999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON VORTEX ALIGNMENT AND THE BOUNDEDNESS OF TH Lq-NORM OF VIRUICITY IN INCOMPRESSBLE VU FUD*

2021-01-07 06:42:52SiranLI李思然

Siran LI(李思然)

Department of Mathematics, Rice University,MS 136 P.O. Box 1892,Houston, Texas,77251,USA

Current Address:Department of Mathematics,New York University-Sganghai,office 1146,1555 Century Avenue,Pudong,Shanghai 200122,China E-mail:siran.Li@rice.edu

where S is the 3×3 matrix

The alignment of the vorticity is closely related to the regularity of weak solutions to the Navier–Stokes equations.A celebrated result by Constantin–Fefferman[10]shows that,if the vorticity direction does not change too rapidly in the regions with high vorticity magnitude,then a weak solution is automatically strong.More precisely,denote

and if there are constantsΛandρ>0 such that

whenever|ω(t,x)|,|ω(t,y)|≥Λ,then a weak solutionuon[0,T]must be a classical solution on[0,T].Here,weak solutions are defined in the Leray–Hopf sense:u∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3))with the energy inequality

Throughout the paper,? without subscripts denotes integration over R3,and‖·‖Lq≡‖·‖Lq(R3).The above result of Constantin–Fefferman[10]is established by showing that

which,together with eq.(1.2),implies thatuis classical.Using more refined estimates,in[1],Beir?ao da Veiga–Berselli improved the Lipschitz condition(1.7)to a H¨older condition:

The H¨older exponentβ=1/2 is the best to date.There is extensive literature on the geometric regularity conditions`a la Constantin–Fefferman;see Beir?ao da Veiga–Berselli[1,2],Beir?ao da Veiga[4–6],Berselli[7],Chae[8],Chae–Kang–Li[9],Giga–Miura[14],Gruji′c[15],Vasseur[23],and Zhou[24],as well as the references cited therein.Similar conditions for the Euler equations have also been studied;cf.Constantin–Fefferman–Majda[11].

In this paper we establish a variant of the above results in[1,10].In contrast to eq.(1.9),which concerns the growth of theL2-norm of vorticityω,we study the growth of theLq-norm ofωunder assumptions of the form eq.(1.10),for which the H¨older exponent depends onqonly.

The main result of the paper is as follows:

Theorem 1.1Letu:R3×[0,T]→R3be a weak solution to eqs.(1.1)–(1.3).Assume that forq>5/3 there existΛandρ>0 such that

whenever|ω(t,x)|,|ω(t,y)|≥Λ;the angle?is as in eq.(1.6).In addition,suppose thatω∈Lq(R3×[0,T]).Then

In particular,forq=2,β=1,Theorem 1.1 recovers the result by Constantin–Fefferman[10];and forq=2,β=1/2,the result by Beir?ao da Veiga–Berselli[1].Indeed,whenq=2,the assumptionω∈Lq(R3×[0,T])is automatically verified by the energy inequality(1.8).This result is consistent with the classical Prodi–Serrin regularity criterion(see[19,21]).

Theorem 1.1 provides a new characterisation for the control of vorticity under suitable alignment of the vortex structures in 3D incompressible fluids.Roughly speaking,it suggests a self-improvement property from the average-in-time bound for the(spatial)Lq-norm ofωto the uniform-in-time bound,provided that the vorticity does not change its direction too rapidly wherever its magnitude is large.

2 Preliminary Identities and Estimates

In this section we summarise several identities and inequalities that shall be used in the subsequent developments.

First of all,we recall the singular integral representation of the rate-of-strain tensor S in terms ofω,which is crucial to the arguments in Constantin–Fefferman[10].Denotinga:=a/|a|for three-vectorsa∈R3,it holds(eq.(4)in[10])that

The symbol p.v.denotes the principal value.Then the vortex stretching term S:(ω?ω)can be expressed as

where

andeiare arbitrary three-vectors(column vectors)fori=1,2,3.As shown on pp.778–780 in[10],the bound for angle?can be translated to a bound for the geometrical termD:

Lemma 2.1Under the assumptions of Theorem 1.1,we have

Next,the time-evolution of theLq-norm ofω(for anyq≥1)has been derived by Qian in[20],which is as follows.See the proof of Lemma 2 in[20].

