的變化可能是該啟動子喪失活力的原因。
關鍵詞 啟動子;油菜;瞬時表達;Oleosin
中圖分類號 S188文獻標識碼 A
文章編號 0517-6611(2020)22-0115-05
doi:10.3969/j.issn.0517-6611.2020.22.030
Cloning,Analysing and Transient Expressing Oleosin Gene Promoter in Brassica napus
WANG Wei-quan,LI Shu-jun,ZHU Xin-qi et al (College of Agriculture and Biology,Zhongkai University of Agricultural and Engineering,Guangzhou,Guangdong 510225)
Abstract According to the young seedlings of Brassica napus as materials,Oleosin promoters designed by the oil protein Oleosin (O20) sequence with length of 935 bp and 928 bp were amplified by PCR.GUS staining showed that 935 bp lipid protein Oleosin promoter can drive the specific expression of GUS gene in B.napus seedlings root.Comparing 935 bp with Oleosin (O20) promoter sequences,we found that there is a lot of variation between them.Because B.napus oil protein is a protein family,when utilizing B.napus genome sequencing information to be compared to confirm the oil protein promoter,we found that the promoter sequence amplified with length of 935 bp and the sequence of B.napus chromosome 1 were completely consistent.Then comparing coding sequences predicted behind chromosome 1,we found that the coding sequences behind the 1 chromosome is exactly the same with that of the Oleosin(O20) oil protein.While there are differences in their genome sequence,the 935 bp promoter sequence on chromosome 1 is much larger than that of the Oleosin (O20).There is no comparison of their genome sequence in this paper.Studying thoroughly the promoter amplified of 935 bp through the PLACE and the PlantCARE website,we have found many cis-acting elements.Three components related to abscisic acid,methyl jasmonate and salicylic acid are notable.Because we also amplified a promoter with length of 928 bp,the promoter can not drive the expression of the GUS gene.Analysing and comparing the sequence of 935 bp and 928 bp,we found that a base lacked in the promoter TCA motif of 928 bp.The loss of these sequential changes may cause the loss of the vitality of the promoter.
In summary,we have successfully obtained a tissue specific promoter of B.napus that can be used for scientific research and production.
Key words? Promoter;Brassica napus;Transient expression;Oleosin
作者簡介 王偉權(1968—),男,江蘇宜興人,副教授,博士,從事分子生物學研究。
李樹俊(1998—),男,廣東廣州人,從事分子生物學研究。王偉權與李樹俊為共同第一作者。
收稿日期 2019-09-26;修回日期 2020-04-13
