呂浩然,趙印明,王敏寧,黎永前
(1.航空工業(yè)北京長(zhǎng)城計(jì)量測(cè)試技術(shù)研究所,北京 100095;2.西北工業(yè)大學(xué)空天微納系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710072)
目前,應(yīng)用于工程的傳感器主要有電阻應(yīng)變式傳感器、壓電式力傳感器和壓阻式力傳感器。電阻應(yīng)變式傳感器之中的四柱式電阻應(yīng)變式力傳感器因測(cè)量原理的不同,相較其它力學(xué)傳感器具有優(yōu)越的靜態(tài)性能,但動(dòng)態(tài)性能較差。研究與提升四柱式電阻應(yīng)變式力傳感器的動(dòng)態(tài)性能成為其發(fā)展與應(yīng)用中的關(guān)鍵技術(shù)問(wèn)題。
國(guó)外對(duì)于力傳感器動(dòng)態(tài)特性的研究多集中于慣性補(bǔ)償和濾波消噪方面[1-8],國(guó)內(nèi)則集中在動(dòng)態(tài)測(cè)試中的噪聲處理、傳感器的動(dòng)態(tài)補(bǔ)償和解耦方面[9-14],力傳感器自身結(jié)構(gòu)對(duì)固有頻率的影響以及改進(jìn)方法還未形成系統(tǒng)性的研究,四柱式傳感器作為一種新式結(jié)構(gòu)的力傳感器,相關(guān)研究則更少。傳感器最重要的動(dòng)態(tài)特性指標(biāo)是固有頻率,它是研究與優(yōu)化其他動(dòng)態(tài)性能參數(shù)的基礎(chǔ)。本文對(duì)四柱式傳感器固有頻率進(jìn)行研究與優(yōu)化,開(kāi)展四柱式傳感器的固有頻率與結(jié)構(gòu)參數(shù)的關(guān)系分析與研究,提升應(yīng)變式傳感器固有頻率,進(jìn)而提升傳感器的動(dòng)態(tài)性能。
固有頻率理論包含兩點(diǎn)重要結(jié)論[15-17],這兩點(diǎn)結(jié)論與傳感器剛度分布和質(zhì)量分布結(jié)合,是固有頻率模型建立的重要理論依據(jù)。
1)固有頻率是物體的固有屬性,由物體自身的性質(zhì)(如質(zhì)量、材質(zhì)等)決定,與外界條件(如受力狀態(tài)、約束狀態(tài)以及空間狀態(tài)等)無(wú)關(guān)。
2)固有頻率僅與物體的剛度分布與質(zhì)量分布有關(guān),用公式表示為

式中:ω為物體的固有頻率,rad/s;kp為剛度分布,N/m;mp為質(zhì)量分布,kg。
四柱式傳感器的結(jié)構(gòu)外形如圖1所示,四根立柱與上下端面為一體化結(jié)構(gòu),下端面作為固定端受到約束,上端面作為自由端受力。從形式上,每根立柱都可以簡(jiǎn)化為一個(gè)一端簡(jiǎn)支、一端自由的梁,可將其視為一個(gè)獨(dú)立的測(cè)量單位[1]。

圖1 四柱式傳感器外形示意圖Fig.1 Outline diagram of four-column sensor
研究傳感器的測(cè)量原理可知,外部載荷傳遞到彈性體上的最終結(jié)構(gòu)為貼片的四根立柱,四柱式彈性體的動(dòng)態(tài)性能主要與四根立柱的動(dòng)態(tài)性能有關(guān)。
分析圖2所示的傳感器的模態(tài)仿真結(jié)果可知,彈性體下端面不參與頻率響應(yīng)過(guò)程,上端面模態(tài)頻率響應(yīng)復(fù)雜且不穩(wěn)定,均無(wú)法作為彈性體固有頻率模型建立的主要對(duì)象;而四根立柱模態(tài)分析結(jié)果顯示其固有頻率響應(yīng)集中且穩(wěn)定,對(duì)頻率響應(yīng)分析起主導(dǎo)地位,可作為四柱式傳感器固有頻率模型建立的主要對(duì)象。

