梁 正,裴怡杰,武廣斌
(北華大學(xué) 機械工程學(xué)院,吉林 吉林 132021)
目前機器人已經(jīng)廣泛運用到軍事、醫(yī)療、服務(wù)、娛樂、工業(yè)等各個領(lǐng)域,機器人已經(jīng)成為人們?nèi)粘I詈凸ぷ髦胁豢苫蛉钡囊徊糠諿1].因氣動具有很高的柔性、安全性以及環(huán)境自適應(yīng)性,能夠減小工作過程中產(chǎn)生的沖擊[2],目前應(yīng)用于仿生機器人、救援、探測及醫(yī)療等領(lǐng)域,柔性關(guān)節(jié)未來有著廣闊的應(yīng)用前景[3-4].柔性關(guān)節(jié)是柔性機械手的關(guān)鍵部件,很大程度上影響著機械手的柔順性和運動精度[5].關(guān)節(jié)中氣囊是彈性件,其靜力學(xué)特性對柔性關(guān)節(jié)的運動性能起到至關(guān)重要的作用[6].
在工程中,橡膠產(chǎn)品一般不標(biāo)定剪切彈性模量,而是規(guī)定橡膠的邵氏硬度HS值[7].在常用范圍內(nèi),橡膠管剪切彈性模量和邵氏硬度關(guān)系可通過查表或用經(jīng)驗公式得到:
G=0.117e0.034HS(MPa),
(1)
橡膠最顯著的物理性能就是超彈性,天然橡膠的變形量可達到600%以上[8].橡膠形變與力的關(guān)系呈現(xiàn)出較強的非線性[9],拉伸率越大其非線性越明顯.但在低應(yīng)變區(qū),應(yīng)力與拉伸率的關(guān)系呈近似線性,條件是構(gòu)件形狀簡單.因此,人工驅(qū)動器在使用中,當(dāng)拉伸率在50%以內(nèi),橡膠管的彈性模量可近似為定值[10].
(2)
式中,E為橡膠管彈性模量;K為橡膠管體積彈性模量.
材料基本參數(shù):高抗撕硅膠管邵氏硬度為45°,液態(tài)硅膠管邵氏硬度為32°.則利用公式可得高抗撕硅膠管剪切彈性模量為G1=0.54 MPa,彈性模量為E1=1.62 MPa,液態(tài)硅膠管剪切彈性模量為G2=0.35 MPa,彈性模量為E2=1.04 MPa.由以上參數(shù)可知,高抗撕硅膠管邵氏硬度大于液態(tài)硅膠管,則其剪切彈性模量和彈性模量均大于液態(tài)硅膠管.柔性關(guān)節(jié)結(jié)構(gòu)如圖1(a)所示.

(a)柔性關(guān)節(jié)三維圖

(b)約束環(huán)與硅膠管實物圖圖1 柔性關(guān)節(jié)結(jié)構(gòu)
多個形狀相同緊密套裝的剛性約束環(huán)嵌套在彈性硅膠管外部,見圖1(b),約束環(huán)一側(cè)矩形孔插入板彈簧,板彈簧通過螺釘與上下端蓋固定為一整體,下堵頭和下端蓋留有通氣孔,板彈簧截面為矩形,由薄鋼板制成,利用薄板的彎曲變形而起到彈簧作用,通氣加壓時,柔性關(guān)節(jié)向板彈簧側(cè)彎曲變形.
人工肌肉在變形過程中,硅膠管氣囊的截面尺寸將發(fā)生改變.如圖2所示,硅膠管外壁受約束環(huán)限制其外壁徑向膨脹,外徑不變,內(nèi)徑增大,氣囊壁厚變薄.

圖2 硅膠管變形前后幾何關(guān)系
氣囊充入氣體后,關(guān)節(jié)向彈簧板一側(cè)彎曲,其所受軸向力Fp與合力矩∑M共同作用.關(guān)節(jié)變形過程中,約束環(huán)只限制硅膠管徑向變形,無施加力矩.如圖3所示,經(jīng)分析關(guān)節(jié)所受關(guān)節(jié)端蓋處的驅(qū)動力矩Mp,板彈簧變形產(chǎn)生的阻抗力矩Mk以及硅膠管本身變形產(chǎn)生的阻抗力矩Mn.
關(guān)節(jié)上端蓋處力矩平衡,可得:
Mp=Mk+Mn,
(3)

