999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

淀粉老化的影響因素及其檢測技術研究進展

2021-03-10 08:51:05王宏偉許可張艷艷劉興麗張華
關鍵詞:結構檢測

王宏偉 許可 張艷艷 劉興麗 張華

摘要:基于淀粉結構和老化機制,闡述了外源性組分對淀粉老化的影響;同時,從宏觀和分子水平上對檢測淀粉老化的熱分析、光譜分析、顯微成像等技術進行了綜述.

指出:淀粉的老化過程受非淀粉類碳水化合物、鹽、蛋白質、脂質等外源性組分的影響,但由于淀粉類食品構成成分復雜,各組分在儲存過程中均可能與淀粉分子發生相互作用,且簡單的模型體系無法替代實際的食品體系,因而有必要更深入地探討復雜模型下淀粉老化特性的變化,從根本上有效延緩或抑制淀粉的老化;另外,由于目前研究者多采用較為單一的分析技術揭示淀粉的老化機制,且常用分析技術尚存在分析指標單一、操作難度較大等局限,故

在實際應用中,應根據淀粉樣品的信息將多種檢測技術相結合,更全面地分析淀粉老化特性的變化情況,以延緩淀粉類食品老化,延長產品貨架期.

Abstract:

Based on the knowledge of starch structure and retrogradation mechanism,this study evaluated the impact of exogenous components on starch retrogradation.As well,multiple analytical techniques including thermal analysis,spectral analysis and microscopic imaging were applied to determine the retrogradation of starch from macroscopic and molecular level.This study indicated that starch retrogradation could be affected by various exogenous components such as non-starch carbohydrate,salt,protein and lipid.However,starch-based foods was a complicated system and each component may interact with starch molecules during storage,thus it was necessary to further investigate the mechanism of starch retrogradation under complicated model changes rather than simple model system.Furthermore,current researchers normally revealed the starch retrogradation with single analysis technology,and common analysis techniques still have limitations such as single analysis index and difficulty in operation.Therefore,it was invaluable to measure starch retrogradation behaviors with combined techniques according to the information of food samples in practical application,which was helpful for a comprehensive understanding on the changes of starch retrogradation properties,hence impeding the retrogradation degree of starchy-foods and prolong their shelf-life.

0 引言

淀粉作為食品的重要組分,不僅可提供人體所必需的能量,還可影響淀粉類食品的質構、口感、可接受性等品質屬性.淀粉類食品大多經歷了某種形式的加工或烹飪,導致淀粉吸水膨脹形成具有一定黏度的糊狀體系,但在降溫和儲存過程中,淀粉分子在空間構象上經重排后,會形成有序、穩定的凝膠結構,這一現象被稱為淀粉老化或回生[1-3].淀粉老化通常會導致淀粉類食品品質的劣變,如質構劣化、透明度下降、口感粗糙等,從而縮短淀粉類食品的貨架期,降低消費者的可接受程度[4].然而,淀粉的老化行為在某些加工應用中也是可取的,例如,在早餐谷物和脫水土豆泥的生產過程中,淀粉老化可改變產品的結構和感官性能,并能形成抗性淀粉[5-6].鑒于此,如何合理調控淀粉的老化程度并考查體系的老化特性,對于淀粉類食品的加工和食用品質的改良均具有重要意義.近年來,研究者多聚焦于其他食品組分對淀粉老化特性的影響,并運用多種現代檢測技術對其老化程度進行準確分析,以期通過常見的、經濟的技術手段真正實現淀粉工業化應用的老化調控,進而實現淀粉類食品的品質調控,推動食品加工產業的發展[7-9].本文擬基于淀粉結構與功能,從淀粉老化的機制、影響因素、檢測技術等方面對近年來國內外的相關研究進行綜述,以期為淀粉類食品的老化調控、食用品質提升、貨架期延長等提供參考.

1 淀粉結構與功能特性

淀粉是由線性直鏈淀粉和分支型支鏈淀粉構成的天然高分子聚合物,二者在淀粉顆粒內部形成了結晶區和無定形區,構成了淀粉多尺度結構的基礎.淀粉的多尺度結構如圖1所示.