植物作為生產藥用蛋白或其他具有重要價值蛋白的生物反應器,為人類提供一個更加安全和廉價的生產系統,是植物基因工程的發展方向,從而使傳統農業生產和現代生物技術緊密結合,大幅度地提高農產品對人類的服務功效及市場競爭力,增加農民收入,促進農業的可持續發展。用各種農作物為載體的植物生物反應器產品可通過種子、果實或塊莖表達,便于貯藏、運輸和利用[1]。
油脂蛋白Oleosin是依附于油體表面的屬于堿性高度疏水的小分子嵌入蛋白,在植物種子成長或后熟過程中可大量特異性表達,是一個蛋白質家族,最早在芥菜中被發現,隨后不同油料作物(大豆、芝麻、油菜等)、不同樹木(油棕、可可、柑橘等)以及其他植物如玉米、水稻、擬南芥等的Oleosin基因序列和氨基酸序列被陸續報道[2-3]。油脂蛋白受到廣泛關注,其原因有三個方面,一是通過融合外源營養價值高的肽鏈,改善種子的營養成分,提高種子食用或作為飼料的品質,如利用該技術成功表達有生物活性的魚生長激素;二是生產回收獲得外源蛋白,需在Oleosin與外源蛋白間加上合適的蛋白酶酶切位點,目前已通過該系統成功獲得有生物活性的GUS[4]、木聚糖酶[5]和水蛙素[6],在加拿大利用油菜生產水蛙素已進入商業化階段[7];三是不通過切割回收過程,直接生產固定化酶[8]。此外,油質蛋白具有穩定油體的生物學特性,它們可以對食品、化妝品、油漆等產品中的乳液起到穩定作用[9]。更有研究初步確定Oleosin基因是調控谷子干旱脅迫的候選基因,可能受干旱或脫落酸(ABA)、茉莉酸甲酯(MeJA)誘導表達[10]。
瞬時表達(transient expression)是一種快速地研究不同啟動子在特定基因表達、蛋白質亞細胞定位及基因互作的一種重要手段,對比傳統轉基因技術中的轉化周期長、效率低及不穩定性,其外源DNA不需要整合到宿主細胞染色體上,因此轉化更容易、更快速,轉化效率更高。植物細胞幾天內可進行多個基因的表達及高效傳遞[11],尤其是合成生物學的發展使瞬時表達有了更大的應用前景。
該研究根據網上已經克隆的Oleosin基因的啟動子序列設計引物,并擴增Oleosin基因的啟動子,然后連接到pBI101載體上,對油菜幼苗進行瞬時表達,為油脂蛋白的生產應用奠定基礎。
1 材料與方法
1.1 菌株和載體
大腸桿菌(Escherichia coli)菌株為 DH5α;根癌農桿菌(Agrobacterium tumefaciens)菌株為 LBA4404,抗性標記為利福平 (Rif r)和卡那霉素 (kan);植物表達載體為 pBI101,抗性標記為卡那霉素 (kan)。
1.2 試劑
限制性內切酶、T4 DNA 連接酶、PMD-T Easy Vector及DNA 凝膠回收試劑盒等購自TaKaRa公司。抗生素為 Sigma 產品,其他生化試劑為國產分析純。
1.3 油菜總DNA的提取 以甘藍型油菜幼苗為材料,用CTAB法提取油菜總DNA。
1.4 Oleosin啟動子的擴增與相關載體的構建
1.4.1 Oleosin啟動子的擴增。引物設計根據O20(GenBank: M63985.2)Oleosin啟動子核苷酸序列,其中上游引物:5′-GATAAAGCAATCACCTGG-3′,下游引物:5′-TTTGCTTCTTGTGAATTGAG-3′。以油菜總DNA 為模板,通過PCR擴增得到Oleosin啟動子,送上海英駿生物技術有限公司測序。
1.4.2 重組表達載體的構建。將測序正確的菌體擴大培養,按《分子克隆實驗指南》用堿裂解法提取質粒。用Hind Ⅲ與BamH Ⅰ 酶切Oleosin啟動子和PBI101質粒,于1.0%瓊脂糖凝膠電泳,凝膠回收試劑盒分別回收Oleosin啟動子片段和PBI101載體片段。用T4連接酶連接兩片段,構建重組表達載體。
1.5 重組質粒的篩選和轉化
將構建好的載體用熱激法轉化農桿菌,并將轉化產物涂布于含50 mg/L卡那霉素(kan)和25 mg/L利福平(Rifr)的LB培養基平板,28 ℃培養48 h。挑取陽性克隆并擴大培養36 h備用。
1.6 農桿菌介導油菜愈傷組織的轉化
用菌懸浮培養基(MS+6-BA 0.5 mg/L+NAA 0.1 mg/L+100 μmol/L乙酰丁香酮)28 ℃振蕩培養農桿菌,至最終濃度為OD600=0.6 ,備用。將已培養好的帶有愈傷的80棵油菜幼苗隨機分為2組,一組幼苗設為對照,另一組幼苗浸泡在農桿菌菌液中10 min。將幼苗轉移至共培養基(MS+6-BA 0.5 mg/L+NAA 0.1 mg/L+100 μmol/L乙酰丁香酮)中,暗培養3 d。
1.7 GUS染色與瞬時表達
將油菜幼苗轉移至固定液(50 mmol/L PBS+1%甲醛+0.5% Triton-100)中固定45 min,用蒸餾水洗滌3次。然后油菜幼苗被轉移至染色液[100 mmol/L PBS+0.5% Triton-100+X-Gluc+1 mmol/L K3Fe(CN)6+1 mmol/L K4Fe(CN)6]中,37 ℃過夜。用70%乙醇進行脫色,觀察油菜幼苗染色情況,同時拍照記錄。
參考文獻
[1] 龐俊峰,黃東光,吳燕民.植物生物反應器研究進展[J].生物技術通報,2011(1):21-25.
[2] CAO H P.Genome-wide analysis of oleosin gene family in 22 tree species:An accelerator for metabolic engineering of BioFuel crops and agrigenomics industrial applications?[J].OMICS:A journal of integrative biology,2015,19(9):521-541.
[3] 劉昱輝,賈士榮.植物油體表達體系的研究進展[J].農業生物技術學報,2003,11(5):531-537.