圖2 四柱式傳感器模態(tài)頻率分析圖Fig.2 Modal frequency analysis diagram of four-column sensor
綜合上述分析可知,傳感器固有頻率模型建立的主要對(duì)象為其四根立柱,最重要的建模步驟為將等效梁模型與傳感器的質(zhì)量分布與剛度分布分析相結(jié)合,得到四柱式傳感器固有頻率模型。
分析四柱式傳感器的質(zhì)量分布與剛度分布,建立起傳感器整體固有頻率與單立柱等效梁模型的固有頻率的關(guān)系。四柱式傳感器的立柱與上下端面為一體化連接,四根立柱相當(dāng)于彼此“并聯(lián)”,增加了其整體剛度。該結(jié)構(gòu)并聯(lián)形式為胡克定律中的彈簧串并聯(lián)問(wèn)題的外延范疇[18-20],整體并聯(lián)系統(tǒng)的剛度為各子系統(tǒng)的剛度之和[18-20],故可知:彈性體的剛度分布約為每根立柱剛度分布的4倍。由圖2所示的仿真圖像可知,該結(jié)論正確。
可將四柱式傳感器的每根立柱視為一個(gè)“獨(dú)立的傳感器”[1],該形式同樣屬于胡克定律中的并聯(lián)系統(tǒng)運(yùn)動(dòng)問(wèn)題外延范疇[18-20],結(jié)合傳感器立柱貼片測(cè)量的方式,忽略維間微小耦合,假設(shè)工作時(shí)每根立柱自由振動(dòng)不受其他立柱的狀態(tài)影響,則傳感器整體的質(zhì)量為每根立柱自身的質(zhì)量分布。圖2所示的仿真圖像表明,四柱式傳感器的結(jié)構(gòu)形式符合上述理論。
綜合上述剛度分布與質(zhì)量分布的分析,由固有頻率定義式可知,彈性體整體的固有頻率ωn與每根立柱的固有頻率ω0的關(guān)系為

式中:k0為立柱剛度分布,N/m;m0為立柱質(zhì)量分布,kg,mp=m0。
由式(2)可得傳感器整體的固有頻率約為每根立柱的2倍。
如圖3所示,將沿徑向方向的立柱橫截面邊長(zhǎng)參數(shù)定義為長(zhǎng)度參數(shù)l,沿周向方向的邊長(zhǎng)參數(shù)定義為寬度參數(shù)w,垂直于上下端面方向的柱體高度參數(shù)定義為高度參數(shù)h。

圖3 四柱式傳感器結(jié)構(gòu)示意圖Fig.3 Structure diagram of four-column sensor
建立等效梁模型的固有頻率模型時(shí),參照了胡海昌[21]的變分法研究過(guò)程,并應(yīng)用在四柱式傳感器固有頻率模型的研究中。
線(xiàn)性彈性體在沒(méi)有外力作用的情況下作固有振動(dòng),設(shè)應(yīng)力分量的振幅為σx,σy與σz,位移分量的振幅為u,v和w,圓周頻率為ω,運(yùn)動(dòng)方程為

進(jìn)行變分法求解可得線(xiàn)性彈性體的各階固有頻率計(jì)算式為

式(4)的最小極值與一階固有頻率唯一對(duì)應(yīng),其極值從小到大依次排列即為物體的各階固有頻率。
在得到了一般線(xiàn)性彈性體的固有頻率公式后,可再對(duì)其引入一般線(xiàn)性均勻直梁的約束條件,進(jìn)而獲得一般線(xiàn)性均勻直梁的固有頻率公式。再通過(guò)對(duì)其加入相應(yīng)的等效梁模型的約束條件,最終獲得等效梁模型的固有頻率公式為

由前述結(jié)論,彈性體整體的固有頻率約為每根立柱的2倍,將角頻率公式轉(zhuǎn)化為圓頻率公式,并將截面慣性矩式展開(kāi),得到彈性體的固有頻率模型為

式中:f為四柱式傳感器固有頻率,Hz;l為四立柱長(zhǎng)度參數(shù),m;w為寬度參數(shù),m;h為高度參數(shù),m;E為材料彈性模量,Pa;ρ為密度,kg/m3。
由式(6)可知,提高四柱式傳感器固有頻率的方法有兩類(lèi):改進(jìn)四柱式傳感器的結(jié)構(gòu)參數(shù)和改進(jìn)制成傳感器材料參數(shù),其中第一類(lèi)方法為本研究的重要內(nèi)容,第二類(lèi)方法屬于其他學(xué)科范疇,不作為本文研究?jī)?nèi)容。
為驗(yàn)證理論研究結(jié)論的正確性即(增大四立柱長(zhǎng)度參數(shù)l,增大四立柱寬度參數(shù)w,減小四立柱高度參數(shù)h可使四柱式傳感器固有頻率提升,反之亦然),通過(guò)Solidworks有限元仿真軟件對(duì)四柱式傳感器固有頻率與其結(jié)構(gòu)參數(shù)的關(guān)系進(jìn)行分析,整個(gè)仿真工作對(duì)下端面進(jìn)行固定約束,各結(jié)構(gòu)參數(shù)變化時(shí),不會(huì)出現(xiàn)柱體相交接觸等問(wèn)題。
以某型四柱式傳感器的四柱式彈性體為仿真研究對(duì)象,其初始結(jié)構(gòu)尺寸(四立柱的長(zhǎng)×寬×高)為15×15×20 mm,上端面尺寸為直徑105 mm,厚度H=20 mm。四立柱間距d=65 mm。
四柱式彈性體的材料為合金材料40GrNiMoA,該材料具有低滯彈性與低蠕變特性。其彈性模量E為2.09×1011Pa,密度ρ為7830 kg/m3。
對(duì)初始結(jié)構(gòu)的四柱式傳感器固有頻率進(jìn)行有限元仿真計(jì)算,以該仿真結(jié)果作為后續(xù)仿真研究的對(duì)比對(duì)象與評(píng)價(jià)傳感器結(jié)構(gòu)參數(shù)改進(jìn)后固有頻率提升效果的基準(zhǔn)。四柱式彈性體固有頻率的仿真結(jié)果與其實(shí)驗(yàn)經(jīng)驗(yàn)結(jié)果相近,如表1所示,并且理論結(jié)果與仿真結(jié)果間的相對(duì)誤差較小,理論模型的研究結(jié)論可作為仿真研究的指導(dǎo)。