根據淀粉結構尺度的不同可將其分為:分子鏈結構 (chain,0.1~1.0 nm)、結晶結構(crystalline,1~4 nm)、層狀結構(amorphous and crystalline lamellae,9~10 nm)、生長環(growth rings,120~150 nm)和顆粒結構(granules,2~100 μm).對淀粉結構的認知是一個循序漸進、不斷深入的過程[10-11].1940年代,W.N.Haworth[12]提出了支鏈淀粉的層疊式結構模型,隨后,許多學者對淀粉顆粒的結構模型進行了改善.其中,Z.Nikuni[13]提出,直鏈淀粉與支鏈淀粉是相互結合存在的,F.Dexter等[14-16]則認為,淀粉顆粒內部的直鏈淀粉隨機或呈螺旋結構存在,并對支鏈淀粉分子的“簇”狀結構模型進行了改善.根據高分子聚合物的結構層次,淀粉可分為近程結構(一級結構)、遠程結構(二級結構)和聚集態結構(三級結構)3個結構層次.其中,淀粉的近程結構涉及直鏈、支鏈部分的鏈構造和構型及其葡萄糖單元;遠程結構涉及淀粉分子的大小和分布、分子鏈結構的內旋轉構象和柔順性;聚集態結構涉及淀粉分子間螺旋結構的幾何排列和堆砌形成的內部結構,主要包括晶態、非晶態、晶體結構的取向等[17].

3.3 蛋白質

蛋白質通常是淀粉類食品的關鍵成分,在提升食品品質和營養方面發揮著重要作用,同時也可與淀粉分子發生相互作用,從而延緩淀粉的老化[50].王玉珠[51]研究表明,高含量的大米蛋白可阻礙儲存過程中淀粉分子鏈的遷移,抑制淀粉分子鏈間以氫鍵堆積的結晶,在一定程度上抑制直鏈淀粉的有序重排,降低成核和結晶速率,進而降低淀粉的老化速率.X.J.Lian等[52]研究發現,大豆蛋白水解液可抑制玉米淀粉的老化.這是因為在老化過程中,玉米淀粉的還原末端與多肽發生反應,其中由7 個氨基酸組成的多肽起著關鍵作用.牛海力等[53]研究發現,豬血漿蛋白水解物可使玉米淀粉凝沉性顯著降低,有效抑制玉米淀粉的老化.這是因為直鏈淀粉和支鏈淀粉的螺旋結構與豬血漿蛋白水解物側鏈中的一些羥基彼此作用、彼此包埋,抑制了玉米淀粉的老化.P.K.Goel等[54]研究發現,將酪蛋白及其水解物加入到淀粉糊中,可改變其流變性和黏性.

3.4 脂質

脂質是許多谷物和淀粉類食品中含有的大分子物質,雖然含量較低,但在影響淀粉和淀粉類食品的性質方面具有重要作用[55-56].T.W.Zhu等[57]研究發現,在冷凍面團中加入通過脂酶TLIM催化的棕櫚硬脂素和大豆油酯交換制備的速凍特殊脂肪可增加淀粉凝膠化焓,降低面團的老化程度.脂質可以通過包埋在直鏈淀粉螺旋腔中的方式與淀粉相互作用形成包合復合物[58].在淀粉類食品中,添加脂質或存在游離脂質通常可在食品加工和儲存中延緩淀粉老化.對于不同類型的脂質,脂肪酸鏈越短,對于延緩淀粉老化越有效.此外,在淀粉-水系統中添加脂質還可阻礙水分子滲透到淀粉顆粒中,進而在加熱過程中阻礙直鏈淀粉的浸出,限制直鏈淀粉分子的移動,最終導致直鏈淀粉老化減慢;在加熱或儲存期間所形成的直鏈淀粉-脂質復合物可抑制直鏈淀粉分子之間雙螺旋結構的交聯和形成,進而延緩它們的老化[58-59].然而,目前有關脂質阻礙淀粉老化的研究多以脂肪酸分子為主,對于單甘酯和油脂抗老化,以及脂質與支鏈淀粉分子外部分支之間相互作用的研究較少,因此,尚需進一步研究脂質對淀粉老化的影響.

4 淀粉老化的檢測技術

淀粉的老化對淀粉類食品的質構和感官品質影響顯著,因此,通過研究找到一種延緩或抑制淀粉老化的技術和途徑,對研發新食品、提高食品品質均十分重要.但不同淀粉類食品的老化機理有差異,根據淀粉凝膠體系在老化過程中物理化學性質的變化,有針對性地選擇淀粉檢測技術,將有助于深入研究淀粉的老化現象.淀粉老化是一個受多因素影響的復雜過程,因而有必要采取多重分析技術從宏觀和分子水平上探究其變化規律.通常,兩種或多種方法的交互檢測能更好、更精確地描述淀粉的老化現象.淀粉老化的檢測技術主要包括熱分析技術、光譜分析技術、X-射線衍射技術、顯微成像技術和其他物理分析技術[60-64],如表1所示.不同的檢測技術提供了相關宏觀質構和微觀結構的特征信息或轉變信息,以及整個淀粉老化的變化過程.

