999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Coincidence points for F-contractions in complex valued metric spaces

2021-04-05 13:47:40SongJiping

Song Jiping

(College of Mathematics and Information Science,Leshan Normal University,Leshan 614000,China)

Abstract:The notion of F-contraction is generalized from metric spaces to complex valued metric spaces,and F-quasi-contraction is introduced in complex valued metric spaces.Every F-contraction is F-quasi-contraction,and the reverse of this state is not true.By using the method of successive approximation,some coincidence point results for two mappings satisfying a F-contractive condition are proved,and some fixed point results for a F-contraction are obtained which generalize Wardowski′s results.Several illustrative examples are also given to highlight the realized generalization.

Keywords:complex valued metric space,F-contraction,coincidence point

1 Introduction

It is well known that contraction mapping principle is a very popular tool in solving existence problems in mathematics and technical applications.Since 1922 with Banach contraction principle,it is largely studied and generalized by several authors,see References[1-8].Reference[9]introduced the notion of complex valued metric space,which is more general than metric space,and established some common fixed point theorems for mappings satisfying some kind of rational compression conditions.Subsequently,more fixed point and common fixed point results for mappings satisfying certain contractive conditions are obtained by several authors in complex valued metric spaces,see References[10-14].References[15-16]introduced the notions of F-contraction and F-weak contraction to generalize the Banach′s contraction,and obtained some fixed point theorems in metric spaces.

The aim of this article is to generalize the notions of F-contraction from metric spaces to complex valued metric spaces.

2 Preliminaries

The following statements hold:

(i)0≤d(x,y),and d(x,y)=0 if and only if x=y for all x,y∈X;

(ii)d(x,y)=d(y,x)for all x,y∈X;

(iii)d(x,y)≤d(x,z)+d(z,y)for all x,y,z∈X.

Then d is called a complex valued metric on X,and(X,d)a complex valued metric space.

It is easy to see that complex valued metric spaces are more general than metric spaces.We refer the readers to Reference[9]for the related concepts such as convergence and Cauchy sequence in the complex valued metric space.

Remark 2.1 Let(X,d)be a complex valued metric space,then

is a sub-basis for a Hausdorfftopology T on X,where B(x,c)={y∈X:d(x,y)?c}.

Following is the concept of c-distance[17]in complex valued metric spaces.

(q1)0≤q(x,y)for all x,y∈X;

(q2)q(x,y)≤q(x,z)+q(z,y)for all x,y,z∈X;

(q3)for each x∈X and n∈,the set of positive integers,if q(x,yn)≤u for some u=ux∈,then q(x,y)≤u whenever{yn}is a sequence in X which converges to y∈X;

The following properties are from the Lemma 2.12 in Reference[17]:

Lemma 2.1 Let(X,d)be a complex valued metric space and q be a c-distance on X.Let{xn}and{yn}be two sequences in X,{un}and{vn}be two sequences inconverging to 0,and x,y,z∈X.

(3)if q(xn,xm)≤unfor m>n,then{xn}is a Cauchy sequence in X;

(4)if q(y,xn)≤un,then{xn}is a Cauchy sequence in X.

A partially ordered complex valued metric space is a complex valued metric space(X,d)endowed with a partial ordering?,denoted it by(X,d,?).

Definition 2.3[18]A partially ordered complex valued metric space(X,d,?)is regular if the following condition holds:for every non-decreasing sequence{xn}in X convergent to some x∈X,we have xn?x for all n∈N,and for every non-increasing sequence{xn}in X convergent to some x∈X,we have xn?x for all n∈N.

Let F:(0,+∞)→R be a function satisfying the following conditions:

(F1)s

We denote with F the family of functions satisfying the conditions(F1)-(F3).

Definition 2.4[15]Let(X,d)be a metric space.A mapping f:X→X is said to be a F-contraction if there exists a real number τ>0 and a function F ∈ F such that,for all x,y∈X with d(fx,fy)>0,we have

τ+F(d(fx,fy))≤F(d(x,y)).

Definition 2.5[16]Let(X,d)be a metric space.A mapping f:X→X is said to be a F-weak contraction if there exists a real number τ>0 and a function F ∈ F such that,for all x,y∈X with d(fx,fy)>0,we have

3 Main Results

(CF3)there exists a number α∈(0,1)such that

We denote with CF the family of all functions satisfying conditions(CF1)-(CF3).