表1 四柱式彈性體各階響應(yīng)頻率Tab.1 Response frequency of four-column elastomer at each order
四柱式彈性體的立柱外形較為簡(jiǎn)單,忽略導(dǎo)角類(lèi)結(jié)構(gòu),可將其簡(jiǎn)化為一根長(zhǎng)方形柱體。研究四立柱結(jié)構(gòu)參數(shù)改變時(shí)其固有頻率變化,應(yīng)考慮四立柱對(duì)稱(chēng),對(duì)其進(jìn)行相同的結(jié)構(gòu)參數(shù)變化。
對(duì)四立柱長(zhǎng)度進(jìn)行變化的方法主要包括內(nèi)擴(kuò)和外擴(kuò)兩類(lèi),如圖4所示,保持四立柱內(nèi)側(cè)面位置不變,沿上下端面半徑方向向外增大l,稱(chēng)為外擴(kuò);保持四立柱外側(cè)面位置不變,沿上下端面半徑方向向內(nèi)增大l,稱(chēng)為內(nèi)擴(kuò)。

圖4 立柱長(zhǎng)度參數(shù)變化示意圖Fig.4 Schematic diagram of column length parameter change
為研究外擴(kuò)及內(nèi)擴(kuò)條件下傳感器固有頻率的變化,分別外擴(kuò)5 mm與10 mm,內(nèi)擴(kuò)5,10,15 mm,并在Solidworks仿真軟件中畫(huà)出相應(yīng)結(jié)構(gòu)的四柱式傳感器模型,并對(duì)其進(jìn)行有限元仿真,分析其各階固有頻率。外擴(kuò)仿真結(jié)果見(jiàn)表2。

表2 外擴(kuò)后的各階響應(yīng)頻率Tab.2 Response frequency of expanded at each order
由仿真結(jié)果可知,外擴(kuò)后的四柱式傳感器與原結(jié)構(gòu)的傳感器相比,固有頻率得到了提高。且外擴(kuò)10 mm條件下,四柱式傳感器的各階固有頻率提高更多。圖5所示的固有頻率隨外擴(kuò)參數(shù)變化示意圖也顯示,四柱式傳感器的固有頻率隨外擴(kuò)參數(shù)的增加而增加。

圖5 固有頻率隨外擴(kuò)參數(shù)變化示意圖Fig.5 Schematic diagram of natural frequency variation with external expansion parameters
表3為內(nèi)擴(kuò)5,10,15 mm后三款四柱式傳感器的各階固有頻率。

表3 內(nèi)擴(kuò)后的各階響應(yīng)頻率Tab.3 Response frequency of internal at each order
仿真結(jié)果表明,分別內(nèi)擴(kuò)5,10,15 mm后的四柱式傳感器,與原結(jié)構(gòu)的四柱式傳感器相比,其各階固有頻率均得到了提高,并且,圖6所示的固有頻率隨內(nèi)擴(kuò)參數(shù)變化示意圖也表明,四柱式傳感器的內(nèi)擴(kuò)尺寸越大,其固有頻率越高。

圖6 固有頻率隨內(nèi)擴(kuò)參數(shù)變化示意圖Fig.6 Schematic diagram of natural frequency variation with internal expansion parameters
綜上所述,無(wú)論內(nèi)擴(kuò)還是外擴(kuò),只要傳感器立柱長(zhǎng)度參數(shù)l增大,傳感器的固有頻率就會(huì)提高,并且傳感器的固有頻率隨立柱長(zhǎng)度參數(shù)l增大而增加,這與理論研究的結(jié)論相同。
對(duì)四立柱進(jìn)行寬度參數(shù)w變化的仿真研究,以驗(yàn)證其對(duì)固有頻率的影響。將w分別增大15 mm和25 mm,仿真分析各階固有頻率,結(jié)果如表4所示。