4.1 熱分析技術

在加熱過程中,淀粉懸浮液通常由于相變(如熔化、結晶)或化學反應(如化學分解)而發生熱量吸收或釋放、質量損失等現象,因而研究人員可通過熱分析技術檢測淀粉的老化程度,還可根據晶體熔化溫度的差異對支鏈淀粉、直鏈淀粉、脂質復合物與直鏈淀粉的重結晶能力進行分析[61].目前,研究淀粉老化的熱分析技術主要包括差示掃描量熱法、差熱分析法和熱重分析法.

趙思明等[62]通過差示掃描量熱法發現,淀粉質量分數為50%~60%時,淀粉分子鏈更容易相互接觸形成重新排列的“微晶束”,呈現較高的老化程度.

田耀旗[63]通過差熱分析法發現,淀粉的老化程度與老化的淀粉樣品中結合水的含量呈正相關,且運用差熱分析法測定淀粉樣品的結合水含量更合理和準確.Y.Q.Tian 等[65]通過熱重分析法發現,大米淀粉糊的溫差(ΔT)會隨著儲存時間的延長而顯著提高,呈現出較高的老化程度.然而,差熱分析法和熱重分析法在檢測淀粉老化程度方面的應用范圍不及差示掃描量熱法廣泛,差示掃描量熱法在定量檢測原淀粉和老化淀粉的結晶度、動力學參數,以及研究多因素對老化作用的影響方面極其有效,同時也可作為對照判斷其他方法的準確性.

4.2 光譜分析技術

光譜分析技術主要包括傅里葉變換紅外光譜、拉曼光譜和核磁共振光譜.其中,傅里葉變換紅外光譜和拉曼光譜主要通過測定分子構象和結晶區化學鍵的振動頻率對淀粉的老化過程進行檢測;核磁共振光譜則主要通過測定淀粉分子的鏈段運動、構象的化學轉換(共振頻率)和結晶度的變化對淀粉的老化程度進行檢測.這些技術都反映了糊化的淀粉分子在老化過程中有序排列、重新形成混合“微晶束”的情況.

4.2.1 傅里葉變換紅外光譜技術 紅外光譜通過構象變化敏感區域(1200~900 cm-1)的峰寬變窄和峰高變化,反映淀粉凝膠在儲存過程中因老化引起的構象變化.例如,淀粉老化可引起結晶區吸收峰(1047 cm-1處)與無定形區吸收峰(1022 cm-1處)峰高比率的增加.吳躍等[66]研究發現,傅里葉變換紅外光譜可快速檢測大米淀粉的老化程度,測檢機制是該光譜中一些特征振動模式的相對振動強度隨著秈米淀粉老化程度的增加而降低,而傅里葉變換紅外光譜的振動模式包括O—H伸縮振動、C—O伸縮振動、C—C伸縮振動、C—O—H伸縮振動和吡喃環骨架振動模式.傅里葉變換紅外光譜檢測結果與差示掃描量熱法測定的回生焓值存在較高的相關性(相關系數可達0.9).然而,部分研究表明[50,55],老化的淀粉并未出現上述紅外變化現象,因而在實際應用中使用傅里葉變換紅外光譜技術檢測淀粉老化程度尚無一致的分析結果和檢測指標.

4.2.2 拉曼光譜技術 與紅外光譜類似,拉曼光譜也屬于一種分子振動光譜,二者區別在于:紅外光譜是一種吸收光譜,產生于分子偶極矩的變化;拉曼光譜是一種散射光譜,產生于分子極化率的變化.分子中同一基團的拉曼光譜峰位置與紅外光譜吸收峰位置相同.隨著拉曼光譜技術的發展,更多研究者傾向于采用拉曼光譜技術研究淀粉老化.M.Piccinini等[67]利用近紅外傅里葉變換拉曼光譜法檢測面包中淀粉的老化程度,結果表明,老化淀粉在480 cm-1、765 cm-1 和 850 cm-1波段的峰高均有較大的變化,且 480 cm-1處的峰發生了紅移,半峰寬減小.此外,相關研究[37,64]表明,拉曼峰相對強度的倒數與差示掃描量熱法老化焓值具有顯著相關性,其中854 cm-1、1082 cm-1和1050 cm-1處峰的相對強度與老化焓值的相關系數均在0.9以上,因此這3處峰的相對強度變化可作為淀粉老化程度的定量指標.

