頁非 黃曉慶 王忠躍


摘要 葡萄和葡萄制品面臨著真菌毒素的威脅,這些真菌毒素主要來自于黑色組曲霉Aspergillus section Nigri。本研究對采自湖南省澧縣‘紅地球葡萄上的黑色組曲霉進行了分離鑒定及種群結(jié)構(gòu)分析,并采用超高效液相色譜串聯(lián)質(zhì)譜技術(shù)(ultra performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS)對12株代表菌株產(chǎn)赭曲霉毒素(ochratoxin A, OTA)和伏馬毒素B2(fumonisin B2, FB2)的能力進行了測定。結(jié)果表明,澧縣地區(qū)‘紅地球葡萄帶菌率為92%。基于鈣調(diào)素序列,分離得到的131株黑色組曲霉分屬于5個種,其中A.aculeatinus為優(yōu)勢種。12株代表菌株均不產(chǎn)生OTA;A.welwitschiae(4/5)及A.niger(2/2)可產(chǎn)生FB2,平均產(chǎn)毒量分別為336 ng/g及741.37 ng/g。上述結(jié)果為評估國內(nèi)葡萄表面黑色組曲霉及其毒素的污染風險提供參考。
關(guān)鍵詞 葡萄; 黑色組曲霉; 赭曲霉毒素(OTA); 伏馬毒素B2(FB2)
中圖分類號: S 436.631.1
文獻標識碼: A
DOI: 10.16688/j.zwbh.2019422
Abstract Grapes and grape products are threatened by mycotoxins, caused by some species of Aspergillus section Nigri. In this study, based on calmodulin gene sequencing, using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the Aspergillus section Nigri population and its toxigenicity in grapes in Lixian county of Hunan province were studied to confirm the food safety of table grapes. A total of 131 Aspergillus section Nigri strains were isolated from grape samples with the isolation frequency was 92%, and five species of Aspergillus section Nigri were identified, with A.aculeatinus as the dominant species. The mycotoxin tests of 12 isolated strains showed that none of them produced ochratoxin A. A.welwitschiae (4/5) and A.niger (2/2) could produce fumonisin B2, with an average toxin yield of 3.36 ng/g and 741.37 ng/g, respectively. This study provided a reference for evaluating the occurrence of Aspergillus section Nigri and its toxigenicity on the surface of grapes in China.
Key words grape; Aspergillus section Nigri; ochratoxin A; fumonisin B2
