999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于LIDAR技術(shù)的噴霧量三維空間分布測(cè)試方法

2021-06-01 23:59:12何雄奎王志翀

李 天,何雄奎,王志翀,黃 戰(zhàn),韓 冷

基于LIDAR技術(shù)的噴霧量三維空間分布測(cè)試方法

李 天1,2,何雄奎1,2※,王志翀1,3,黃 戰(zhàn)1,2,韓 冷1,2

(1. 中國(guó)農(nóng)業(yè)大學(xué)藥械與施藥技術(shù)研究中心,北京 100193;2. 中國(guó)農(nóng)業(yè)大學(xué)理學(xué)院,北京 100193;3. 霍恩海姆大學(xué)熱帶與亞熱帶農(nóng)業(yè)工程研究所,斯圖加特,70599)

為解決噴霧量分布測(cè)試中耗時(shí)長(zhǎng)、工序繁瑣、無(wú)法進(jìn)行實(shí)時(shí)動(dòng)態(tài)三維空間分布測(cè)量的問(wèn)題,該研究開(kāi)發(fā)了一種基于激光雷達(dá)探測(cè)技術(shù)的噴霧量三維空間分布的測(cè)試方法。針對(duì)植保作業(yè)過(guò)程中常用的空心圓錐霧、防飄空心圓錐霧、扇形霧和防飄扇形霧4類(lèi)共7種噴頭,采用噴霧量實(shí)測(cè)方法對(duì)距離噴頭50 cm處?kù)F流區(qū)截面的霧量分布進(jìn)行測(cè)試;利用十六線激光雷達(dá)對(duì)霧流區(qū)進(jìn)行三維探測(cè),實(shí)時(shí)獲取噴霧量點(diǎn)云數(shù)據(jù)信息,通過(guò)數(shù)據(jù)包解析、仿射矩陣空間轉(zhuǎn)換、坐標(biāo)系解算獲取點(diǎn)云坐標(biāo)及密度,并利用神經(jīng)網(wǎng)絡(luò)將噴霧量實(shí)測(cè)結(jié)果與激光雷達(dá)測(cè)試結(jié)果進(jìn)行擬合。結(jié)果顯示,7種噴頭訓(xùn)練集擬合相關(guān)系數(shù)≥0.995,驗(yàn)證集≥0.935,測(cè)試集≥0.877,扇形霧噴頭總體擬合相關(guān)系數(shù)≥0.990,證明激光雷達(dá)探測(cè)是一種可行且準(zhǔn)確的噴霧量分布測(cè)試方法;進(jìn)一步對(duì)各噴頭噴霧量點(diǎn)云數(shù)據(jù)進(jìn)行分層網(wǎng)格化計(jì)算得到霧流區(qū)三維空間霧滴分布特征,結(jié)果表明3種圓錐霧噴頭空心段長(zhǎng)度大小依次為ITR、TR和HCI噴頭,IDK噴頭等距離噴霧截面積均大于LU噴頭。該方法可準(zhǔn)確地完成三維空間噴霧量化分析,同時(shí)也可為噴霧設(shè)備霧化質(zhì)量檢測(cè)、室內(nèi)和田間霧滴飄移測(cè)量、植保機(jī)械田間快速調(diào)校及作業(yè)質(zhì)量在線監(jiān)測(cè)提供一種新思路。

噴頭;噴霧區(qū);激光雷達(dá);三維空間探測(cè);霧量分布

0 引 言

植保作業(yè)過(guò)程中噴頭是進(jìn)行噴霧作業(yè)、保障防治效果的核心部件[1],其噴霧霧化機(jī)理、霧滴運(yùn)動(dòng)參數(shù)以及霧量三維空間分布狀態(tài)與霧化質(zhì)量息息相關(guān)[2-3],同時(shí)也會(huì)影響到農(nóng)藥?kù)F滴的飄失和沉積行為[4]。農(nóng)藥飄失和沉積分布不均勻不僅會(huì)降低農(nóng)藥利用率及防效[5-6],還會(huì)造成大量的農(nóng)藥浪費(fèi)以及嚴(yán)重的環(huán)境污染[7]。隨著中國(guó)綠色發(fā)展戰(zhàn)略的逐步實(shí)施,農(nóng)藥減量施用、增效控害作為其中的重要環(huán)節(jié)越來(lái)越受到研究者們的關(guān)注[8-9]。邱白晶等[10]等利用高速攝影結(jié)合數(shù)字圖像處理技術(shù),對(duì)霧流區(qū)霧滴特征參數(shù)進(jìn)行了檢測(cè)統(tǒng)計(jì)并進(jìn)一步完成了霧滴分布圖像的二維重建,實(shí)現(xiàn)了對(duì)霧滴分布特征的快速準(zhǔn)確檢測(cè);Gary等[11]利用高速攝影及粒子圖像測(cè)速技術(shù)(PIV,Particle Image Velocimetry)對(duì)8種噴頭霧滴初速度進(jìn)行測(cè)量,結(jié)合由激光粒徑儀獲取的霧滴粒徑分析了霧滴初速度與粒徑及噴霧壓力間的關(guān)系;呂曉蘭等[12]等利用相位多普勒粒子分析儀(PDPA,Phase Doppler Particle Analyzer)對(duì)標(biāo)準(zhǔn)扇形霧噴頭的霧滴粒徑和速度空間分布進(jìn)行了測(cè)量,并對(duì)霧滴尺寸空間分布和霧滴運(yùn)動(dòng)特征進(jìn)行分析,確定了飄失區(qū)域在霧流區(qū)中的位置;Nuyttens[13]等同樣利用PDPA對(duì)32種噴頭進(jìn)行了霧滴粒徑和速度的測(cè)試,明確了噴頭種類(lèi)和型號(hào)對(duì)霧滴粒徑和速度的影響;而Cock[14]等則分別利用高速攝影與粒子圖像測(cè)速技術(shù)結(jié)合法以及PDPA,對(duì)不同霧化等級(jí)的噴頭進(jìn)行了霧滴粒徑和速度測(cè)試,對(duì)比分析了2種測(cè)試結(jié)果的差異;謝晨等[15]利用霧滴圖像分析儀(PDIA,Particle Droplets Image Analysis)對(duì)標(biāo)準(zhǔn)扇形霧噴頭與防飄噴頭的霧化過(guò)程進(jìn)行了可視化圖像分析,并比較了噴頭類(lèi)型、噴頭孔徑與壓力對(duì)噴頭霧流區(qū)的影響;時(shí)玲等[16]使用霧量分布試驗(yàn)臺(tái)測(cè)定并分析了噴霧壓力、噴霧高度和噴頭間隔對(duì)4種扇形霧噴頭霧量分布的影響規(guī)律,并確定了每種噴頭的最佳噴霧使用高度。使用高速攝影儀、PDIA、PDPA等儀器可對(duì)噴霧霧化過(guò)程以及霧滴運(yùn)動(dòng)參數(shù)進(jìn)行準(zhǔn)確測(cè)試,但高速攝影儀測(cè)試視場(chǎng)范圍僅有5 mm×5 mm,PDIA和PDPA則為3 mm×3 mm,為取得霧流區(qū)完整探測(cè)結(jié)果需將儀器測(cè)試視場(chǎng)在霧流區(qū)范圍內(nèi)移動(dòng)數(shù)10次,并將多個(gè)點(diǎn)位的探測(cè)結(jié)果拼接,難以對(duì)霧流區(qū)進(jìn)行一次性整體實(shí)時(shí)測(cè)量;利用霧量分布試驗(yàn)臺(tái)進(jìn)行的噴頭測(cè)試操作繁瑣、耗時(shí)長(zhǎng)、效率低,且無(wú)法獲得整個(gè)霧流區(qū)的三維空間霧量分布。