4.2.3 核磁共振光譜技術 核磁共振光譜技術是一種非破壞性的新型分析檢測手段,因其能直觀、準確、連續地檢測食品中水分的空間分布和遷移變化而備受研究者的青睞[68].近年來,在淀粉老化研究中最常用的核磁共振光譜技術是低分辨率1H核磁共振光譜技術,其本質是自旋馳豫時間(T2)隨分子流動性的不同而變化,物體固態時的T2值與液態時的T2值可相差幾個數量級,這是由于淀粉分子在液態體系中的流動性比在類固態體系中的流動性強[69].G.R.Ziegler等[70] 采用核磁共振光譜技術對淀粉制品在老化過程中的水分狀態及分布進行系統研究發現,水分子的可移動能力可深入解析淀粉制品老化過程的變化規律.李資玲等[71]采用核磁共振光譜技術研究發現,面團中添加經超高壓處理的膳食纖維后,其“束縛水”含量增加,“自由水”含量減少,而高含量的“束縛水”有利于延緩面包老化,進而延長產品貨架期.但是,核磁共振光譜技術對溫度較為敏感,其應用范圍有待進一步探究.

4.3 X-射線衍射技術

X-射線衍射由晶體間的相互作用產生,在食品領域用于檢測蛋白質、淀粉、多糖、脂肪等分子結構.X-射線衍射技術在淀粉老化中的應用主要是通過測定體系中晶體的含量來分析淀粉老化的最終重結晶情況,此外,還可根據衍射圖譜的不同區分晶體的晶型,但不適合對短期老化進行檢測.M.A.Del Nobile 等[72]采用X-射線衍射技術模擬淀粉老化動力學發現,當體系的水分活度由10.000 降到 0.877 時,淀粉老化程度會隨其成核速率的提高而增大.Z.Q.Fu等[73]利用X-射線衍射發現,玉米淀粉的糊化程度越高,其形成新結晶的速度越快,B型結晶越明顯.糊化的淀粉和新鮮面包中的淀粉均顯示出非晶型的X-射線圖譜,二者在儲存過程中的結晶度均發生改變.X射線圖譜顯示,無論原淀粉是A型結晶還是B型結晶,所有淀粉在老化過程中都形成了B型結晶.X-射線衍射技術對規則排列的雙螺旋結構(長程有序)較敏感,但對不規則的有序片斷(短程有序)敏感性較差,因此,X-射線衍射的靈敏度較差示掃描量熱法低.

4.4 顯微成像技術

掃描電子顯微鏡可區分通過分散淀粉分子的重新締合所形成的微結構.對于含有直鏈淀粉的淀粉凝膠,掃描電子顯微鏡可清楚地觀察到包含離散棒狀結構的擴展分子網絡結構,其平均長度為(52.1±12.4)nm,寬度為(35.2±6.3) nm,高度為(0.9±0.5) nm[74].淀粉凝膠的老化行為可通過掃描電子顯微鏡圖像和透射電子顯微鏡圖像顯現.在儲存過程中,可通過掃描電子顯微鏡或透射電子顯微鏡觀察到具有網絡和凝膠中明確定義的“細胞壁”結構[75-77].從淀粉凝膠的掃描電子顯微鏡圖像中提取的圖像特征可用于表征淀粉的老化程度[76-77].例如,儲存溫度對老化淀粉凝膠的表觀結構和微觀結構均有重要影響,在低溫下形成的空腔比在較高溫度下形成的空腔更小;老化淀粉樣品的平均分形維數隨儲存時間的延長而增加;此外,分形維數與老化焓值之間存在良好的相關性,老化淀粉凝膠的空隙率隨儲存時間的延長而增加.

4.5 其他物理分析技術

淀粉糊在儲存期間濁度的變化受顆粒膨脹、顆粒殘余物、瀝濾的直鏈淀粉和支鏈淀粉、直鏈淀粉和支鏈淀粉鏈長度等因素的影響.通過測量620 nm處的濁度,可表征稀淀粉糊(淀粉質量分數<2%)的老化行為.這是由于直鏈淀粉和支鏈淀粉的聚集,使淀粉分子密度分布發生變化,導致透射光的強度減少[78].淀粉糊儲存期間濁度的變化與直鏈淀粉的快速老化一致.研究表明,在糊化淀粉分散體系儲存的早期階段(最初24 h內),

濁度的快速增加反映了網絡結構的形成,這主要是由于在糊化過程中從淀粉顆粒中浸出的直鏈淀粉鏈之間發生了相互作用;

而儲存48 h或72 h后,濁度基本保持不變或緩慢增加[79].