葡萄作為鮮食水果不僅肉多汁甜,還有著極高的營養(yǎng)價值,一直深受消費者喜愛。然而由于鮮食葡萄中可溶性固形物含量極高,并且果皮薄而嫩,導致其在生長期間以及采后運輸、貯藏過程中極易破損從而遭受各類真菌的感染,進而產(chǎn)生不同的真菌毒素,并且這些真菌毒素也會隨著后續(xù)加工進入各類葡萄制品中,給食品的質(zhì)量安全帶來了隱患,對人類的健康構(gòu)成了威脅。研究發(fā)現(xiàn),當溫度高于37℃并且空氣濕度較大時,葡萄極易遭受曲霉屬Aspergillus真菌的污染[1]。黑色組曲霉Aspergillus section Nigri是曲霉屬一個重要類群,至少包含27個種[2],其與葡萄酸腐病(grape sour rot)和曲霉黑腐病(Aspergillus black rot)聯(lián)系緊密。酸腐病是危害許多葡萄品種的一種收獲前病害,其癥狀包括漿果開裂和漿果組織被破壞等,是一種復雜的病害,其病原涉及多種絲狀真菌和細菌[3]。相關(guān)研究表明,黑色組曲霉能夠引起葡萄酸腐病[4]。在美國加利福尼亞州,炭黑曲霉A.carbonarius及黑曲霉A.niger是造成葡萄酸腐病的主要種[3]。曲霉屬真菌引起的黑腐病也是發(fā)生在葡萄上的眾多腐爛病害之一,主要由黑色組曲霉引起[5]。這種病以黑腐病的形式出現(xiàn)在漿果上,表現(xiàn)為大量的真菌孢子侵入漿果使其完全變成空殼且干燥。病原菌分布于漿果表皮,隨采收進入貯藏空間,對漿果有潛在威脅[6-7]。除了產(chǎn)量損失外,曲霉屬真菌中的部分種能產(chǎn)生真菌毒素,污染葡萄及其制品,造成食品安全上的重大隱患。研究表明,黑色組曲霉中炭黑曲霉等5個種可以產(chǎn)生赭曲霉毒素A(ochratoxin A,OTA)[8-9],黑曲霉與A.welwitschiae可以產(chǎn)生伏馬毒素B2(fumonisin B2, FB2)[10-12],黑曲霉可產(chǎn)伏馬毒素B4(FB4)[13]。
赭曲霉毒素是由赭曲霉A.ochraceus、炭黑曲霉及疣孢青霉Penicillium verruculosum等產(chǎn)毒菌所產(chǎn)生的一種有毒代謝產(chǎn)物[14],其中赭曲霉毒素A(OTA)分布最廣,毒性最強。聯(lián)合國世界衛(wèi)生組織國際癌癥研究機構(gòu)在1993年將赭曲霉毒素A(OTA)列為人類2組B類致癌物,可造成人體腎臟、神經(jīng)系統(tǒng)以及免疫系統(tǒng)損傷,進而誘發(fā)畸變、癌變等[15-18]。伏馬毒素由 Gelderblom等[19]首次從串珠鐮刀菌Fusarium moniliforme的培養(yǎng)液中分離出來,是一類由不同的多氫醇和丙三羧酸組成的結(jié)構(gòu)類似的雙酯化合物。在收割、儲藏和加工等采后各個環(huán)節(jié)中極易污染糧食、水果和蔬菜等各種農(nóng)副產(chǎn)品[20-21]。伏馬毒素對人體和動物的損害極大,研究表明,伏馬毒素與食管癌高發(fā)具有極高的關(guān)聯(lián)性[22]。這兩種毒素廣泛存在于各種食物中,如谷物制品、咖啡、香料等,水果中主要以葡萄及其制品為主[23-26]。目前,葡萄及其制品真菌毒素污染的相關(guān)研究主要集中在國外,據(jù)報道葡萄在生長及儲運的各個階段均會受到黑色組曲霉的污染[27-29],且不同品種對產(chǎn)毒菌侵染和毒素積累的抗性水平有明顯差異[30]。Qi等發(fā)現(xiàn)加拿大32%的鮮果葡萄中含有FB2,含量在1~15 ng/g[31]。葡萄酒中真菌毒素污染則更為普遍,歐洲各國葡萄酒中OTA檢出率為17%~98%,南美洲為8%~40%,大洋洲澳大利亞為15%,北非摩洛哥高達100%[32]。Christopher等對產(chǎn)自美國11個葡萄產(chǎn)區(qū)的41份葡萄酒樣品進行檢測,發(fā)現(xiàn)OTA污染率高達74%[33]。國內(nèi)關(guān)于真菌毒素在葡萄及其制品上的污染的研究較少,主要集中在葡萄酒的真菌毒素污染情況及檢測方法[34-37]方面,少部分關(guān)于葡萄鮮果污染情況的相關(guān)研究[38]。隨著國外關(guān)于葡萄及其制品被曲霉毒素污染的報道逐漸增多,葡萄上真菌毒素的污染問題也越來越被重視。