激光雷達(dá)探測(cè)技術(shù)(Light detection and ranging,LIDAR)是一種利用激光束對(duì)目標(biāo)進(jìn)行空間位置精確探測(cè)的非接觸式測(cè)量技術(shù),目前已廣泛應(yīng)用于城市建模、大氣監(jiān)測(cè)、無(wú)人導(dǎo)航以及果樹(shù)和林木探測(cè)等領(lǐng)域[17-21]。早在1989年,Hoff等[22]就利用氣象快速捕獲激光雷達(dá)(Atmospheric Environment Service Rapid Acquisition LIDAR)對(duì)有人駕駛噴霧飛機(jī)的翼尖霧場(chǎng)渦流進(jìn)行探測(cè);隨后Stoughton等[23]以及Miller等[24]利用激光雷達(dá)針對(duì)林業(yè)農(nóng)藥噴霧作業(yè)過(guò)程中樹(shù)冠頂部的霧流場(chǎng)運(yùn)動(dòng)進(jìn)行了探測(cè)分析;近年來(lái),Gil等[25-27]使用激光雷達(dá)測(cè)量果園植保作業(yè)過(guò)程中的噴霧飄移并實(shí)現(xiàn)了飄移量的量化計(jì)算。激光雷達(dá)可對(duì)空氣中的霧滴直接進(jìn)行探測(cè),其激光探測(cè)范圍大、操作便捷,且無(wú)需在噴霧液中添加示蹤劑以及使用霧滴接收材料,但上述研究中采用的激光雷達(dá)均只能發(fā)射單束探測(cè)激光,僅能對(duì)霧流區(qū)進(jìn)行沿激光線或截面探測(cè)而無(wú)法同時(shí)獲取整體的三維空間分布狀態(tài)。

為解決難以對(duì)噴霧區(qū)進(jìn)行實(shí)時(shí)整體探測(cè)、一次性獲取三維空間霧量分布的問(wèn)題,進(jìn)一步提升測(cè)試效率、簡(jiǎn)化測(cè)試流程和減少人力物力消耗,本文利用十六線激光雷達(dá)傳感器,對(duì)目前國(guó)內(nèi)外植保作業(yè)中常用的4類(lèi)7種噴頭進(jìn)行噴霧實(shí)時(shí)探測(cè),將探測(cè)結(jié)果與實(shí)際噴霧測(cè)試結(jié)果進(jìn)行神經(jīng)網(wǎng)絡(luò)擬合驗(yàn)證激光雷達(dá)探測(cè)方法的準(zhǔn)確性,進(jìn)而使用Matlab進(jìn)行點(diǎn)云數(shù)據(jù)分層和網(wǎng)格化計(jì)算,得到整個(gè)霧流區(qū)霧量的真三維空間分布,最終建立一種基于LIDAR技術(shù)的噴霧量三維空間分布測(cè)試方法。

1 基于LIDAR技術(shù)的噴霧探測(cè)方法

1.1 噴霧截面霧量分布實(shí)測(cè)方法

為研究不同霧化效果下的探測(cè)精度,選用7種國(guó)內(nèi)外植保作業(yè)中常用的噴頭進(jìn)行測(cè)試。噴霧流量測(cè)量采用稱(chēng)重法,噴霧液為自來(lái)水,使用量筒于噴頭下方接取噴霧液,計(jì)時(shí)1 min后停止接取并使用天秤稱(chēng)量,進(jìn)行3次重復(fù)測(cè)量求平均值得到噴頭流量;霧滴體積中值粒徑、霧化等級(jí)及霧滴平均速度均依據(jù)ISO 5682-1: 2017[28],使用PDIA霧滴圖像分析儀(VisiSize P15,Oxford Lasers)在室溫25 ℃條件下,距離噴頭出口正下方50 cm處進(jìn)行測(cè)量所得,具體霧化參數(shù)如表1所示。

單個(gè)噴頭實(shí)際霧量沉積分布測(cè)試采用矩陣式霧滴收集裝置進(jìn)行[30]。為避免噴霧過(guò)程中地效對(duì)霧滴接收產(chǎn)生影響,利用角鋼及1 m×1 m方孔鐵絲網(wǎng)架搭建霧滴收集平臺(tái),如圖1所示,平臺(tái)尺寸為1 m×1 m×0.5 m,網(wǎng)架方孔尺寸為3 cm×3 cm,在平臺(tái)特定位點(diǎn)插入用于霧滴收集的50 mL聚乙烯(PE)塑料離心管,離心管口徑3 cm,裝置間隔為6 cm×6 cm。噴頭固定于霧滴收集平臺(tái)正上方0.5 m處,利用線激光將噴頭水平定位至平臺(tái)正中心;噴霧系統(tǒng)接入穩(wěn)壓器用于穩(wěn)定噴霧壓力。