圖3 關(guān)節(jié)變形所受力矩分析
當(dāng)關(guān)節(jié)硅膠管氣囊通入壓縮氣體時,關(guān)節(jié)上端蓋處所產(chǎn)生的驅(qū)動力矩為:
(4)
式中,P為通入壓縮氣體氣壓值;L′為硅膠管中心弧線到板彈簧的距離;D1為硅膠管外徑;D2為變形前硅膠管內(nèi)徑;l0為人工肌肉的有效長度;S為變形后硅膠管氣囊內(nèi)腔橫截面積;Δl為關(guān)節(jié)伸長量.
關(guān)節(jié)彎曲變形時,板彈簧長寬比大,變形屬于筒型彎曲,則板彈簧的彈性模量E1為:
(5)
式中,E為板彈簧材料的彈性模量;u為泊松比.
板彈簧的截面慣性矩為:
(6)
則阻抗力矩Mk、Mn分別為:
(7)
(8)
式中,E2為硅膠管的彈性模量;I2為硅膠管的截面慣性矩.其中:
(9)
將式(2)、(5)、(6)代入式(1)中,可得關(guān)節(jié)的彎曲角度θ:

(10)
由式(8)可看出,彎曲角度θ與硅膠管彈性模量E2呈負相關(guān).根據(jù)不同柔性關(guān)節(jié)結(jié)構(gòu),合理改變Mp、Mk以及Mn中各參數(shù)數(shù)值,都將影響關(guān)節(jié)彎曲變形程度.在彈性骨架剛度一定時,減小硅膠管氣囊彈性模量可加大關(guān)節(jié)的彎曲變形;反之,彈性模量增大變形能力下降.
柔性關(guān)節(jié)的夾持力分析,見圖4,夾持力為接觸測力計限位塊時產(chǎn)生的正壓力Fn.

圖4 關(guān)節(jié)夾持力分析
由關(guān)節(jié)上端蓋受力分析可知:
Fpsinθ-Fksinθ-Fn=0,
(11)
Ff+Fpcosθ-Fkcosθ=0,
(12)
Mp-Mk-FfZq-FnYq=0,
(13)

(14)
(15)
式中,F(xiàn)p為膠管變形產(chǎn)生的驅(qū)動力;Fk是關(guān)節(jié)伸長Δl時所產(chǎn)生的阻抗力;Fn為接觸點正壓力;Ff=μFn為關(guān)節(jié)與限位塊接觸時的摩擦力,μ為兩者接觸面摩擦系數(shù),r為關(guān)節(jié)硅膠管中心到限位塊的垂直距離.
通氣加壓過程中,由于限位塊的阻礙作用,關(guān)節(jié)伸長量減少.與關(guān)節(jié)自由變形相比,關(guān)節(jié)變形受限后的伸長量Δl′與彎曲角度θ′分別為:
Δl′=kΔl,
(16)
θ′=kθ,
(17)
式中,k為關(guān)節(jié)彎曲受限時的變形協(xié)調(diào)系數(shù),系數(shù)與關(guān)節(jié)結(jié)構(gòu)和彎曲形狀等有關(guān).
因柔性關(guān)節(jié)通入壓縮氣體的氣壓值越大,外凸變形越明顯.關(guān)節(jié)因自身變形內(nèi)耗Mk,將減少關(guān)節(jié)的夾持力,則關(guān)節(jié)彎曲產(chǎn)生的阻抗力矩為:
Mk=FkL′=kFpL′,
(18)
將式(2)、式(12)~(16)代入式(11)中,得到關(guān)節(jié)正壓力:
(19)
通過對兩種硅膠管的柔性關(guān)節(jié)進行靜力學(xué)實驗,對比實驗數(shù)據(jù),分析不同硅膠管對柔性關(guān)節(jié)靜力學(xué)性能的影響.
實驗過程中使用的實驗設(shè)備由氣泵、精密減壓閥、數(shù)顯式推拉力計、XY移動臺、單片機以及陀螺儀幾部分組成.關(guān)節(jié)的具體參數(shù)如表1所示.

表1 關(guān)節(jié)的參數(shù)
將關(guān)節(jié)和陀螺儀連接在一起,然后固定在實驗臺上,陀螺儀與單片機和上位機相連.通入不同氣壓,關(guān)節(jié)彎曲變形,單片機將陀螺儀采集到的數(shù)據(jù)傳輸?shù)缴衔粰C上,記錄數(shù)據(jù).實驗原理如圖5所示.