湖南澧縣以盛產(chǎn)優(yōu)質(zhì)葡萄出名,但由于該地區(qū)地處于亞熱帶季風氣候區(qū),夏季高溫多雨的氣候適宜曲霉的生長,鮮果遭受曲霉污染的風險較大。本研究以澧縣地區(qū)鮮食葡萄‘紅地球為對象,采用表皮分離培養(yǎng)法對葡萄表面黑色組曲霉進行分類,基于鈣調(diào)素序列鑒定分析其種群結(jié)構(gòu),利用超高效液相色譜串聯(lián)質(zhì)譜技術(shù)(UPLC-MS/MS)對其產(chǎn)毒情況進行檢測,以期為鮮食葡萄的食品安全評價提供依據(jù)。
1 材料與方法
1.1 試驗材料
樣品采集于2018年9月上旬。在澧縣地區(qū)選擇3個葡萄園,品種為‘紅地球,處于成熟期。每個葡萄園采集7~8個果穗,各果穗之間相隔10 m,在每個果穗上剪取2粒健康葡萄,共采集50粒。
葡萄糖及蔗糖購于北京化工廠;瓊脂、酵母膏、磷酸氫二鉀、七水硫酸亞鐵、七水硫酸鎂、硝酸鈉、氯化鉀、五水硫酸銅購于國藥集團化學試劑有限公司;色譜甲醇、色譜乙腈,色譜甲酸購于Thermo Fisher Scientific;E-Z96真菌基因組DNA提取試劑盒(D3390-02)購于OMEGA;FB2、OTA標準品購于Pribolab。
1.2 試驗方法
1.2.1 黑色組曲霉的分離
用滅菌的手術(shù)刀與手術(shù)鑷從健康葡萄樣品上3個不同的部位取下大約0.5 cm×0.5 cm大小的果皮,按照三點接種法且外果皮朝下放置在CYA培養(yǎng)基[2]上,一粒葡萄對應一皿,共50皿。將樣品倒置于培養(yǎng)箱25℃黑暗處理3~5 d,待葡萄表皮周圍長出菌落,統(tǒng)計帶菌率。
1.2.2 黑色組曲霉菌種的分子鑒定
將葡萄果皮周圍的菌落逐一轉(zhuǎn)接于另一干凈的CYA平板上進行純培養(yǎng),并對菌株進行編號。用接種針挑取新培養(yǎng)好的目標菌落的孢子囊于含有1 mL無菌水的離心管中,用移液槍吸打形成孢子懸浮液,吸取2 μL孢子懸浮液制成臨時玻片在顯微鏡下觀察,并逐步稀釋,直至孢子懸浮液濃度約為1×105個/mL。取2 μL在 CYA培養(yǎng)基上劃線,隨后于霉菌培養(yǎng)箱25℃黑暗培養(yǎng)1~2 d。從劃線部位選取單個菌落,用滅菌接種針挑至新的CYA平板中,重復3皿,倒置于霉菌培養(yǎng)箱25℃黑暗培養(yǎng)3~4 d。選取一皿切下長×寬約為1.5 cm×0.5 cm的菌條放入2 mL凍存管,加入30%甘油,放置在-80℃冰箱保存;另選取一皿刮下菌絲置于凍存管中用于DNA的提取。
利用E-Z96真菌基因組DNA提取試劑盒提取曲霉的基因組DNA,以提取的基因組DNA為模板,利用引物[2]CMD5(5′-CCGAGTACAAGGARGCCTTC-3′)和CMD6(5′-CCGATRGAGGTCATRACGTGG-3′)進行Calmodulin(CaM)基因保守序列的PCR擴增,片段大小約為600 bp。PCR反應體系為50 μL,0.4 mol/L上、下游引物各2 μL,Mix 25 μL,DNA模板2 μL,超純水19 μL。PCR擴增條件為:94℃預變性10 min;94℃變性15 s,55℃退火30 s,70℃延伸40 s,35個循環(huán);最后72℃延伸7 min,4℃保存。PCR產(chǎn)物用1%瓊脂糖電泳檢測。PCR產(chǎn)物送至生工生物工程(上海)股份有限公司進行測序,利用Geneious軟件BLAST功能將測序結(jié)果與黑色組曲霉Calmodulin基因參考序列[2]進行比對,得到菌種鑒定結(jié)果。
測序結(jié)果采用Geneious軟件進行單倍型序列鑒定,將單倍型序列采用ClustalW方法進行多序列比對,然后采用RaxML 8.0軟件GTRGAMMA模型構(gòu)建最大似然樹。根據(jù)系統(tǒng)發(fā)育樹聚類結(jié)果,確定菌株所屬種。
1.2.3 毒素檢測