本測(cè)試在中國(guó)農(nóng)業(yè)大學(xué)藥械與施藥技術(shù)研究中心噴霧系統(tǒng)實(shí)驗(yàn)室進(jìn)行,測(cè)試時(shí)間為2020年9月17-18日。測(cè)試開(kāi)始前,將離心管安插入網(wǎng)架固定位置中,各離心管橫豎間隔均為1網(wǎng)格:圓錐霧噴頭測(cè)試網(wǎng)格中離心管采用9×9矩陣安插,實(shí)際測(cè)試范圍54 cm×54 cm;扇形霧噴頭測(cè)試網(wǎng)格中離心管采用5×15矩陣安插,實(shí)際測(cè)試范圍30 cm×90 cm。噴霧液選用自來(lái)水,開(kāi)啟噴霧待壓力穩(wěn)定至0.3 MPa后開(kāi)始接收霧滴,為保證全部離心管均能接收到足夠量的霧滴并減少稱(chēng)量誤差,霧滴接收計(jì)時(shí)3 min;噴霧結(jié)束后,利用分析天秤稱(chēng)量每根離心管中的噴霧液質(zhì)量并記錄;共計(jì)測(cè)試7種噴頭,每種噴頭重復(fù)測(cè)試3次。測(cè)試期間室內(nèi)溫度27.8 ~28.4 ℃,相對(duì)濕度50%~56%。

表1 噴頭型號(hào)及測(cè)試參數(shù)

注:霧化等級(jí)的劃分依照國(guó)際標(biāo)準(zhǔn)委員會(huì)制定的噴頭霧化分級(jí)標(biāo)準(zhǔn)ISO 25358[29]進(jìn)行。

Note: The classification of spray droplet is according to nozzle spray classification standard ISO 25358 made by International Organization for Standardization.

1.2 基于LIDAR技術(shù)的噴霧探測(cè)方法

1.2.1 點(diǎn)云數(shù)據(jù)獲取

基于激光雷達(dá)的噴霧探測(cè)系統(tǒng)如圖2所示,采用由北京北科天繪科技有限公司生產(chǎn)的R-Fans-16型激光雷達(dá),可發(fā)射16條探測(cè)激光,激光波長(zhǎng)905 nm,激光等級(jí)Class1,激光點(diǎn)頻率320 kHz;激光掃描線角間隔2°,垂直視場(chǎng)角30°(-15°~15°),水平視場(chǎng)角360°;防水等級(jí)IP65,使用Ethernet通信接口。激光雷達(dá)測(cè)試分辨率隨探測(cè)距離增大而減小,而如果激光雷達(dá)側(cè)壁被飛濺的霧滴附著同樣會(huì)影響激光回波的接收。因此本文將激光雷達(dá)放置于噴霧區(qū)上方緊貼噴頭體的位置,激光雷達(dá)側(cè)壁與噴頭出口處于同一高度,此時(shí)激光雷達(dá)與噴頭水平間距為5 cm,與噴頭出口垂直間距5 cm。理論上當(dāng)激光雷達(dá)垂直放置(垂直傾角0°)于噴霧區(qū)正上方時(shí),其視場(chǎng)覆蓋范圍最大,但為避免噴頭遮擋采用5°傾角進(jìn)行安裝,并利用傾角測(cè)量器Bevelbox確保安裝準(zhǔn)確。開(kāi)啟噴霧和激光雷達(dá),調(diào)節(jié)噴霧壓力穩(wěn)定至0.3 MPa,激光轉(zhuǎn)速設(shè)置為5 Hz,水平角分辨率0.36°,利用計(jì)算機(jī)端R-Fans-Ctrlview程序采集數(shù)據(jù),采集時(shí)間60 s,每個(gè)噴頭重復(fù)測(cè)試采集3次;采集結(jié)束后保存原始數(shù)據(jù),用于后續(xù)解算及點(diǎn)云數(shù)據(jù)處理。本測(cè)試在中國(guó)農(nóng)業(yè)大學(xué)藥械與施藥技術(shù)研究中心噴霧系統(tǒng)實(shí)驗(yàn)室進(jìn)行,測(cè)試時(shí)間為2020年9月19-20日。測(cè)試期間室內(nèi)溫度28.1~28.7 ℃,相對(duì)濕度47%~51%。

1.2.2 點(diǎn)云數(shù)據(jù)處理方法

激光雷達(dá)工作時(shí)使用用戶數(shù)據(jù)包協(xié)議(UDP,User Datagram Protocol)向計(jì)算機(jī)接收端口推送點(diǎn)云數(shù)據(jù)包,數(shù)據(jù)包內(nèi)包含探測(cè)點(diǎn)的垂直角度、水平角度、探測(cè)距離及反射率等數(shù)據(jù)。點(diǎn)云數(shù)據(jù)處理基于Matlab2019b進(jìn)行,由于激光雷達(dá)與水平面存在安裝角度,使用仿射矩陣進(jìn)行空間變換(式1)。其中是激光雷達(dá)激光發(fā)射中軸面與水平面夾角,由于在本試驗(yàn)中激光雷達(dá)為垂直5°傾角裝置,因此該值為85°。

將經(jīng)過(guò)空間轉(zhuǎn)換的的點(diǎn)云數(shù)據(jù)由極坐標(biāo)系解算為空間直角坐標(biāo)系(圖3),可得到每個(gè)探測(cè)點(diǎn)的直角空間坐標(biāo)(,,),所有有效探測(cè)點(diǎn)共同構(gòu)成噴霧場(chǎng)直角坐標(biāo)系三維點(diǎn)云。將距離噴頭50 cm處正負(fù)0.5 cm高度內(nèi)的霧滴點(diǎn)作為計(jì)算范圍,對(duì)該平面進(jìn)行網(wǎng)格劃分,各噴頭探測(cè)結(jié)果的網(wǎng)格劃分方法與同種噴頭的噴霧實(shí)測(cè)方法相同,計(jì)算并輸出各個(gè)網(wǎng)格橫縱坐標(biāo)、有效霧滴點(diǎn)個(gè)數(shù)及平均反射率。

注:為激光雷達(dá)掃描范圍內(nèi)的任意一點(diǎn);,,分別是點(diǎn)對(duì)應(yīng)的三維坐標(biāo)值;為激光雷達(dá)到掃描點(diǎn)的距離,m;為點(diǎn)相對(duì)平面的垂直角度,(°);為激光線掃描水平角度值,(°);=coscos,=cossin,=sin

Note:is any point within the scanning range of LIDAR;,andare the three-dimensional coordinate values of point;is the distance from LIDAR sensor to scanning point, m;is the vertical angle of pointrelative toplane,is the scanning angle of laser line;=coscos,=cossin,=sin