圖5 關(guān)節(jié)彎曲變形實驗原理圖
將兩種關(guān)節(jié)在不同氣壓值下的實驗數(shù)據(jù)進行處理,可得到關(guān)節(jié)在不同氣壓下彎曲角度的變化曲線(圖6).將柔性驅(qū)動器各參數(shù)代入式(10),由圖6可知,通氣形變后關(guān)節(jié)彎曲角度的理論計算結(jié)果與實驗數(shù)據(jù)基本吻合,說明公式的正確性.氣壓達到0.2 MPa時,液態(tài)硅膠管關(guān)節(jié)的彎曲角度達到了262.33°;在0.21 MPa時,關(guān)節(jié)彎曲干涉,變形受限.氣壓達到0.28 MPa時,高抗撕硅膠管關(guān)節(jié)的彎曲角度達到了267.6°;在0.29 MPa時,關(guān)節(jié)彎曲干涉,變形受限.柔性關(guān)節(jié)的彎曲角度隨氣壓值的增加而逐漸增大,且呈現(xiàn)出一定程度的非線性,其彎曲形變形狀類似圓弧狀,如圖7所示.

氣壓/MPa圖6 彎曲角度-氣壓變化曲線

(a)高抗撕硅膠管關(guān)節(jié)(P=0.29 MPa)

(b)液態(tài)硅膠管關(guān)節(jié)(P=0.21 MPa)圖7 關(guān)節(jié)彎曲角度實驗圖
實驗方法是將關(guān)節(jié)或手指一端固定,另一端可自由彎曲,將測力計固定在XY移動滑臺上,調(diào)節(jié)滑臺使測力計頂端與關(guān)節(jié)端蓋接觸,逐步提高氣壓值,來測量關(guān)節(jié)彎曲時的夾持力大小,測量過程均采取接觸測量.實驗原理如圖8所示.

圖8 關(guān)節(jié)夾持力實驗原理圖
將兩種關(guān)節(jié)在不同氣壓值下(0~0.4 MPa)的實驗數(shù)據(jù)進行處理,可得到兩關(guān)節(jié)在不同氣壓下夾持力的對比變化曲線(圖9).將柔性關(guān)節(jié)各參數(shù)代入式,通氣形變后關(guān)節(jié)夾持力的理論計算結(jié)果與實驗數(shù)據(jù)趨勢一致,較好反映夾持力隨氣壓的變化情況.此時,關(guān)節(jié)彎曲受限時的變形協(xié)調(diào)系數(shù)為0.50.由變化曲線可知,柔性關(guān)節(jié)接觸點的夾持力隨氣壓值的增加而逐漸增大,且呈現(xiàn)出一定程度的非線性.當(dāng)氣壓值達到0.36 MPa時,液態(tài)硅膠管柔性關(guān)節(jié)夾持力達到19.62 N,繼續(xù)加壓,關(guān)節(jié)變形受限夾持力不再增大.在0.4 MPa時,高抗撕硅膠管關(guān)節(jié)夾持力可達17.27 N.圖10為兩關(guān)節(jié)夾持力實驗圖.

氣壓/MPa圖9 夾持力-氣壓變化曲線

(a)高抗撕硅膠管關(guān)節(jié)(P=0.34 MPa)

(b)液態(tài)硅膠管關(guān)節(jié)(P=0.3 MPa)圖10 關(guān)節(jié)夾持力實驗圖
通過兩種硅膠管材料的性能理論計算,得到了兩種不同硬度硅膠材料的剪切彈性模量和彈性模量.建立了柔性關(guān)節(jié)彎曲形變與夾持力模型,并進行了實驗驗證,理論計算結(jié)果與實驗數(shù)據(jù)趨勢相一致,氣囊硅膠管彈性模量與關(guān)節(jié)彎曲角度呈負相關(guān).實驗結(jié)果表明,通入氣體后,關(guān)節(jié)連續(xù)彎曲,且彎曲形變類似圓弧狀.兩種不同材料硅膠圓管制得關(guān)節(jié)在同一氣壓下,材料硬度越小,彎曲形變能力越強.兩關(guān)節(jié)最大彎曲角度分別為262.33°和267.6°,最大夾持力分別為19.62 N和17.27 N,得到了彎曲角度和夾持力變化曲線,均呈非線性.