根據(jù)相關(guān)文獻報道[8-12],從分離的菌株中選擇可能產(chǎn)毒的菌種, 包括5株塔賓曲霉A.tubingensis、5株百歲蘭曲霉A.welwitschiae、2株黑曲霉Aniger共12株。對這12株菌株進行活化。吸取1 μL保存的孢子懸浮液置于6 cm PDA培養(yǎng)基上,倒置培養(yǎng)3~4 d,用手術(shù)鑷夾取少量菌絲置于1 mL去離子水中,振蕩混勻,吸取2 μL滴于9 cm CYA培養(yǎng)基中央,黑暗倒置培養(yǎng)12 d。第13天使用規(guī)格3 mm的打孔器在菌落中心取10個瓊脂栓放入5 mL離心管,稱重并加入1.5 mL色譜純甲醇[39],振蕩3 min,黑暗靜置1 h以上。將靜置后的提取物10 000 r/min離心10 min,上清液先后經(jīng)045 μm和0.22 μm微孔濾膜過濾。取1 mL過濾的溶液打入2 mL色譜瓶內(nèi),使用UPLC-MS/MS進行毒素檢測。
FB2標準品濃度梯度設置為 5、25、50、100、250、500 ng/mL,OTA標準品濃度梯度設置為25、50、100、250、500 ng/mL。流動相由0.1%甲酸(A)和乙腈(B)組成。線性梯度洗脫程序如下:0 min 90% B,1.5 min 10% B(保持1 min),2.6 min 90% B, 保持5 min平衡。流速為0.3 mL/min,進樣量2 μL。質(zhì)譜測定參數(shù)見表1。通過全掃描/質(zhì)譜多反應監(jiān)測技術(shù)(multiple reaction monitoring, MRM)確定FB2及OTA的質(zhì)子化離子峰,二級質(zhì)譜分析得到各自碎片離子的信息,選取碎片離子峰值相對較高的 2 個碎片離子作為定量離子和定性離子。Intelistart 自動優(yōu)化各質(zhì)譜參數(shù)。
2 結(jié)果與分析
2.1 帶菌率分析
本研究總共采集50份葡萄樣品,其中46份樣品分離到黑色組曲霉,帶菌率為92%,共分離得到131株黑色組曲霉。
2.2 菌種鑒定及病原菌的種群結(jié)構(gòu)分析
研究表明,黑色組曲霉總共有27個種[2],可以分為兩個獨立的演化分支,分別為A.BISERIATE以及A.UNISERIATE[2]。其中A.BISERIATE包含與毒素產(chǎn)生相關(guān)的兩個復合群,分別為A.carbonarius clade及A.niger “aggregate”clade[2]。由圖1~2可知,在澧縣地區(qū)分離得到的131株曲霉菌屬于5個種,分別為A.aculeatinus、A.tubingensis、A.welwitschiae、A.niger和A.brunneoviolaceus。其中A.aculeatinus及A.brunneoviolaceus屬于AUNISERIATE中的A.aculeatus clade復合群;Awelwitschiae和A.niger屬于A.welwitschiae clade,A.tubingensis屬于A.tubingensis clade,A.welwitschiae clade和A.tubingensis clade,統(tǒng)稱為A.niger “aggregate”clade,屬于A.BISERIATE。
分離得到的131株菌株中A.aculeatinus數(shù)量最多,有96株,占73.3%;其次為A.tubingensis,26株,占19.8%;A.welwitschiae較少,僅有5株,占3.8%;Aniger與A.brunneoviolaceus分別僅有2株,各占15%。在澧縣地區(qū)的黑色組曲霉中A.UNISERIATE占比高達74.8%,其余25.2%均屬于A.BISERIATE分支中的A.niger “aggregate”clade,而另一重要產(chǎn)毒復合群A.carbonaris clade在澧縣地區(qū)未分離到。
2.3 毒素檢測結(jié)果