圖3 極坐標(biāo)系轉(zhuǎn)換為直角空間坐標(biāo)系示意圖

Fig.3 Schematic diagram of transformation from polar to rectangular coordinates

1.2.3 LIDAR探測(cè)結(jié)果與噴霧實(shí)測(cè)結(jié)果神經(jīng)網(wǎng)絡(luò)擬合方法

為量化2種測(cè)試結(jié)果之間的相關(guān)關(guān)系,驗(yàn)證激光雷達(dá)探測(cè)方法的準(zhǔn)確性,經(jīng)激光雷達(dá)探測(cè)并解算后所得結(jié)果與噴霧實(shí)測(cè)結(jié)果采用神經(jīng)網(wǎng)絡(luò)擬合法進(jìn)行擬合[31]。神經(jīng)網(wǎng)絡(luò)擬合基于Matlab 2019b運(yùn)行,具備2層前饋神經(jīng)網(wǎng)絡(luò),并利用Deep Learning Toolbox 13.0搭建訓(xùn)練框架。基于激光雷達(dá)探測(cè)結(jié)果中距離噴頭出口50 cm處網(wǎng)格化計(jì)算所得結(jié)果,該神經(jīng)網(wǎng)絡(luò)(圖4)提取4項(xiàng)輸入值作為自變量:網(wǎng)格的橫坐標(biāo)和縱坐標(biāo)、網(wǎng)格內(nèi)有效霧滴點(diǎn)數(shù)量和平均反射率,實(shí)測(cè)霧量真值作為因變量;激活函數(shù)為Sigmiod函數(shù)。擬合訓(xùn)練采用Levenberg-Marquardt(L-M)算法,設(shè)置訓(xùn)練集(Training)、驗(yàn)證集(Validation)和測(cè)試集(Test)比例為70∶15∶15;輸出層采用線性擬合,輸出結(jié)果包括訓(xùn)練集、驗(yàn)證集和測(cè)試集的相關(guān)系數(shù)Correlation coefficient()及均方誤差Mean Square Error(MSE);

1.3 霧流區(qū)點(diǎn)云數(shù)據(jù)分層網(wǎng)格化計(jì)算

將解算后的三維點(diǎn)云沿噴頭噴霧方向進(jìn)行分層處理,由于噴頭的實(shí)際應(yīng)用中主要使用噴霧區(qū)后段,因此處理區(qū)間設(shè)置為距離噴頭25~50 cm的噴霧區(qū),每層厚度為1 cm,共26層;將分層后的點(diǎn)云數(shù)據(jù)繼續(xù)逐層進(jìn)行網(wǎng)格化處理,網(wǎng)格尺寸為6 cm×6 cm;假定噴霧場(chǎng)中逐一計(jì)算每層每個(gè)網(wǎng)格空間中全部有效探測(cè)點(diǎn)數(shù)量,結(jié)合網(wǎng)格空間坐標(biāo)即可對(duì)噴霧霧場(chǎng)進(jìn)行逐層量化輸出。

2 結(jié)果與分析

2.1 LIDAR探測(cè)結(jié)果與噴霧實(shí)測(cè)結(jié)果對(duì)比

對(duì)比7種噴頭50 cm處噴霧場(chǎng)截面分布的實(shí)測(cè)結(jié)果與激光雷達(dá)探測(cè)結(jié)果(圖5),2種結(jié)果的噴霧區(qū)截面形態(tài)呈現(xiàn)較好的一致性。各訓(xùn)練樣本集的樣本數(shù)、經(jīng)神經(jīng)網(wǎng)絡(luò)擬合所得結(jié)果MSE值和值如表2所示。各型號(hào)噴頭測(cè)試結(jié)果在單獨(dú)訓(xùn)練的情況下,訓(xùn)練集、驗(yàn)證集和測(cè)試集均取得了較好的擬合結(jié)果,訓(xùn)練集擬合相關(guān)系數(shù)≥0.995,驗(yàn)證集≥0.935,測(cè)試集≥0.877,其中4種扇形霧噴頭單獨(dú)擬合結(jié)果最好(≥0.990);進(jìn)一步將7種噴頭根據(jù)霧型劃分為圓錐霧噴頭和扇形霧噴頭2個(gè)樣本集分別進(jìn)行擬合,其中扇形霧噴頭擬合結(jié)果依然較好,訓(xùn)練集、驗(yàn)證集和測(cè)試集擬合相關(guān)系數(shù)≥0.974,而圓錐霧噴頭擬合精度較差;分別利用圓錐霧和扇形霧噴頭2個(gè)樣本集使用的神經(jīng)網(wǎng)絡(luò)對(duì)各樣本集下的噴頭進(jìn)行霧量分布預(yù)測(cè),結(jié)果顯示扇形霧噴頭噴霧量分布預(yù)測(cè)結(jié)果與實(shí)測(cè)結(jié)果有較高的一致性,而圓錐霧噴頭則顯示出與實(shí)測(cè)結(jié)果相差較大,其原因?yàn)?種圓錐霧噴頭間霧型差距較大,難以用同一模型完成擬合和預(yù)測(cè)。由上述結(jié)果可知,該神經(jīng)網(wǎng)絡(luò)可針對(duì)4種扇形霧噴頭的激光雷達(dá)探測(cè)結(jié)果與實(shí)測(cè)結(jié)果完成高精度的擬合并作出準(zhǔn)確的預(yù)測(cè),盡管3種圓錐霧因彼此間霧型差距較大而無(wú)法兼容于同一神經(jīng)網(wǎng)絡(luò)模型,但在獨(dú)立訓(xùn)練的前提下仍可獲得較好的擬合精度,由此可以證明,激光雷達(dá)探測(cè)是一種可行且準(zhǔn)確的霧量三維空間分布分析方法。

表2 各訓(xùn)練樣本集擬合結(jié)果

注:樣本集中圓錐霧噴頭與扇形霧噴頭的分類(lèi)依據(jù)表1中噴頭霧型劃分。

Note: The classification of cone nozzle and flat fan nozzle in the samples is according to the spray shape in table 1.