脫水收縮是凝膠在凝固時收縮并滲出液體的過程.通過分析淀粉凝膠的脫水收縮,可表征淀粉的老化行為.雖然脫水收縮是大多數凝膠的物理特征,但它可通過檢測靜置時或冷凍和解凍后從凝膠中滲出的水分子來評估淀粉的凍融穩定性.隨著凍融循環次數的增加,脫水收縮增強,部分原因是富含淀粉相中的支鏈淀粉老化程度增加[65].冷凍和解凍時的低脫水收縮值表明,分散的直鏈淀粉、支鏈淀粉與水分子之間的強相互作用可延緩淀粉老化[80].

5 結論與展望

本文基于淀粉結構及其老化機制,對影響淀粉老化的因素進行了綜述,指出了淀粉的老化過程受非淀粉類碳水化合物、鹽、蛋白質、脂質等外源性組分的影響,但淀粉類食品由于構成成分復雜,各組分在儲存過程中均可能與淀粉分子發生相互作用而影響食品品質,而簡單的模型體系又不能完全替代實際的食品體系,因此,唯有通過更深入地探討復雜模型下淀粉老化特性的變化,才可能從根本上有效延緩或抑制淀粉老化.此外,通過綜述檢測技術在淀粉老化中的應用及進展,指出目前研究者多采用多重分析技術,特別是差示掃描量熱法、傅里葉變換紅外光譜、X-射線衍射、核磁共振光譜等技術從宏觀特性和分子水平角度揭示淀粉的老化機制,但這些分析技術尚存在分析指標單一、操作難度大等局限性.因此,在實際應用中,尚需根據淀粉樣品的信息采用多種方法相結合來檢測淀粉的老化程度,以便更全面地分析淀粉老化特性的變化情況,為延緩淀粉類食品老化、提升食用品質、延長產品貨架期等提供可靠的科學依據.

參考文獻:

[1] WANG S,LI C,COPELAND L,et al.Starch retrogradation:A comprehensive review[J].Comprehensive Reviews in Food Science and Food Safety,2015,14(5):568.

[2] ZHU F,LIU P Z.Starch gelatinization,retrogradation,and enzyme susceptibility of retrograded starch:Effect of amylopectin internal molecular structure[J/OL].Food Chemistry,2020,316

[2020-06-30].https:∥schlr.cnki.net/Detail/index/SJES_03/SJESCD086C4EC3B469-C0532EA87983F8D53F.

[3] DOBOSZ A,SIKORA M,KRYSTYJAN M,et al.Short-and long-term retrogradation of potato starches with varying amylose content[J].Journal of the Science of Food and Agriculture,2019,99(5):2393.

[4] LIU J,XU B.A comparative study on texture,gelatinisation,retrogradation and potential food application of binary gels made from selected starches and edible gums[J].Food Chemistry,2019,296:100.

[5] GAO J F,KREFT I,CHAO G M,et al.Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch,a side product in functional food production,as a potential source of retrograded starch[J].Food Chemistry,2016,190:552.

[6] CHEN Y F,SINGH J,MIDGLEY J,et al.Influence of time-temperature cycles on potato starch retrogradation in tuber and starch digestion in vitro[J].Food Hydrocolloids,2020,98:105240.

[7] YURIS A,MATIA-MERINO L,HARDACRE A K,et al.Molecular interactions in composite wheat starch-Mesona chinensis polysaccharide gels:Rheological,textural,microstructural and retrogradation properties[J].Food Hydrocolloids,2018,79:1.

[8] LIAN X,WANG C,ZHANG K,et al.The retrogradation properties of glutinous rice and buckwheat starches as observed with FT-IR,13C NMR and DSC[J].International Journal of Biological Macrolecules,2014,64:288.

[9] KIM J O,KIM W S,SHIN M S.A comparative study on retrogradation of rice starch gels by DSC,X-ray and α-amylase methods[J].Starch-Strke,1997,49(2):71.

[10]WANG H,XU K,MA Y,et al.Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch[J].Ultrasonics Sonochemistry,2020,63:104868.