本試驗選擇了5株A.tubingensis、5株A.welwitschiae以及2株A.niger進行毒素檢測。由圖3可知,兩種毒素標準曲線線性良好,R2分別為0999 7和0.996 4,可用于定量檢測。由表2可知,12株菌中共有6株可產(chǎn)生FB2,其中5株A.tubingensis均不能產(chǎn)生FB2;5株A.welwitschiae中有4株可產(chǎn)生FB2,F(xiàn)B2平均產(chǎn)量為3.36 ng/g,其中產(chǎn)量最高的為菌株127及菌株128,兩株菌株FB2產(chǎn)量均為5.13 ng/g;2株A.niger均產(chǎn)生FB2,且產(chǎn)毒量遠高于A.welwitschiae,分別達到了624.15 ng/g及858.58 ng/g,平均產(chǎn)量741.37 ng/g。在12株檢測菌株中,未發(fā)現(xiàn)能夠產(chǎn)生OTA的菌株。
3 討論
本研究發(fā)現(xiàn),澧縣地區(qū)的‘紅地球葡萄黑色組曲霉帶菌率較高,根據(jù)前期研究,推測是因為當?shù)叵募靖邷馗邼瘢诌m宜黑色組曲霉的生長[1]。本研究在湖南省澧縣共鑒定到5種黑色組曲霉,優(yōu)勢種為A.aculeatinus,與其他國家相比,種群組成有明顯差異。塞浦路斯[40]地區(qū)共分離得到5種黑色組曲霉,優(yōu)勢種為A.tubingensis;意大利[41]及加拿大[31]均鑒定得到6種黑色組曲霉,優(yōu)勢種分別為A.tubingensis及A.welwitschiae;在澧縣地區(qū)AUNISERIATE分支占比最高;A.BISERIATE分支中A.niger “aggregate” clade次之,并未分離到A.carbonarius clade;在阿根廷[27]、意大利[41]及以色列[42]對葡萄表面黑色組曲霉種群組成研究中,A.niger “aggregate” clade占比最高,A.UNISERIATE次之,A.carbonarius clade最少,但也均高于7.0%;在西班牙[28]、法國[43]及澳大利亞[44]的相關(guān)研究中,A.niger “aggregate”clade占比最高,Acarbonarius clade次之,A.UNISERIATE最少。澧縣地區(qū)的黑色組曲霉種群組成與上述報道葡萄種植區(qū)存在較大差異,這可能與地區(qū)間氣候條件差異有關(guān)。毒素測定結(jié)果表明,被檢測的A.tubingensis、A.welwitschiae及A.niger菌株均不產(chǎn)生OTA,大部分A.welwitschiae產(chǎn)生FB2[31]。與已有報道相同[29],A.niger全部可產(chǎn)生FB2,且產(chǎn)毒量較高。此前有報道認為A.tubingensis[45]可產(chǎn)生OTA,但最新研究表明其為不產(chǎn)OTA種群[46],本研究也證實了這一結(jié)論,所有檢測的A.tubingensis均不產(chǎn)生OTA。有相關(guān)文獻報導黑曲霉A.niger可產(chǎn)生OTA[47],但頻率較低,比例分別為3.0%(8/257)[48]及16.7%(5/30)[49],也有文獻報道未檢測到產(chǎn)OTA的A.niger菌株[50]。本研究測定的Aniger菌株均不產(chǎn)生OTA,說明A.niger造成的OTA污染在這一區(qū)域風險較低。菌種A.niger是否產(chǎn)生OTA毒素以及其產(chǎn)毒特性還值得研究。綜上,澧縣地區(qū)的黑色組曲霉帶菌率較高,有潛在的病害威脅。但產(chǎn)毒種頻率較低,對澧縣葡萄可能造成毒素污染風險的為A.niger以及A.welwitschiae產(chǎn)生的FB2。根據(jù)本研究結(jié)果,應進一步開展采后貯藏期間的葡萄樣品檢測,對黑色組曲霉進行持續(xù)監(jiān)測,并且加大樣本量對毒素污染風險繼續(xù)進行更深入的評估。
參考文獻
[1] VALERO A, MARN S, RAMOS A J, et al. Ochratoxin a-producing species in grapes and sun-dried grapes and their relation to ecophysiological factors [J]. Letters in Applied Microbiology, 2005, 41(5): 196-201.