Lemma 2.2Letube a weak solution to eqs.(1.1)–(1.3).Then,forq≥1,it holds that

Finally,in Section 3,we shall make crucial use of the Hardy–Littlewood–Sobolev interpolation inequality(cf.p106,Lieb–Loss[17]),withn=3 andλ=2+δ.

Lemma 2.3Let 1

3 Proof of Theorem 1.1

Equipped with Lemmas 2.1–2.3 above,we are ready to prove Theorem 1.1.

As in Constantin–Fefferman[10],let us decompose the vorticity into“big”and“small”parts with respect to the(large)constantΛ>0 in Theorem 1.1.To this end,takingχ∈C∞([0,∞[),0≤χ≤1,χ≡1 on[0,1],andχ≡0 on[2,∞[,we define

Putting together Cases 1 and 2 and using that 3?β=λ+2,we now complete the proof.

AcknowledgementsThe author is indebted to Professor Zhongmin Qian for many insightful discussions and generous sharing of ideas,to Professor Gui-Qiang Chen for his lasting support,and to Professor Zoran Gruji′c for communicating with us about the paper[16].Part of this work was done during SL’s stay as a CRM–ISM postdoctoral fellow at the Centre de Recherches Math′ematiques,Universit′e de Montr′eal,and the Institut des Sciences Math′ematiques.The author would like to thank these institutions for their hospitality.

主站蜘蛛池模板: 欧美成人aⅴ| 免费A级毛片无码免费视频| 亚洲一区二区三区国产精品| 国产成人综合在线观看| 亚洲丝袜第一页| 91视频首页| 国产成人精品18| 日韩性网站| 国产精品蜜芽在线观看| 成人午夜天| 亚洲美女视频一区| 亚洲最大福利视频网| 久久成人国产精品免费软件| 在线视频一区二区三区不卡| 国产日韩欧美在线播放| 直接黄91麻豆网站| 九色国产在线| 激情综合网激情综合| 久久夜色撩人精品国产| 亚洲啪啪网| 免费在线播放毛片| 日本在线免费网站| 永久免费精品视频| 免费国产黄线在线观看| 视频二区中文无码| 亚洲精选高清无码| 国产精品女同一区三区五区| 国产成人免费手机在线观看视频 | 亚洲婷婷六月| 99re视频在线| 性喷潮久久久久久久久| 亚洲精品无码成人片在线观看 | 真人高潮娇喘嗯啊在线观看| 91福利免费视频| 久久久精品久久久久三级| 99国产精品国产| 黄色网页在线播放| 亚洲首页在线观看| 国产特级毛片| 国产精品刺激对白在线| 亚洲男女在线| 青青草91视频| 欧美午夜久久| 亚洲欧洲天堂色AV| 亚洲国产成熟视频在线多多 | 成人免费网站久久久| 亚洲天堂777| 人妻91无码色偷偷色噜噜噜| 国产精品欧美激情| 欧美专区日韩专区| 欧美日韩中文字幕在线| 国产成人综合亚洲欧美在| 国产人成在线视频| 亚洲免费三区| 中文字幕2区| 中文字幕在线播放不卡| 婷婷激情五月网| 色首页AV在线| 欧美国产在线看| 日韩欧美在线观看| 喷潮白浆直流在线播放| 伊人激情综合网| 亚洲天堂精品视频| 国内精品自在欧美一区| 日韩黄色大片免费看| 免费A级毛片无码免费视频| 最新精品国偷自产在线| 精品無碼一區在線觀看 | 国产精品所毛片视频| 亚洲国内精品自在自线官| 美女高潮全身流白浆福利区| 久久久精品久久久久三级| 爆乳熟妇一区二区三区| 国产在线视频福利资源站| 亚洲乱伦视频| 亚洲精品国产综合99| 91在线精品免费免费播放| 国产精品xxx| 日韩在线2020专区| 亚洲AV无码久久天堂| 在线观看国产精品日本不卡网| 在线精品视频成人网|