[11]WANG H,XU K,LIU X,et al.Understanding the structural,pasting and digestion properties of starch isolated from frozen wheat dough[J].Food Hydrocolloids,2021,111:106168.

[12]HAWORTH W N.Molecular structure of cellulose and of amylose[J].Nature,1932,129(3253):365.

[13]NIKUNI Z.Studies on starch granules[J].Starch-Strke,1978,30(4):105.

[14]DEXTER F.Fine structure of starch and its relationship to the organization of starch granules[J].Journal of Applied Glycoence,1972,19(1):8.

[15]ROBIN J P,MERCIER C,CHARBONN R,et al.Lintnerized starches gel-filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch[J].Cereal Chemistry,1974,51:389.

[16]HIZUKURI S.Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules[J].Carbohydrate Research,1985,141(2):295.

[17]PEREZ S,BERTOFT E.The molecular structures of starch components and their contribution to the architecture of starch granules:A comprehensive review[J].Starch-Strke,2010,62(8):389.

[18]FU Z Q,WANG L J,LI D,et al.The effect of partial gelatinization of corn starch on its retrogradation[J].Carbohydrate Polymers,2013,97(2):512.

[19]TAKO M,TAMAKI Y,KONISHI T,et al.Gelatinization and retrogradation characteristics of wheat (Rosella) starch[J].Food Research International,2008,41(8):797.

[20]WANG S,COPELAND L.Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility:A review[J].Food & Function,2013,4(11):1564.

[21]GONG B,CHENG L,GILBERT R G,et al.Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch[J].Food Hydrocolloids,2019,96:634.

[22]LI C,HU Y,LI E.Effects of amylose and amylopectin chain-length distribution on the kinetics of long-term rice starch retrogradation[J].Food Hydrocolloids,2021,111:106239.

[23]KLUCINEC J D,THOMPSON D B.Amylose and amylopectin interact in retrogradation of dispersed high-amylose starches[J].Cereal Chemistry,1999,76(2):282.

[24]MILES M J,MORRIS V J,ORFORD P D,et al.The roles of amylose and amylopectin in the gelation and retrogradation of starch[J].Carbohydrate Research,1985,135(2):271.

[25]FREDRIKSSON H,SILVERIO J,ANDERSSON R,et al.The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches[J].Carbohydrate Polymers,1998,35(3):119.

[26]WU Y,CHEN Z,LI X,et al.Retrogradation properties of high amylose rice flour and rice starch by physical modification[J].LWT-Food Science and Technology,2010,43(3):492.

[27]ZHANG Y,LI D,YANG N,et al.Comparison of dextran molecular weight on wheat bread quality and their performance in dough rheology and starch retrogradation[J].LWT-Food Science and Technology,2018,98:39.

[28]HIBI Y.Effect of retrograded waxy corn starch on bread staling[J].Starch-Strke,2001,53(5):227.

[29]DING L,ZHANG B,TAN C P,et al.Effects of limited moisture content and storing temperature on retrogradation of rice starch[J].International Journal of Biological Macromolecules,2019,137:1068.

[30]NAM S M,KIM H R,CHOI S J,et al.Effects of temperature-cycled retrogradation on properties of amylosucrase-treated waxy corn starch[J].Cereal Chemistry,2018,95(4):555.

[45]MUADKLAY J,CHAROENREIN S.Effects of hydrocolloids and freezing rates on freeze-thaw stability of tapioca starch gels[J].Food Hydrocolloids,2008,22(7):1268.

[46]DOBOSZ A,SIKORA M,KRYSTYJAN M,et al.Influence of xanthan gum on the short-and long-term retrogradation of potato starches of various amylose content[J/OL].Food Hydrocolloids,2020,102

[2020-05-18].https:∥schlr.cnki.net/Detail/index/SJES_03/SJES2F3B269- BBF1CED9C3E2B3907364D7332.

[47]WANG W,ZHOU H,YANG H,et al.Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch[J].Food Chemistry,2017,214:319.

[48]BECK M,JEKLE M,BECKER T.Starch recrystallization kinetics as a function of various cations[J].Starch-Starke,2011,63(12):792.

[49]周虹先.鹽對淀粉糊化及老化特性的影響[D].武漢:華中農業大學,2014.

[50]HU Y,HE C,ZHANG M,et al.Inhibition from whey protein hydrolysate on the retrogradation of gelatinized rice starch[J].Food Hydrocolloids,2020,108:105840.