[2] SAMSON R A, VISAGIE C M, HOUBRAKEN J J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus [J]. Studies in Mycology, 2014, 78: 141-173.
[3] CRISTINA P, TRANG T N, WALTER D G. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries [J]. Fungal Biology, 2015, 119(9): 784-790.
[4] ROONEYLATHAM S, JANOUSEK C N, ESKALEN A, et al. First report of Aspergillus carbonarius causing sour rot of table grapes (Vitis vinifera) in California [J]. Plant Disease, 2008, 92(4): 651.
[5] SOMMA S, PERRONE G, LOGRIECO A F, et al. Diversity of black Aspergilli and mycotoxin risks in grape, wine and dried vine fruits [J]. Phytopathologia Mediterranea, 2012, 51(1): 131-147.
[6] COZZI G, PASCALE M, PERRONE G, et al. Effect of Lobesia botrana damages on black Aspergilli rot and ochratoxin A content in grapes [J]. International Journal of Food Microbiology, 2006, 111(S1): S88-S92.
[7] VISCONTI A, PERRONE G, COZZI G, et al. Managing ochratoxin A risk in the grape-wine food chain [J]. Food Additives and Contaminants, 2008, 25(2): 193-202.
[8] BEJAOUI H, MATHIEU F, TAILLANDIER P, et al. Conidia of black Aspergilli as new biological adsorbents for ochratoxin A in grape juices and musts [J]. Journal of Agricultural and Food Chemistry, 2005, 53(21): 8224-8229.
[9] El-KHOURY A, RIZK T, LTEIF R, et al. Occurrence of ochratoxin A-and aflatoxin B1-producing fungi in Lebanese grapes and ochratoxin a content in musts and finished wines during 2004 [J]. Journal of Agricultural and Food Chemistry, 2006, 54(23): 8977-8982.
[10]MEDINA A, MATEO R, LPEZOCAA L, et al. Study of Spanish grape mycobiota and ochratoxin A production by isolates of Aspergillus tubingensis and other members of Aspergillus section Nigri [J]. Applied and Environmental Microbiology, 2005, 71(8): 4696-4702.
[11]MOGENSEN J M, FRISVAD J C, THRANE U, et al. Production of fumonisin B2 and B4 by Aspergillus niger on grapes and raisins [J]. Agriculture Food Chemistry, 2010, 58(2): 954-958.
[12]FRISVAD J C, SMEDSGAARD J, SAMSON R A, et al. Fumonisin B2 production by Aspergillus niger [J]. Agriculture Food Chemistry, 2007, 55(23): 9729-9732.
[13]NOONIM P, MAHAKARNCHANAKUL W, NIELSEN K F, et al. Fumonisin B2 production by Aspergillus niger in Thai coffee beans [J]. Food Additives and Contaminants, 2009, 26(1): 94-100.
[14]MAYURA K, PARKER R, BERNDT W O, et al. Ochratoxin A-induced teratogenesis in rats: partial protection by phenylalanine [J]. Applied and Environmental Microbiology, 1984, 48(6): 1186-1188.
[15]ABRUNHOSA L, MORALES H, SOARES C, et al. A review of mycotoxins in food and feed products in Portugal and estimation of probable daily intakes [J]. Critical Reviews in Food Science and Nutrition, 2016, 56(2): 249-265.
[16]徐丹, 雷嬌, 康敏, 等. 真菌對黃曲霉毒素B1污染的防治研究[J]. 中國微生態(tài)學雜志, 2016, 28(2): 234-239.
