999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A COUPLED SYSTEM OF KIRCHHOFF TYPE EQUATIONS?

2021-01-07 06:44:34YaghoubJALILIAN

Yaghoub JALILIAN

Department of Mathematics,Razi University,Kermanshah,Iran

E-mail:y.jalilian@razi.ac.ir

Abstract In this paper,we study the coupled system of Kirchhoff type equationswhere a,b>0,α,β>1 and 3<α+β<6.We prove the existence of a ground state solution for the above problem in which the nonlinearity is not 4-superlinear at infinity.Also,using a discreetness property of Palais-Smale sequences and the Krasnoselkii genus method,we obtain the existence of infinitely many geometrically distinct solutions in the case when α,β≥2 and 4≤α+β<6.

Key words Kirchhoff equation;Nehari-Poho?zave manifold;constrained minimization;ground state solution

1 Introduction

In this article,we investigate the existence and multiplicity of solutions to the coupled system of Kirchhoff type equations

wherea,b>0,α,β>1 and 3<α+β<6.

Kirchhoff type equations are related to the stationary analogue of the equation proposed by Kirchhoff[1]which is an extension of the classical D’Alembert’s wave equation for free transversal vibrations of a clamped string.Equation(1.2)arises in various physical and biological systems.For example,in biological systems,ucould describe the population density in a biological phenomena such as bacteria spreading(see[2]).

The assumptions considered in[5]imply the Cerami compactness condition for the energy functional.As far as we know[5]is the only paper considering the existence of infinitely many solutions for(1.3)in whichf(x,u)may not be 4-superlinear at infinity.To the best of our knowledge,there are a few results concerning the existence of solutions for coupled Kirchhoff type systems.Shi and Chen[16]investigated the existence of a ground state solution for the system

wherea,b>0,λ>0 is a real parameter,α>2,β>2,α+β<6 andV(x),W(x)are nonnegative continuous functions on R3.They established the existence and multiplicity of solutions to(1.5)forλ>λ0>0.In this paper,the assumption 4<α+βis crucial to prove the boundedness of Palais-Smale sequences.This assumption implies the 4-superlinearity of the nonlinearity at infinity.Therefore,the results of[12,16]are not applicable for(1.1)when 3<α+β≤4.

The aim of this paper is to prove the existence of a ground state solution to the coupled Kirchhoff type system(1.1)when 3<α+β<6.We use an argument developed by[11],to obtain a natural constraint via the Nehari manifold and the Poho?zave identity.Moreover,using the Krasnoselskii genus,we investigate the existence of infinitely many geometrically distinct solutions in the case whenα,β≥2 and 4≤α+β<6.

In our first main result we prove the existence of a ground state solution for(1.1).

Theorem 1.1Assumeα,β>1 and 3<α+β<6.Then problem(1.1)has a ground state solution.

In our next result we study the multiplicity of solutions for(1.1).Letw=(u,v)be a solution of(1.1).Define the orbit ofwunder the action of Z3as O(w):={w(·?k):k∈Z3}.Two solutionsw1andw2are said to be geometrically distinct if O(w1)and O(w2)are disjoint.

Theorem 1.2Letα,β≥2 and 4≤α+β<6.Then problem(1.1)has infinitely many geometrically distinct solutions.

NotationsC,C1,C2,···are positive constants.B(r,x):={y∈R3:|x?y|

2 Nehari-Poho?zave Manifold

4 Proof of Theorem 1.2

We also recall the definition of the Krasnoselskii genus[19].A setF?Xis said to be symmetric ifF=?F.Let

ForF≠?andF∈Σ,the Krasnoselskii genus ofFis the least integernsuch that there exists an odd functionf∈C(F,Rn{0}).The genus ofFis denoted byγ(F).Setγ(?):=0 andγ(F):=∞if there exists nofwith the above property for anyn.

According to Theorem 1.1 the setKis nonempty.Let G be a subset ofKsuch that G=?G and each orbit O(u)?Khas a unique representative in G.We shall show that G has infinitely many elements.In the sequel,by contradiction,we assume that G is a finite set and this will lead to a contradiction.

Lemma 4.1κ:=inf{‖v?w‖:v,w∈K∪{0},v≠w}>0.

ProofThe proof is exactly the same as Lemma 2.13 in[20]and we omit it.We have to mention that in[20]the infimum is taken over allv,w∈K.Since 0 is an isolated critical point,κremains positive.

主站蜘蛛池模板: 免费看美女自慰的网站| 久久99精品久久久久纯品| a毛片免费在线观看| 91免费国产高清观看| 欧美日本中文| 国产精品9| 国产一区成人| 亚洲精品国产首次亮相| 国产欧美另类| 亚洲精品图区| 国产激爽大片在线播放| 人妻夜夜爽天天爽| 国产精品亚洲а∨天堂免下载| 国产精品视屏| 日本不卡在线视频| 成人午夜在线播放| 91久久国产热精品免费| 国产成人精品在线| 国产精品美乳| 国产精品护士| 制服丝袜无码每日更新| 欧美a√在线| 欧美亚洲国产一区| 白浆免费视频国产精品视频 | 色噜噜狠狠狠综合曰曰曰| 国产人碰人摸人爱免费视频| 久久女人网| 国产一级精品毛片基地| 欧美啪啪网| 亚洲精品视频在线观看视频| 国产丝袜丝视频在线观看| 成色7777精品在线| 国产一区二区影院| 在线免费无码视频| 伊人久久精品无码麻豆精品 | 亚洲国产理论片在线播放| av午夜福利一片免费看| 国产va免费精品观看| 国产精品视频免费网站| 亚洲天堂首页| 2018日日摸夜夜添狠狠躁| 永久成人无码激情视频免费| 亚洲福利视频一区二区| 午夜国产不卡在线观看视频| 91青青在线视频| 视频二区亚洲精品| 色综合五月| 91青青草视频| 欧美成人一级| 国产男人的天堂| 国语少妇高潮| 免费国产高清精品一区在线| 高清乱码精品福利在线视频| 欧美色伊人| 亚洲午夜天堂| 亚洲日韩AV无码一区二区三区人| 国产精品自在线天天看片| 欧美日韩在线国产| 在线欧美国产| 午夜视频日本| 亚洲欧洲日韩久久狠狠爱| 国产麻豆精品在线观看| 国产人前露出系列视频| 亚洲欧美日韩成人在线| 国产精品高清国产三级囯产AV| 国产免费久久精品99re丫丫一| 国产精品网址在线观看你懂的| 日本成人一区| 免费视频在线2021入口| 58av国产精品| 日本91视频| 99成人在线观看| 国产青青操| 国产精品无码影视久久久久久久| 亚洲三级成人| av一区二区三区高清久久| 国产精品网址你懂的| 国产毛片高清一级国语| 国产91小视频在线观看| 99热国产这里只有精品无卡顿"| 久久久久久国产精品mv| 在线播放91|