[51]王玉珠.即食米飯的食用品質改良及抑制回生現象的研究[D].廣州:華南理工大學,2012.

[52]LIAN X J,ZHU W,WEN Y,et al.Effects of soy protein hydrolysates on maize starch retrogradation studied by IR spectra and ESI-MS analysis[J].International Journal of Biological Macromolecules,2013,59:143.

[53]牛海力,孔保華,劉騫,等.豬血漿蛋白水解物對玉米淀粉老化和糊化特性的影響[J].中國食品學報,2016,16 (12):50.

[54]GOEL P K,SINGHAL R S,KULKARNI P R.Studies on interactions of corn starch with casein and casein hydrolysates[J].Food Chemistry,1999,64:383.

[55]MATSUNAGA A,KAINUMA K.Studies on the retrogradation of starch in starchy foods.Part 3.effect of the addition of sucrose fatty acid ester on the retrogradation of corn starch[J].Starch-Strke,1986,38(1):1.

[56]YU Z,WANG Y S,CHEN H H,et al.The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate[J].Food Hydrocolloids,2018,81:77.

[57]ZHU T W,ZHANG X,LI B,et al.Effect of interesterified blend-based fast-frozen special fat on the physical properties and microstructure of frozen dough[J].Food Chemistry,2019,272:76.

[58]PUTSEYS J A,LAMBERTS L,DELCOUR J A.Amylose-inclusion complexes:Formation,identity and physico-chemical properties[J].Journal of Cereal Science,2010,51(3):238.

[59]NAKAZAWA Y,WANG Y J.Effect of annealing on starch-palmitic acid interaction[J].Carbohydrate Polymers,2004,57(3):327.

[60]HYANG A L,NAM H K,NISHIINARI K.DSC and rheological studies of the effects of sucrose on the gelatinization and retrogradation of acorn starch[J].Thermochimica Acta,1998,322(1):39.

[61]LIN Y S,YEH A I,LII C Y.Correlation between starch retrogradation and water mobility as determined by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR)[J].Cereal Chemistry,2001,78(6):647.

[62]趙思明,熊善柏,張聲華.淀粉老化動力學研究述評[J].農業機械學報,2000(6):114.

[63]田耀旗.淀粉回生及其控制研究[D].無錫:江南大學,2011.

[64]FLORES-MORALES A,JIMENEZ-ESTRADA M,MORA-ESCOBEDO R.Determination of the structural changes by FT-IR,Raman,and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas[J].Carbohydrate Polymers,2012,87(1):61.

[65]TIAN Y Q,XU X M,XIE Z J,et al.Starch retrogradation determined by differential thermal analysis (DTA)[J].Food Hydrocolloids,2011,25(6):1637.

[66]吳躍,陳正行,林親錄,等.FT-IR光譜法測定秈米淀粉回生[J].江蘇大學學報(自然科學版),2011(5):545.

[67]PICCININI M,FOIS S,SECCHI N,et al.The application of NIR FT-Raman spectroscopy to monitor starch retrogradation and crumb firmness in semolina bread[J].Food Analytical Methods,2012,5(5):1145.

[68]ZHU F.NMR spectroscopy of starch systems[J].Food Hydrocolloids,2017,63:611.

[69]CHOI S G,KERR W L.Effect of hydroxypropylation on retrogradation and water dynamics in wheat starch gels using 1H NMR[J].Cereal Chemistry,2003,80(3):290.

[70]ZIEGLER G R,MACMILLAN B,BALCOM B J.Moisture migration in starch molding operations as observed by magnetic resonance imaging[J].Food Research International,2003,36(4):331.

[71]李資玲,劉成梅,萬婕,等.核磁共振研究膳食纖維面包制作過程的水分遷移行為[J].食品科學,2007,28(10):127.

[72]DEL NOBIE M A,MARTORIELLO T,MOCCI G,et al.Modeling the starch retrogradation kinetic of durum wheat bread[J].Journal of Food Engineering,2003,59(2/3):123.

[73]FU Z Q,WANG L J,LI D,et al.The effect of partial gelatinization of corn starch on its retrogradation[J].Carbohydrate Polymers,2013,97(2):512.

[74]TANG M C,COPELAND L.Investigation of starch retrogradation using atomic force microscopy[J].Carbohydrate Polymers,2007,70(1):1.

[75]CHAROENREIN S,TATIRAT O,RENGSUTTHI K,et al.Effect of konjac glucomannan on syneresis,textural properties and the microstructure of frozen rice starch gels[J].Carbohydrate Polymers,2011,83(1):291.