Let α =max{α1,α2}.It is easy to see that

Then(X,d)is a complete complex valued metric space(see Reference[19]).f:X→X is given by

for x>0 or y>0.We see that f is an F-contraction.

Remark 3.1 It is easy to see that every F-contraction is a continuous mapping.In fact,from(CF1)and(1),we have d(fx,fy)≤d(x,y)for all x,y∈X with d(fx,fy)>0.If xn→x0as n→∞,for each c with 0?c in,there exists n0∈N such that d(xn,x0)?c for all n>n0.Then d(fxn,fx0)?c for all n>n0,that is fxn→fx0as n→∞.

Remark 3.2 Every F-contraction is F-quasi-contraction,the inverse does not hold.

Example 3.3 Let X=[0,+∞),and d(x,y)=|x?y|+2|x?y|i,then(X,d)is a complete complex valued metric space.f:X→X is defined by

and

Note that

we have

We obtain that(2)holds for 0≤x<1 and y≥1.Similarly,(2)holds for 0≤y<1 and x≥1.Hence,f is an F-quasi-contraction.

holds.If one of the following conditions is satisfied:

(1)g(X)is complete;

(2)(X,d)is complete,f and g is commuting mappings and,g is continuous.

Then f and g have a coincidence point x?∈ X with the unique point of coincidence gx?.

Proof Let x0∈X be arbitrary and fixed.We define a sequence{xn}in X by

gxn+1=fxn,n=0,1,2,···.

From(4),we have,for all n∈N,

for all n>n0.Hence,F(d(gxn+1,gxn)) ≤F(d(gx1,gx0))? nτ〈e for all n〉n0.From(CF2),we get

From(6)and(CF3),there exists α∈(0,1)such that

and

From(5),we deduce that

and

Taking limit as n→∞in the above inequality,we get

There exists a natural number n1such that

for all n>n1,that is

for all n>n1.Thus,

for all n>n1.For all n>n1and any natural number p,by using triangle inequality,we obtain that

it is a contradict.This completes the proof.

d(x,y)=|x?y|+|x?y|i,

then(X,d)is a complex valued metric space.f,g:X→X are given by

It is easy to see that,for all x,y∈X with 0

Corollary 3.1 Let(X,d)be a complete complex valued metric space,and f:X→X be an F-contraction,then f has an unique fixed point.

Proof By taking g=IX,the identity mapping on X,in Theorem 3.1,we see that the corollary is true.

(1)g(X)is complete and f(X)?g(X);

(2)f is g-monotone nondecreasing;

(3)there exists a x0∈X such that gx0?fx0;

(4)(X,d,?)is regular.

Then f and g have a coincidence point x?∈ X.

Proof Let x0∈X such that gx0?fx0.Since f(X)?g(X),there exists a x1∈X such that gx1=fx0,then gx0?gx1.From the condition(2),we have fx0?fx1.Similarly,there exists a x2∈X such that gx2=fx1and gx1?gx2.Continuing this process,we can construct a sequence{xn}such that gxn+1=fxnand gxn?gxn+1.

If there exists natural number n0such that gxn0+1=gxn0,then fxn0=gxn0,xn0is a coincidence point of f and g.So we assume that gxn+1gxnfor all n ∈.Since d(fxn,fxn?1)>0 and gxn?1? gxn,from(9),we have

If u(xn,xn?1)=d(gxn,gxn?1),then

The property(CF1)of F gives us that d(gxn+1,gxn)

From(CF1),we get

it deduces that d(gxn+1,gxn)

By using the triangle inequality,we have

We also obtain that

Since gxngxn+1and gxn? gxn+1for n ∈,we can suppose that gxnfx?for n ∈.Since(X,d,?)is regular,gxn? gx?.From(9),we have

From the property(CF1),we get

It deduces that

We have

Taking the limit as i→∞,we obtain that

Hence,gx?=fx?.Therefore,x?is a coincidence point of f and g.

(1)f is monotone nondecreasing;

(2)there exists a x0∈X such that x0?fx0;

(3)(X,d,?)is regular.

Then f has a fixed point.

Proof By taking g=IX,the identity mapping on X,in Theorem 3.2,we complete the proof.