2.2 基于LIDAR探測(cè)方法的噴霧區(qū)逐層計(jì)算結(jié)果

根據(jù)激光雷達(dá)掃描25~50 cm霧場(chǎng)所得點(diǎn)云數(shù)據(jù)的分層處理結(jié)果如圖6所示,為體現(xiàn)噴霧場(chǎng)變化過(guò)程,在該范圍內(nèi)間隔5 cm選取截面圖。HCI、TR、ITR 3種空心圓錐霧噴頭的噴霧場(chǎng)形態(tài)均呈現(xiàn)為空心圓錐型,但空心區(qū)出現(xiàn)的范圍不同:HCI噴頭自35 cm之后出現(xiàn)實(shí)心截面,TR噴頭自25 cm之后出現(xiàn)實(shí)心截面,而ITR噴頭全程均為空心截面,本文將空心圓錐霧噴頭噴霧場(chǎng)變化的不同階段分別定義為空心段及實(shí)心段,3種噴頭噴霧場(chǎng)變化過(guò)程如表3所示。對(duì)比3種空心圓錐霧噴頭,空心段距離大小依次為ITR、TR和HCI噴頭,根據(jù)表1所示 ITR噴頭所產(chǎn)生的霧滴DV50遠(yuǎn)高于其余2種噴頭,其霧滴慣性大,比表面積小,受環(huán)境相對(duì)氣流阻力影響小,更易沿噴霧初始方向運(yùn)動(dòng)從而形成整體的空心圓錐霧場(chǎng);其余2種噴頭霧滴慣性小,受環(huán)境氣流相對(duì)阻力影響較大,在遠(yuǎn)離噴頭出口后運(yùn)動(dòng)狀態(tài)逐漸轉(zhuǎn)變?yōu)榻频淖杂陕潴w,因此噴霧場(chǎng)在經(jīng)歷空心段后最終都形成了實(shí)心狀態(tài)。

LU90、LU120、IDK90、IDK120 4種扇形霧噴頭的噴霧場(chǎng)形態(tài)均呈現(xiàn)為扇型,在相同噴霧角前提下,截面積隨噴霧距離增加而增大,且IDK噴頭截面寬度大于LU噴頭。IDK噴頭所產(chǎn)生的霧滴粒徑大于LU噴頭,因此IDK噴頭產(chǎn)生的霧滴具備更大的運(yùn)動(dòng)慣性和更小的比表面積,IDK噴頭所產(chǎn)生的噴霧場(chǎng)截面霧場(chǎng)截面寬度大于LU噴頭。

表3 3種空心圓錐霧噴頭噴霧場(chǎng)變化過(guò)程

2.3 討 論

基于LIDAR的噴霧場(chǎng)三維探測(cè)方法相比實(shí)測(cè)方法,主要具有3個(gè)方面的優(yōu)點(diǎn):1)可實(shí)時(shí)、一次性獲取噴霧場(chǎng)霧滴數(shù)量三維空間分布結(jié)果。激光雷達(dá)可對(duì)噴霧場(chǎng)進(jìn)行整體掃描探測(cè),實(shí)時(shí)獲取點(diǎn)云數(shù)據(jù)后進(jìn)行數(shù)據(jù)解算、分層和網(wǎng)格化計(jì)算而得到整個(gè)噴霧場(chǎng)的三維霧滴分布狀態(tài),而傳統(tǒng)實(shí)測(cè)方法僅能獲得固定高度噴霧場(chǎng)截面的二維沉積分布狀態(tài)。2)測(cè)試結(jié)果準(zhǔn)確性高。激光雷達(dá)在噴霧過(guò)程中實(shí)時(shí)采集點(diǎn)云數(shù)據(jù),保證了點(diǎn)云數(shù)據(jù)與噴霧狀態(tài)的一致性;測(cè)試過(guò)程中全程使用計(jì)算機(jī)及電路開(kāi)關(guān)控制,無(wú)需利用霧滴接收裝置進(jìn)行測(cè)量,避免了接收裝置對(duì)霧滴運(yùn)動(dòng)狀態(tài)的影響;探測(cè)結(jié)果由計(jì)算機(jī)程序解算得出,無(wú)需進(jìn)行樣品的采集與檢測(cè),避免了人為取樣過(guò)程中可能的樣品損耗,以及檢測(cè)過(guò)程中的人為誤差。3)測(cè)試方法便捷高效。進(jìn)行噴霧場(chǎng)探測(cè)的過(guò)程中只需在固定位置架設(shè)激光雷達(dá)進(jìn)行數(shù)據(jù)采集,無(wú)需使用接收材料及指示劑,減少了布樣、收樣和測(cè)樣過(guò)程,完成一次測(cè)試僅需3 min,而實(shí)測(cè)方法進(jìn)行一次測(cè)試則需要近30 min;探測(cè)數(shù)據(jù)的解算與量化分析全部由計(jì)算機(jī)完成,可實(shí)現(xiàn)無(wú)人批處理,直接輸出噴霧場(chǎng)三維量化分析結(jié)果。本文在激光雷達(dá)測(cè)試方法的研究過(guò)程中,將噴頭霧滴粒徑假定為大小均勻以便于方法的建立,盡管目前研究結(jié)果顯示該假定前提下的擬合結(jié)果較好,可以印證方法的可行性,后續(xù)仍將針對(duì)霧滴粒徑對(duì)該方法測(cè)試精度的影響進(jìn)行進(jìn)一步研究。

目前針對(duì)植保機(jī)械及噴頭的噴霧檢測(cè)主要分為室內(nèi)試驗(yàn)和田間試驗(yàn),前者包含霧量分布測(cè)試和噴霧飄移風(fēng)洞測(cè)試,后者包含田間噴霧沉積和飄移檢測(cè),此前研究人員依照相關(guān)測(cè)試標(biāo)準(zhǔn)如 ISO 9898:2000、ISO 5682-1:2017、ISO 22856:2008、ISO 22866:2005等,開(kāi)展了大量的噴霧量分布、飄移測(cè)試[32-34],然而這些測(cè)試主要利用霧滴收集裝置對(duì)噴灑出的液體進(jìn)行收集,進(jìn)而對(duì)收集到的霧滴進(jìn)行定量分析,測(cè)試過(guò)程會(huì)耗費(fèi)大量的人力物力且效率較低,同時(shí)這類(lèi)方法難以做到對(duì)噴霧場(chǎng)的實(shí)時(shí)探測(cè)。盡管已有研究報(bào)道了LIDAR探測(cè)技術(shù)應(yīng)用于果園噴霧機(jī)的田間噴霧飄移測(cè)量,但選用的激光雷達(dá)僅能進(jìn)行單線或截面上的霧滴探測(cè),依舊無(wú)法完成三維空間中霧滴分布的總體探測(cè)。計(jì)算流體動(dòng)力學(xué)(Computational Fluid Dynamics,CFD)模擬可以對(duì)噴霧裝置產(chǎn)生的噴霧場(chǎng)進(jìn)行條件推演和模型預(yù)測(cè)[35-36],但環(huán)境氣流、溫濕度等因素對(duì)噴霧場(chǎng)的影響相對(duì)復(fù)雜,所得模型預(yù)測(cè)結(jié)果的準(zhǔn)確性仍需要大量相同條件的實(shí)測(cè)結(jié)果進(jìn)行驗(yàn)證。王志翀等[37]開(kāi)發(fā)了一種基于激光成像技術(shù)的農(nóng)藥?kù)F滴飄移評(píng)價(jià)方法,該方法可利用激光成像技術(shù)結(jié)合計(jì)算機(jī)圖像批處理進(jìn)行風(fēng)洞中噴霧飄移的測(cè)量,快速準(zhǔn)確地獲取飄移率、飄移特征高度和飄移潛力指數(shù),但由于激光成像受光照亮度限制難以應(yīng)用于田間測(cè)量過(guò)程。本文開(kāi)發(fā)的基于LIDAR探測(cè)的噴霧場(chǎng)霧量三維空間分布測(cè)試方法,既可以調(diào)整激光雷達(dá)的安裝位置進(jìn)行不同范圍大小的噴霧場(chǎng)探測(cè),又可以改變分層網(wǎng)格化的密度進(jìn)行不同空間分辨率的霧量計(jì)算,更重要的是,該方法實(shí)現(xiàn)了噴霧場(chǎng)實(shí)時(shí)動(dòng)態(tài)探測(cè)和一次性三維空間分布量化分析。因此該方法可以為噴霧設(shè)備霧化質(zhì)量檢測(cè)、實(shí)驗(yàn)室和田間飄移檢測(cè)、植保機(jī)械噴霧系統(tǒng)的田間快速調(diào)校和作業(yè)質(zhì)量的在線監(jiān)測(cè)提供一種新思路。