[17]ROLAND A, BROS P, BOUISSEAU A, et al. Analysis of ochratoxin A in grapes, musts and wines by LC-MS/MS: First comparison of stable is otope dilution assay and diastereomeric dilution assay methods [J]. Analytica Chimica Acta, 2014, 818: 39-45.
[18]GARMENDIA G, VERO S. Occurrence and biodiversity of Aspergillus section Nigri on ‘Tannat grapes in Uruguay [J]. International Journal of Food Microbiology, 2016, 216: 31-39.
[19]GELDERBLOM W C A, JASKIEWICZ K, MARASAS W F O, et al. Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme [J]. Applied and Environmental Microbiology, 1988, 54(7): 1806-1811.
[20]MARILENA B, LOREDANA C, ALAN D W, et al. A saccharomyces cerevisiae wine strain inhibits growth and decreases ochratoxin A biosynthesis by Aspergillus carbonarius and Aspergillus ochraceus [J]. Toxins, 2012, 4 (12): 1468-1481.
[21]楊學威, 段雪榮, 盧新軍, 等. 關(guān)于葡萄酒中赭曲霉毒素A的研究進展[J]. 中國釀造, 2012, 31(11): 12-14.
[22]JOHN P. Mycotoxins: Fumonisins [J]. Encyclopedia of Food Safety, 2014, 2: 299-303.
[23]ZHONG Qiding, LI Guohui, WANG Daobing, et al. Exposure assessment to ochratoxin A in Chinese wine [J]. Journal of Agricultural and Food Chemistry, 2014, 62(35): 8908-8913.
[24]ZOLLNER P, MAYER-HELM B. Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography-atmospheric pressure ionization mass spectrometry [J]. Journal of Chromatography A, 2006, 1136(2): 123-169.
[25]COVARELLI L, BECCARI G, MARINI A, et al. A review on the occurrence and control of ochratoxigenic fungal species and ochratoxin A in dehydrated grapes, non-fortified dessert wines and dried vine fruit in the Mediterranean area [J]. Food Control, 2012, 26(2): 347-356.
[26]TERRA M F, PRADO G, PEREIRA G E, et al. Detection of ochratoxin A in tropical wine and grape juice from Brazil [J]. Journal of the Science of Food and Agriculture, 2013, 93(4): 890-894.
[27]PONSONE M L, COMBINA M, DALCERO A, et al. Ochratoxin A and ochratoxigenic Aspergillus species in Argentinean wine grapes cultivated under organic and non-organic systems [J]. International Journal of Food Microbiology, 2007, 114(2): 131-135.
[28]BELLI N, BAU M, MARIN S, et al. Mycobiota and ochratoxin A producing fungi from Spanish wine grapes [J]. International Journal of Food Microbiology, 2006, 111(S1): S40-S45.
[29]BELLI N, BAU M, MARIN S, et al. Contamination by moulds of grape berries in Slovakia [J]. Food Additives and Contaminants, 2010, 27(5): 738-747.
[30]JIANG Chunmei, SHI Junling, ZHU Chengyong. Fruit spoilage and ochratoxin a production by Aspergillus carbonarius in the berries of different grape cultivars [J]. Food Control, 2013, 30(1): 93-100.
[31]QI Tianyu, RENAUD J B, MCDOWELL T, et al. Diversity of mycotoxin-producing black Aspergilli in canadian vineyards [J]. Journal of Agricultural and Food Chemistry, 2016, 64(7): 1583-1589.
[32]SOMMA S, PERRONE G, LOGRIECO A F, Diversity of black Aspergilli and mycotoxin risks in grape, wine and dried vine fruits [J]. Phytopathologia Mediterranea, 2012, 51 (1): 131-147.
[33]CHRISTOPHER D J, AMANDA B, AARON Z W, et al. High incidence and levels of ochratoxin A in wines sourced from the United States [J]. Toxins, 2017, 10(1): 1-12.