(1)g(X)is complete and f(X)?g(X);

(2)f is g-monotone nondecreasing;

(3)there exists a x0∈X such that gx0?fx0;

(4)(X,d,?)is regular.

Then f and g have a coincidence point x?∈ X.If gv=fv,then q(gv,fv)=0.

Proof As in Theorem 3.2,we construct a sequence{xn}in X such that

holds,where

If u(xn?1,xn)=q(gxn?1,gxn),then

This implies that q(gxn?1,gxn)0.If,then

By the property(q2),q(gxn?1,gxn+1)≤q(gxn?1,gxn)+q(gxn,gxn+1).Consequently,

It is clear that(15)holds and q(gxn?1,gxn)0.

The above arguments give us q(gxn,gxn+1)0 for all.From(15),we have

nτ+F(q(gxn,gxn+1))≤F(q(gx0,gx1))

for n>n0,which implies that

For m>n>n0,since

we have

for n>n0.

Thus,q(gxni+1,fx?)

Thus,

By Lemma 2.1(1),fx?=gx?.

and so,

By Lemma 2.1(1),fx?=gx?.

Therefore,x?is a coincidence point of f and g.

Thus,q(gv,fv)=0.This completes the proof.

(1)f is monotone nondecreasing;

(2)there exists a x0∈X such that x0?fx0;

(3)(X,d,?)is regular.

Then f have a fixed point x?∈ X.If v=fv,then q(v,fv)=0.

Proof By taking g=IX,the identity mapping on X,in Theorem 3.2,we see that the corollary is true.

主站蜘蛛池模板: 666精品国产精品亚洲| 热热久久狠狠偷偷色男同| 日韩精品毛片| 九九热在线视频| 亚洲欧美日本国产专区一区| 欧美日韩91| 亚洲国产精品一区二区第一页免| 国产啪在线91| 日本欧美一二三区色视频| 天天爽免费视频| 深夜福利视频一区二区| 中国丰满人妻无码束缚啪啪| 日韩免费中文字幕| 欧美成人国产| 欧美成人午夜影院| 色哟哟国产精品| 日韩欧美在线观看| 国产三级国产精品国产普男人| 怡春院欧美一区二区三区免费| 亚洲三级网站| 91视频国产高清| 国产欧美亚洲精品第3页在线| 99精品伊人久久久大香线蕉| A级全黄试看30分钟小视频| 日韩在线第三页| A级全黄试看30分钟小视频| 一本色道久久88| 99热这里只有精品5| 国产精品白浆在线播放| 国产香蕉一区二区在线网站| 国产全黄a一级毛片| 人妻无码一区二区视频| 九九视频免费在线观看| 国产乱子伦精品视频| 亚洲区一区| 亚洲精品欧美日韩在线| 人妻丰满熟妇AV无码区| a亚洲视频| 国产自产视频一区二区三区| 全部毛片免费看| 欧美在线天堂| 国产一区二区丝袜高跟鞋| 在线观看欧美精品二区| 成人亚洲视频| 日韩 欧美 小说 综合网 另类| 久久精品一卡日本电影| 欧美日韩国产成人高清视频| 欧美综合区自拍亚洲综合绿色| 亚洲V日韩V无码一区二区| 成人伊人色一区二区三区| 色久综合在线| 欧洲精品视频在线观看| 91久久精品日日躁夜夜躁欧美| 国内精品一区二区在线观看| 伊人激情综合网| 亚洲欧美日韩精品专区| 国产精品99久久久久久董美香| 亚洲成肉网| 欧美亚洲日韩中文| 国产乱人伦AV在线A| 国产成人a在线观看视频| 热久久国产| 理论片一区| 国产免费一级精品视频| 国产精品亚洲五月天高清| 蜜芽国产尤物av尤物在线看| 国产精品蜜芽在线观看| 精品无码一区二区三区电影| 99久久国产综合精品2023| 四虎综合网| 东京热高清无码精品| 久久亚洲国产最新网站| 人妻出轨无码中文一区二区| 五月综合色婷婷| 欧美日本中文| 国产日韩久久久久无码精品| 日韩天堂在线观看| 91成人免费观看| 在线亚洲精品自拍| 久热中文字幕在线| 2020国产在线视精品在| 91一级片|