[4] VAN ROOIJEN G J H,MOLONEY M M.Plant seed oil-bodies as carriers for foreign proteins[J].Bio/Technology,1995,13(1):72-77.
[5] LIU J H,SELINGER L B,CHENG K J,et al.Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum[J].Mol Breed,1997,3:463-470.
[6] PARMENTER D L,BOOTHE J G,VAN ROOIJEN G J H,et al.Production of biologically active hirudin in plant seeds using oleosin partitioning[J].Plant molecular biology,1995,29:1167-1180.
[7] GIDDINGS G,ALLISON G,BROOKS D,et al.Transgenic plants as factories for biopharmaceuticals[J].Nature biotechnology,2000,18:1151-1155.
[8] LEE K H,ISENHART T M,SCHULTZ R C,et al.Nutrient and sediment removal by switchgrass and cool-season grass filter strips in Central Iowa,USA[J].Agroforest Syst,1999,44:121-132.
[9] 孫靜,姜宇,陶俊.植物油質蛋白的結構、功能及應用[J].植物生理學報,2018,54(3):363-369.
[10] 蔣茂雙,元香梅,劉曉東,等.谷子Oleosin基因家族及其對干旱響應的分析[J].山西農業大學學報(自然科學版),2018,38(1):16-20.
[11] SAINSBURY F,LOMONOSSOFF G P.Transient expressions of synthetic biology in plants[J].Current opinion in plant biology,2014,19:1-7.
[12] HIGO K,UGAWA Y,IWAMOTO M,et al.PLACE:A database of plant cis-acting regulatory DNA elements[J].Nucleic Acids Res,1998,26(1): 358-359.
[13] LESCOT M,DHAIS P,THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Res,2002,30(1):325-327.
[14] GUTIERREZ L,VAN WUYTSWINKEL O,CASTELAIN M,et al.Combined networks regulating seed maturation[J].Trends Plant Sci,2007,12(7): 294-300.
[15] SKRIVER K,MUNDY J.Gene expression in response to abscisic acid and osmotic stress[J].Plant cell,1990,2:503-512.
[16] NORASTEHNIA A,SAJEDI R,NOJAVAN-ASGHARI M.Inhibitory effects of methyl jasmonate on seed germination in maize(Zea mays):Effect on α-amylase activity and ethylene production[J].Gen Appl Plant Physiology,2007,33(1/2):13-23.
[17] NOJAVAN-ASGHARI M,ISHIZAWA K.Inhibitory effects of methyl jasmonate on the germination and ethylene production in cocklebur seeds[J].J Plant Growth Regul,1998,17(1):13-18.
[18] MAITI S,PATRO S,PAL A,et al.Identification of a novel salicylic acid inducible endogenous plant promoter regulating expression of CYR1,a CC-NB-LRR type candidate disease resistance gene in Vigna mungo[J].Plant cell,tissue and organ culture,2015,120(2):489-505.
[19] ALI E,MAODZEKA A,HUSSAIN N,et al.The alleviation of cadmium toxicity in oilseed rape (Brassica napus) by the application of salicylic acid[J].Plant Growth Regul,2015,75(3):641-655.
[20] KEDDIE J S,TSIANTIS M,PIFFANELLI P,et al.A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional[J].Plant Mol Biol,1994,24(2):327-340.
[21] CHE N Y,YANG Y,LI Y D,et al.Efficient LEC2 activation of OLEOSIN expression requires two neighboring RY elements on its promoter[J].Sci China Ser C,2009,52(9):854-863.
[22] SUN C X,PALMQVIST S,OLSSON H,et al.A novel WRKY transcription factor,SUSIBA2,participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter[J].Plant cell,2003,15(9): 2076-2092.
[23]BUROW M D,SEN P,CHLAN C A,et al.Developmental control of the β-phaseolin gene requires positive,negative and temporal seed-specific transcriptional regulatory elements and a negative element for stem and root expression[J].Plant J,1992,2(4):537-548.
[24] KAWAGOE Y,MURAI N.A novel basic region/helix-loop-helix protein binds to a G-box motif CACGTG of the bean seed storage protein β-phaseolin gene[J].Plant Sci,1996,116(1):47-57.
[25] 劉昱輝.植物油體表達體系的建立及Profilin2維管束特異表達啟動子的區段缺失分析[D].北京:中國農業科學院,2001.
[26] 張冉.利用油菜油體系統表達重組人胰島素原的研究[D].上海:上海師范大學,2010.