表4 w增大后的各階響應(yīng)頻率Tab.4 Response frequency of increase w at each order
仿真結(jié)果與圖7所示的固有頻率隨寬度參數(shù)變化示意圖表明,傳感器固有頻率隨著立柱寬度參數(shù)w增大而提高。該仿真研究的結(jié)論與理論研究結(jié)論一致。

圖7 固有頻率隨寬度參數(shù)變化示意圖Fig.7 Schematic diagram of variation of natural frequency with width parameters
通過(guò)改變四立柱的高度進(jìn)行相應(yīng)結(jié)構(gòu)參數(shù)下的固有頻率仿真,驗(yàn)證立柱高度參數(shù)變化對(duì)各階固有頻率的影響。對(duì)立柱高度參數(shù)h分別抬高與降低10 mm后的四柱式傳感器進(jìn)行有限元仿真分析,各階仿真固有頻率結(jié)果如表5所示。

表5 h變化后的各階響應(yīng)頻率Tab.5 Response frequency of h column at each order
由表5所示的仿真結(jié)果與圖8所示的固有頻率隨立柱高度參數(shù)變化的示意圖可知,傳感器固有頻率隨著立柱高度參數(shù)h減小而提高。該結(jié)論與理論研究結(jié)論一致。

圖8 固有頻率隨高度參數(shù)變化示意圖Fig.8 Schematic diagram of variation of natural frequency with height parameters
基于理論與仿真研究結(jié)論,對(duì)現(xiàn)有四柱式彈性體進(jìn)行了改進(jìn)研制,設(shè)計(jì)上增大了其四立柱橫截面邊長(zhǎng)(即長(zhǎng)度參數(shù)l與寬度參數(shù)w),減小了四立柱高度參數(shù)h,改進(jìn)前后各結(jié)構(gòu)參數(shù)如表6所示。

表6 改進(jìn)前后結(jié)構(gòu)參數(shù)對(duì)比Tab.6 Comparison of structural parameters before and after improvement
對(duì)改進(jìn)前后的四柱式傳感器進(jìn)行標(biāo)準(zhǔn)錘擊法實(shí)驗(yàn),標(biāo)準(zhǔn)錘擊法的原理為通過(guò)力錘敲擊獲取脈沖激勵(lì)信號(hào),來(lái)對(duì)傳感器進(jìn)行激勵(lì)與測(cè)量。實(shí)驗(yàn)測(cè)試了對(duì)傳感器動(dòng)態(tài)性能影響最大的Z軸振蕩固有頻率(第六階固有頻率),改進(jìn)后的四柱式傳感器實(shí)驗(yàn)響應(yīng)波形曲線(xiàn)如圖9所示。測(cè)試得到的四柱式傳感器改進(jìn)前后的固有頻率與理論固有頻率的相對(duì)誤差分析如表7所示。

表7 初始結(jié)構(gòu)與改進(jìn)結(jié)構(gòu)固有頻率對(duì)比與分析Tab.7 Comparison and analysis of natural frequencies between initial structure and improved structure

圖9 實(shí)驗(yàn)響應(yīng)波形圖Fig.9 Experimental response waveform
該實(shí)驗(yàn)結(jié)果驗(yàn)證了理論與仿真研究結(jié)論的正確性,在保證不犧牲傳感器大量靜態(tài)性能的前提下,將四柱式傳感器的固有頻率由9749.8 Hz提升至15537.5 Hz,即提升了近50%的固有頻率,進(jìn)而使動(dòng)態(tài)測(cè)試的工作頻率范圍與動(dòng)態(tài)力值變化的跟隨性能得到了提升。
本文通過(guò)改進(jìn)四柱式力傳感器的結(jié)構(gòu)參數(shù)來(lái)提升傳感器固有頻率,結(jié)合理論分析、仿真研究與實(shí)驗(yàn)研究,提出了通過(guò)改變四柱式力傳感器結(jié)構(gòu)參數(shù)和材料參數(shù)的方法來(lái)提升固有頻率,為今后改進(jìn)、設(shè)計(jì)高動(dòng)態(tài)性能四柱式傳感器奠定了基礎(chǔ)。由于目前應(yīng)用的四柱式力傳感器材料的性能符合靜態(tài)力學(xué)指標(biāo),故不能通過(guò)更換材料的方法來(lái)提升傳感器動(dòng)態(tài)性能,且材料改進(jìn)研究也不屬于本學(xué)科研究?jī)?nèi)容,故改進(jìn)材料參數(shù)的研究結(jié)論可作為輔助手段與進(jìn)一步優(yōu)化應(yīng)用的方向。