3 結(jié) 論

本文提出了一種基于LIDAR技術(shù)的噴霧量三維空間分布測(cè)試方法,利用十六線激光雷達(dá)傳感器,在實(shí)驗(yàn)室內(nèi)條件下針對(duì)7種不同型號(hào)噴頭的噴霧場(chǎng)進(jìn)行了三維空間探測(cè),同時(shí)利用神經(jīng)網(wǎng)絡(luò)擬合法將探測(cè)結(jié)果與噴霧實(shí)測(cè)結(jié)果進(jìn)行擬合,驗(yàn)證了該方法的準(zhǔn)確性,并進(jìn)一步對(duì)各噴頭噴霧區(qū)進(jìn)行了逐層量化分析,得到以下結(jié)論:

1)對(duì)7種噴頭噴霧場(chǎng)截面霧量分布與探測(cè)結(jié)果進(jìn)行獨(dú)立的神經(jīng)網(wǎng)絡(luò)擬合訓(xùn)練,訓(xùn)練集擬合相關(guān)系數(shù)≥0.995,驗(yàn)證集≥0.935,測(cè)試集≥0.877,其中4種扇形霧噴頭單獨(dú)擬合結(jié)果最好(≥0.990)

2)對(duì)4種扇形霧噴頭數(shù)據(jù)樣本集進(jìn)行合并作為總體進(jìn)行擬合,相關(guān)系數(shù)≥0.972,但3種圓錐霧噴頭因相互間霧型差別較大,總體的擬合結(jié)果并不理想。

3)3種圓錐霧噴頭噴霧場(chǎng)均存在空心圓錐部分,ITR8002噴頭表現(xiàn)出全程空心圓錐狀態(tài),而HCI4002噴頭與TR8002噴頭噴霧場(chǎng)空心段分別為0~36 cm和0~28 cm;4種扇形霧噴頭噴霧場(chǎng)均呈現(xiàn)為截面逐漸增大的扇型,IDK噴頭噴霧場(chǎng)截面寬度大于具有相同噴霧角的LU噴頭。

目前該方法主要針對(duì)實(shí)驗(yàn)室內(nèi)單噴頭噴霧進(jìn)行測(cè)試,對(duì)于各類(lèi)噴霧機(jī)多噴頭噴霧的探測(cè)效果有待進(jìn)一步研究。

[1]楊希娃,周繼中,何雄奎,等. 噴頭類(lèi)型對(duì)藥液沉積和麥蚜防效的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(7):46-50. Yang Xiwa, Zhou Jizhong, He Xiongkui, et al. Influences of nozzle types on pesticide deposition and insecticidal effect to wheat aphids[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 46-50. (in Chinese with English abstract)

[2]張京,宋堅(jiān)利,何雄奎,等. 扇形霧噴頭霧化過(guò)程中霧滴運(yùn)動(dòng)特性[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(4):66-69. Zhang Jing, Song Jianli, He Xiongkui, et al. Droplets Movement characteristics in atomization process of flat fan nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 66-69. (in Chinese with English abstract)

[3]宋堅(jiān)利,劉亞佳,張京,等. 扇形霧噴頭霧滴飄失機(jī)理[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(6):63-69. Song Jianli, Liu Yajia, Zhang Jing, et al. Drift mechanism of flat fan nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 63-69. (in Chinese with English abstract)

[4]王瀟楠,何雄奎,Andreas. Herbst,等. 噴桿式噴霧機(jī)霧滴飄移測(cè)試系統(tǒng)研制及性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):55-62. Wang Xiaonan, He Xiongkui, Andreas Herbst, et al. Development and performance test of spray drift test system for sprayer with bar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 55-62. (in Chinese with English abstract)

[5]Otto S, Loddo D, Baldoin C, et al. Spray drift reduction techniques for vineyards in fragmented landscapes[J]. Journal of Environmental Management, 2015, 162(1): 290-298.

[6]王昌陵,宋堅(jiān)利,何雄奎,等. 植保無(wú)人機(jī)飛行參數(shù)對(duì)施藥?kù)F滴沉積分布特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):109-116. Wang Changling, Song Jianli, He Xiongkui, et al. Effect of flight parameters on distribution characteristics of pesticide spraying droplets deposition of plant-protection unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 109-116. (in Chinese with English abstract)

[7]何雄奎. 改變我國(guó)植保機(jī)械和施藥技術(shù)嚴(yán)重落后的現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(1):13-15. He Xiongkui. Improving severe draggling actuality of plant protection machinery and its application techniques[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 13-15. (in Chinese with English abstract)

[8]農(nóng)業(yè)農(nóng)村部、國(guó)家發(fā)展改革委、科技部、財(cái)政部、商務(wù)部、國(guó)家市場(chǎng)監(jiān)督管理總局、國(guó)家糧食和物資儲(chǔ)備局:國(guó)家質(zhì)量興農(nóng)戰(zhàn)略規(guī)劃(2018—2022年)[EB/OL]. 2019-02-11[2019-02-20]. http: //www. moa. gov. cn/nybgb/2019/201902/201905/t20190517_6309469. htm