[76]UTRILLA-COELLO R G,BELLO-PEREZ L A,VERNON-CARTER E J,et al.Microstructure of retrograded starch:Quantification from lacunarity analysis of SEM micrographs[J].Journal of Food Engineering,2013,116(4):775.

[77]WU Y,LIN Q,CHEN Z,et al.Fractal analysis of the retrogradation of rice starch by digital image processing[J].Journal of Food Engineering,2012,109(1):182.

[78]WANG H W,XIAO N Y,WANF X T,et al.Effect of pregelatinized starch on the characteristics,microstructures,and quality attributes of glutinous rice flour and dumplings[J].Food Chemistry,2019,283:248.

[79]AMBIGAIPALAN P,HOOVER R,DONNER E,et al.Retrogradation characteristics of pulse starches[J].Food Research International,2013,54(1):203.

[80]LIU J H,WANG B,LIN L,et al.Functional,physicochemical properties and structure of cross-linked oxidized maize starch[J].Food Hydrocolloids,2014,36:45.

收稿日期:2020-09-22

基金項目:國家自然科學基金青年科學基金項目(31801578); 河南省科技攻關項目(212102110083,202102110301)

作者簡介:王宏偉(1988—),男,河南省周口市人,鄭州輕工業大學講師,博士,主要研究方向為淀粉多層次結構解析與物性修飾.

通信作者:張華(1975—),男,河南省周口市人,鄭州輕工業大學教授, 博士,主要研究方向為速凍米面食品加工.

猜你喜歡
結構檢測
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
“幾何圖形”檢測題
“角”檢測題
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結構的應用
模具制造(2019年3期)2019-06-06 02:10:54
論《日出》的結構
小波變換在PCB缺陷檢測中的應用
主站蜘蛛池模板: 亚洲精品天堂自在久久77| 亚洲九九视频| 天天综合天天综合| 国产欧美日韩在线一区| 香蕉国产精品视频| 国内精品视频在线| 中文字幕无码av专区久久 | 激情综合网址| 中国精品久久| 日韩在线1| 成人在线亚洲| 国产在线精品99一区不卡| 日本三级黄在线观看| 伊人色综合久久天天| 九色最新网址| 欧美日韩一区二区在线播放| 2048国产精品原创综合在线| 99热国产在线精品99| 91香蕉视频下载网站| 国产精品手机在线观看你懂的| 国产黄色片在线看| 国产在线精品网址你懂的| 亚洲中文字幕日产无码2021| 免费aa毛片| 国产又大又粗又猛又爽的视频| 欧美精品v欧洲精品| 国产一区免费在线观看| 亚洲无线一二三四区男男| 91成人免费观看在线观看| 国产尤物在线播放| 久久一日本道色综合久久| 久久综合国产乱子免费| 国产成a人片在线播放| 欧美精品成人| 国产日韩精品欧美一区灰| 狠狠色成人综合首页| 国产免费一级精品视频| 青青草原国产免费av观看| 亚洲综合激情另类专区| 91色在线视频| 亚洲丝袜第一页| 99尹人香蕉国产免费天天拍| 精品成人一区二区三区电影| 亚洲国产在一区二区三区| 91免费国产在线观看尤物| 免费国产高清精品一区在线| 狠狠色狠狠色综合久久第一次| 久久这里只有精品国产99| 色综合天天视频在线观看| 国产在线日本| 日韩毛片基地| 中文字幕日韩丝袜一区| 成人国内精品久久久久影院| 亚卅精品无码久久毛片乌克兰 | 亚洲AV无码久久精品色欲| 久久精品亚洲热综合一区二区| lhav亚洲精品| 99在线国产| 免费看a级毛片| 亚洲欧美不卡中文字幕| 亚洲国产天堂久久九九九| 欧美国产在线看| 亚洲成年网站在线观看| 国产成人麻豆精品| 国产麻豆福利av在线播放| 亚洲资源在线视频| 中文毛片无遮挡播放免费| 欧美α片免费观看| 国产96在线 | 制服丝袜在线视频香蕉| 国产欧美亚洲精品第3页在线| 无码区日韩专区免费系列| 在线国产三级| 国产不卡一级毛片视频| 五月六月伊人狠狠丁香网| 91美女视频在线| 情侣午夜国产在线一区无码| 视频二区亚洲精品| 国产亚洲精品资源在线26u| 国产情侣一区二区三区| 亚洲精品国产成人7777| 福利一区在线|