[34]JIANG Chunmei, SHI Junling, CHEN Xianqing, et al. Effect of sulfur dioxide and ethanol concentration on fungal profile and ochratoxin a production by Aspergillus carbonarius during wine making [J]. Food Control, 2015, 47: 656-663.
[35]SUN Xianyu, NIU Yuxue, MA Tingting, et al. Determination, content analysis and removal efficiency of fining agents on ochratoxin A in Chinese wines [J]. Food Control, 2016, 73: 382-392.
[36]李倩倩, 王華, 徐春雅, 等. 加速溶劑萃取-高效液相色譜法測定葡萄酒中赭曲霉毒素A的方法研究[J]. 中國釀造, 2009(4): 137-140.
[37]謝春梅, 李倩倩, 王華. 固相萃取法萃取葡萄酒中赭曲霉毒素A的方法研究[J]. 西北農(nóng)林科技大學學報, 2008, 36(12): 187-191.
[38]何云龍, 梁志宏, 許文濤, 等. 葡萄中碳黑曲霉的分離及其產(chǎn)生赭曲霉毒素A的研究[J]. 中外葡萄與葡萄酒, 2009(1): 4-8.
[39]BRAGULAT M R, ABARCA M L, CABANES F J. An easy screening method for fungi producing ochratoxin A in pure culture [J]. International Journal of Food Microbiology, 2001, 71(2/3): 139-144.
[40]PANTELIDES I S, ARISTEIDOU E, LAZARI M, et al. Biodiversity and ochratoxin A profile of Aspergillus section Nigri populations isolated from wine grapes in Cyprus vineyards [J]. Food Microbiology, 2017, 67: 106-115.
[41]PERRONE G, MULE G, SUSCA A, et al. Ochratoxin A production and amplified fragment length polymorphism analysis of Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger strains isolated from grapes in Italy [J]. Applied and Environmental Microbiology, 2006, 72(1): 680-685.
[42]BATTILANI P, BARBANO C, MARIN S, et al. Mapping of Aspergillus section Nigri in southern Europe and Israel based on geostatistical analysis [J]. International Journal of Food Microbiology, 2006, 111(S1): S72-S82.
[43]BEJAOUI H, MATHIEU F, TAILLANDIER P, et al. Black Aspergilli and ochratoxin A production in French vineyards [J]. International Journal of Food Microbiology, 2006, 111(S1): S46-S52.
[44]LEONG S L, HOCKING A D, PITT J I, et al. Australian research on ochratoxigenic fungi and ochratoxin A [J]. International Journal of Food Microbiology, 2006, 111(S1): S10-S17.
[45]SOMMA S, PERRONE G, LOGRIECO A F. Diversity of black Aspergilli and mycotoxin risks in grape, wine and dried vine fruits [J]. Phytopathologia Mediterranea, 2012, 51(1): 131-147.
[46]PERRONE G, GALLO A. Mycotoxigenic fungi [M]. New York: Springer, 2017: 33-49.
[47]ABARCA M L, BRAGULAT M R, CASTELL, et al. Ochratoxin A production by strains of Aspergillus niger var. niger [J]. Applied and Environmental Microbiology, 1994, 60(7): 2650-2652.
[48]TANIWAKI M H, PITT J I, TEIXEIRA A A, et al. The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods [J]. International Journal of Food Microbiology, 2003, 82(2): 173-179.
[49]GARCA-CELAE, CRESPO-SEMPERE A, GIL-SERNA J, et al. Fungal diversity, incidence and mycotoxin contamination in grapes from two agro-climatic Spanish regions with emphasis on Aspergillus species [J]. Journal of the Science of Food and Agriculture, 2015, 95(8): 1716-1729.
[50]PALUMBO J D, OKEEFFE T L, Ho Y S, et al. Occurrence of ochratoxin A contamination and detection of ochratoxigenic Aspergillus species in retail samples of dried fruits and nuts [J]. Journal of Food Protection, 2015, 78(4): 836-842.
(責任編輯:田 喆)