[9]何雄奎. 中國(guó)精準(zhǔn)施藥技術(shù)和裝備研究現(xiàn)狀及發(fā)展建議[J]. 智慧農(nóng)業(yè),2020,2(1):133-146. He Xiongkui. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1): 133-146. (in Chinese with English abstract)

[10]邱白晶,史春建,吳春篤,等. 植保機(jī)械霧化場(chǎng)霧滴特征分析與二維重建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(11):7-10. Qiu Baijing, Shi Chunjian, Wu Chundu, et al. Analysis of droplet characteristics in spray field for plant protection machinery and reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(11): 7-10. (in Chinese with English abstract)

[11]Gary J, Andrew J, Steve W, et al. A comparison of initial spray characteristics produced by agricultural nozzles[J]. Crop Protection, 2013(53): 109-117

[12]呂曉蘭,何雄奎,宋堅(jiān)利,等. 標(biāo)準(zhǔn)扇形霧噴頭霧化過(guò)程測(cè)試分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(9):95-100. Lv Xiaolan, He Xiongkui, Song Jianli, et al. Analysis of spray process produced by agriculture flat-fan nozzles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 95-100. (in Chinese with English abstract)

[13]Nuyttens D, Baetens K, De Schampheleire M, et al. Effect of nozzle type, size and pressure on spray droplet characteristics[J]. Biosystems Engineering, 2007, 97(3): 333-345.

[14]Cock N D, Massinon M, Nuyttens D, et al. Measurements of reference ISO nozzles by high-speed imaging[J]. Crop Protection, 2016(89): 105-115.

[15]謝晨,何雄奎,宋堅(jiān)利,等. 兩類(lèi)扇形霧噴頭霧化過(guò)程比較研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(5):25-30. Xie Chen, He Xiongkui, Song Jianli, et al. Comparative research of two kinds of flat fan nozzle atomization process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 25-30. (in Chinese with English abstract)

[16]時(shí)玲,張霞,吳紅生,等. 扇形噴頭霧量分布均勻性的試驗(yàn)研究[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,26(3):389-394. Shi Ling, Zhang Xia, Wu Hongsheng, et al. Experimental reaserch on spray distribution uniformity of fan nozzles[J]. Journal of Yunnan Agricultural University, 2011, 26(3): 389-394. (in Chinese with English abstract)

[17]Wang R, Peethambaran J, Chen D. LIDAR point clouds to 3-D urban models: A review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 606-627.

[18]Simone L, Fabio M, Marco R, et al. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects[J]. Atmospheric Measurement Techniques, 2018, 11(3): 1639-1651.

[19]Weon I S, Lee S G, Ryu J K. Object recognition based interpolation with 3D LIDAR and vision for autonomous driving of an intelligent vehicle[J]. IEEE Access, 2020(8): 65599 - 65608.

[20]Yue S, Destaw A, Hui L, et al. A LIDAR-based tree canopy characterization under simulated uneven road condition: Advance in tree orchard canopy profile measurement[J]. Journal of Sensors, 2017:8367979.

[21]Underwood J P, Hung C, Whelan B, et al. Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors[J]. Computers and Electronics in Agriculture, 2016(130): 83-96.

[22]Hoff R M, Mickle R E, Froude F A. A rapid acquisition LIDAR system for aerial spray diagnostics[J]. Transactions of the ASAE, 1989, 32(5): 1523-1528.

[23]Stoughton T E, Miller D R, Yang X, et al. A comparison of spray drift predictions to LIDAR data[J]. Agricultural & Forest Meteorology, 1997, 88(1-4): 15-26.

[24]Miller D R, Salyani M, Hiscox A B. Remote measurement of spray drift from orchard sprayers using LIDAR[C]. ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 2003: 031093.

[25]Gil E, Llorens J, Llop J, et al. Use of a Terrestrial LIDAR sensor for drift detection in vineyard spraying[J]. Sensors, 2013, 13(1): 516-534.

[26]Gregorio E, Rocadenbosch F, Sanz R, et al. Eye-safe LIDAR system for pesticide spray drift measurement[J]. Sensors, 2015, 15(2): 3650-3670.

[27]Gregorio E, Rosell-Polo R, Sanz R, et al. LIDAR as an alternative to passive collectors to measure pesticide spray drift[J]. Atmospheric Environment, 2014(82): 83-93.

[28]Equipment for crop protection—Spraying equipment—Part 1: Test methods for sprayer nozzles[S]: ISO 5682-1. Paris: ISO Copyright Office, 2017.

[29]Crop protection equipment—Droplet-size spectra from atomizers—Measurement and classification[S]: ISO 25358. Paris: ISO Copyright Office, 2018.

[30]魏新華,于達(dá)志,白敬,等. 脈寬調(diào)制間歇噴霧變量噴施系統(tǒng)的靜態(tài)霧量分布特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(5):19-24. Wei Xinhua, Yu Dazhi, Bai Jing, et al. Static spray deposition distribution characteristics of PWM-based intermittently spraying system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 19-24. (in Chinese with English abstract)

[31]Shin J, Chang Y K, Heung B, et al. Effect of directional augmentation using supervised machine learning technologies: A case study of strawberry powdery mildew detection[J]. Biosystems Engineering, 2020(194): 49-60.

[32]董祥,楊學(xué)軍,嚴(yán)荷榮. 果園噴霧機(jī)噴霧量垂直分布測(cè)試系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(4):59-63. Dong Xiang, Yang Xuejun, Yan Herong. Test system of vertical spray distribution on orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 59-63. (in Chinese with English abstract)

[33]王瀟楠,何雄奎,宋堅(jiān)利,等. 助劑類(lèi)型及濃度對(duì)不同噴頭霧滴飄移的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):49-55. Wang Xiaonan, He Xiongkui, Song Jianli, et al. Effect of adjuvant types and concentration on spray drift potential of different nozzles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 49-55. (in Chinese with English abstract)

[34]Nuyttens D, Zwertvaegher I K A, Dekeyser D. Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods[J]. Biosystems Engineering, 2017(154): 14-24.

[35]Hong S W, Zhao L, Zhu H. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses[J]. Atmospheric Environment, 2018(175): 109-119.

[36]Zhang B, Tang Q, Chen L P, et al. Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach[J]. Biosystems Engineering, 2018(166): 184-199.

