張儉
在上完“光的傳播”這一章節后,按照教學順序接著要上“光的波動性”一章,這一章的第一節內容是“光的干涉”,筆者考慮了這一節的有相當大的思維發展空間,設計了這樣的教學想法,在課前一堂課(上一章的課)結尾一段時間告訴學生下堂課的內容,提醒學生預習,大致類比敘述了以前的機械波中水波干涉情形,讓學生準備下堂課的討論內容。
課的開始階段還比較平穩,筆者先簡單的介紹了關于光的本性描述最初的牛頓的微粒說和惠更斯的波動說,指出這兩種學說的占有優勢的是牛頓的微粒說,但并不能解釋所有的光現象,這本身就是一個缺憾,而托馬斯·楊的雙縫干涉實驗是對微粒說的一種實驗挑戰,因為物理是一門以實驗為強力依據的科學,所有的理論的認可都是必須要靠實驗來反證的。雙縫干涉實驗得到了美妙的干涉圖案來源于托馬斯·楊的信仰和不懈的追求,他是波動說的支持者,在這個過程中學生(預習過的)能夠很好的自行和前面的水波干涉結合在一起,獲得雙縫就如同水波中的雙振源的認識,并得出如果光是波的話在空間中也會形成強區和弱區,而屏上的亮條紋和暗條紋就是強弱區的表現,對于這一點,筆者當時的感受是不能低估了學生的理解能力,學生完全能夠把干涉的內容很好的類比運用,很容易獲知在圖1中的P點是一個亮條紋。
于是在這個時候筆者提出了幾個思考問題(教材中沒有的),是關于這個實驗的關鍵點,即托馬斯·楊在雙縫的之前是加上一個單縫的(如圖2),這個作用是什么?原先的單縫位置與圖中的P點處于一條平線上,它能不能偏離圖中的虛線位置?如果可以,那會對條紋產生怎樣的影響?
接著讓學生進行討論,學生最初的結論是有沒有S'的設計無所謂,原因是教材中就是不用的(這是預習的自然結果),這樣的話后面的問題就不是問題了;這時筆者立即指出歷史的時間,教材中所用的激光是在1960年造出的,而托馬斯·楊的實驗在1801年,順勢介紹激光的其中一個特點是具有單一頻率,反應快的學生馬上回答出第一問:單縫的目的是為了使后面的雙縫(充當雙振源)具備同種頻率且振動情況一致起來,讓干涉的條件得到滿足,這是必須做的,否則形成不了穩定的干涉圖樣。
筆者立即肯定了學生的看法,同時又指出用單一頻率的平行光確實可以做同樣的實驗,只是有單縫參與的產生的圖樣更好。對于第二個問題學生認為不行,原因是如果偏離,則造成S1縫和S2縫較S'縫沒有形成對稱結構,具體是指雙縫的振動情況不一樣,也就無法滿足干涉的條件。筆者肯定了學生的想法,告訴學生托馬斯·楊也是這么想的,所以最初的實驗不偏離對稱點的,同時也告訴學生偏離實驗有人做過,事實是可以的,學生感覺很驚訝,覺得這種現象和水波有些不同,感到光波還是不能和水波簡單的類比,有些學生就會急于往教材的后面的內容尋找。第三個問題是筆者先給出結果:就是實驗發現如果S'縫上偏,屏上的原先在P點處的亮條紋會下移。學生討論這個問題很激烈,這里實驗結果與學生的想法沖突很大,原先的焦點都是集中在雙縫上,這時筆者亮出托馬斯·楊在1802年在英國皇家學會上講述雙縫干涉實驗的一段話:“為使這兩部分光在屏幕上引起的效果疊加起來,需要使來自同一光源、經過不同路徑的光到達同一區域,……。”學生反應過來了,偏離實驗結果的得到事實上仍然是光從S'出發經過相同長的路徑到達P點,形成路徑差為0,符合強區(即亮條紋)條件要求,問題的癥結是要從單縫處考慮。筆者又再次肯定了學生的解答,并贊賞學生能與一流物理學家達成共鳴。
緊接著筆者讓學生思考教材中的相鄰兩條亮條紋(或暗條紋)間的距離的公式:的由來,其中為光的波長,為擋板與屏幕的距離,為兩條狹縫間的距離且。筆者原先的想法是想引導學生形成如圖3所示的圖,然后利用直角三角形及物理中的近似得到,再由干涉強弱區的條件獲得。沒有料到有學生提出了相當有創意的處理方法,把S1和S2變成了直角坐標系中x軸上的關于原點對稱的兩點(如圖4),圖中的S1和S2作為雙曲線簇的共同焦點,根據數學中對雙曲線的描述,兩點的距離d為2c,而雙曲線上的點與S1和S2的距離之差為2a,在這里的雙曲線簇里2a是可變的,以產生亮條紋為例,其中n可取0,1,2,3,……,篩選出與條件相符的雙曲線,再過原點右側L處作豎直線(圖4中虛線),與雙曲線簇的交點即是亮條紋的位置,這樣也就可以解決相鄰亮條紋的距離。學生同時指出按照這樣的求解結論是并不是嚴格的為同一個值。當時對筆者來說觸動非常大,數學中圓錐曲線特性運用到光的干涉中分析還是第一次,內心驚嘆學生的神來之法,筆者立刻抓住學生自身的這一思路進行下去,先與其他學生達成共識,認為這方法是完全可行的,并與學生共同的演算出具體的式子,果然不是完全同值的,不過如果在此基礎上仍然引入這個關系式,還是可以推出這個表達式的。整個課堂教學由于這個意外時間花費了許多,造成在剩下的時間內筆者無法進行教材中有關光的干涉其余內容的完成。
這堂課下課后的課間,學生還提出根據水波的干涉強弱區的分布情況來看光波的亮、暗條紋的分布似乎不應該在一條直線上的;提出為什么在用干涉法檢查平面的平整程度中,一定是其中的楔形空氣薄層的上下表面反射光的干涉,而不是里面的其他面的反射所致的干涉等這樣很有份量的問題,使筆者感到學生的思維如果放開的話,智慧的涌現是無限的。
在上述的教學過程中,教師根據教材中的實材恰當的添入物理歷史背景知識,使學生感受在演示實驗沒有的情況下對歷史中物理學家研究成果的理論分析過程的艱辛,討論和合作是整個教學中貫穿的主線。