[37]王志翀,何雄奎,李天,等. 基于激光成像技術(shù)的農(nóng)藥?kù)F滴飄移評(píng)價(jià)方法研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(9):73-79. Wang Zhichong, He Xiongkui, Li Tian, et al. Evaluation method of pesticide droplet drift based on laser imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 73-79. (in Chinese with English abstract)

Method for measuring the 3D spatial distribution of spray volume based on LIDAR

Li Tian1,2, He Xiongkui1,2※, Wang Zhichong1,3, Huang Zhan1,2, Han Leng1,2

(1.,,100193,;2.,,100193,; 3.,,,,70599,)

Spray volume distribution in the three-dimensional (3D) space of nozzles is an essential interfering factor on spray drift and deposition of pesticide application, particularly on the atomization quality. Uniform distribution of spray can contribute to an obvious enhancement of pesticide efficacy, while reducing overuse and serious environmental contamination. However, the accurate measurement is still lacking in the real-time dynamic 3D distribution of spray volume, due mainly to long time consumption, and cumbersome procedure at present. In this study, a novel measurement for 3D spray volume distribution was developed using light detection and ranging (LIDAR) technology. Seven types of nozzles were tested, including the commonly-used nozzle of hollow cone, anti-drift hollow cone, flat fan, and anti-drift flat fan (HCI4002, TR8002, ITR8002, LU9002, IDK9002, LU12002, and IDK12002) in plant protection. The spray area of the nozzle was scanned using a 16-line laser LIDAR with the laser (Class 1) wavelength of 905 nm and the scanning range was -15°-15°. Specifically, the angular speed of horizontal rotation was 5 Hz, and the emission frequency was 320 Hz. The scanning lasted for 60 s, and all nozzles were tested with 3 replicates. The point cloud data was transferred to the laptop in form of packets in real time. MATLAB 2019b software was used to run the affine matrix and coordinate system transformation after data packet analysis for the droplet coordinates and spatial density. Meanwhile, the real value of spray volume distribution was measured in the spray section of 50 cm below the nozzle. Polyethylene (PE) centrifugal tubes with a volume of 50ml were arranged in a matrix to collect the droplets. Four kinds of fan nozzles were tested by a 5×15 collector matrix, and three kinds of hollow cone nozzles were tested by a 9×9 collector matrix. All nozzles were measured three times, and all tests lasted for 3 min, in order to collect enough droplets for a small weighing error. A neural network with 1 hidden layer (100 hidden neurons) and 1 output layer was used to fit the relationship between the traditional measurement and LIDAR scanning. The ratio between training, validation, and testing set was 70:15:15. The results showed that a high fitting precision was achieved in all seven kinds of nozzles for the correlation coefficient in the training set≥0.995, validation set≥0.935, testing set≥0.877, and the correlation coefficient≥0.990 for the flat fan nozzles. It proves that the LIDAR scanning can accurately and quantitatively analyze the spray volume distribution. The 3D spatial distribution of spray volume for all 7 nozzles was obtained after the spray area was layered and meshed, then to calculate the droplet density in each grid. A faster and easier procedure was made for the real-time 3D spray volume distribution, compared with the conventional one. The LIDAR technique can also be expected to provide an alternative way for atomization quality detection of sprayers, indoor and field test of spray drift, particularly on a rapid adjustment and online monitoring of operation quality in plant protection machinery in the field.

nozzles; spray area; LIDAR; 3D spatial detection; spray volume distribution

李天,何雄奎,王志翀,等. 基于LIDAR技術(shù)的噴霧量三維空間分布測(cè)試方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):42-49.doi:10.11975/j.issn.1002-6819.2021.06.006 http://www.tcsae.org

Li Tian, He Xiongkui, Wang Zhichong, et al. Method for measuring the 3D spatial distribution of spray volume based on LIDAR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 42-49. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.006 http://www.tcsae.org

2020-12-23

2020-02-23

國(guó)家自然科學(xué)基金(31761133019);國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0700903);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-28-20)

李天,博士生,主要研究方向?yàn)橹脖C(jī)械與施藥技術(shù)。Email:406491500@qq.com

何雄奎,教授,博士生導(dǎo)師,主要研究方向?yàn)橹脖C(jī)械與施藥技術(shù)。Email:xiongkui@cau.edu.cn

10.11975/j.issn.1002-6819.2021.06.006

S24:S123

A

1002-6819(2021)-06-0042-08

主站蜘蛛池模板: 久久综合丝袜日本网| 国产精品区视频中文字幕| 成人在线观看不卡| 亚洲人成网站观看在线观看| 亚洲国产日韩在线观看| 欧美 亚洲 日韩 国产| 波多野结衣视频网站| 亚洲免费三区| 亚洲综合天堂网| a免费毛片在线播放| 国产黄色免费看| 一本大道无码日韩精品影视| 狠狠五月天中文字幕| 内射人妻无码色AV天堂| 激情六月丁香婷婷| 性做久久久久久久免费看| 亚洲视频黄| 亚洲色图在线观看| 欧美综合中文字幕久久| 亚洲最黄视频| 波多野结衣一区二区三区四区视频 | 欧美一级特黄aaaaaa在线看片| 亚洲一级无毛片无码在线免费视频 | 国产精品v欧美| 日本免费精品| 久久性视频| 大陆精大陆国产国语精品1024| 亚洲综合一区国产精品| 午夜少妇精品视频小电影| 国产福利影院在线观看| 精品国产成人高清在线| 四虎永久免费地址在线网站| 欧美午夜在线播放| 欧美精品啪啪| 孕妇高潮太爽了在线观看免费| 亚洲成a人片| 色偷偷av男人的天堂不卡| 日韩毛片在线播放| 欧美日韩一区二区三区四区在线观看| 亚洲欧美另类中文字幕| 小蝌蚪亚洲精品国产| 国产精品亚洲а∨天堂免下载| 国产欧美在线观看视频| 在线观看网站国产| 中文字幕欧美日韩高清| 国内精品久久人妻无码大片高| 亚洲伊人久久精品影院| 亚洲精品老司机| 日韩欧美中文字幕在线精品| 国产永久在线视频| 国内精品视频| 亚洲精品在线91| 99青青青精品视频在线| 免费又黄又爽又猛大片午夜| 精品午夜国产福利观看| 久久国产乱子| 91网址在线播放| 国产欧美高清| AV色爱天堂网| 女人18一级毛片免费观看| 香蕉伊思人视频| 中文字幕一区二区视频| 波多野吉衣一区二区三区av| 欧美综合在线观看| 精品无码国产自产野外拍在线| 亚洲中文字幕23页在线| av一区二区无码在线| 日韩欧美国产三级| 欧美三级视频在线播放| 福利姬国产精品一区在线| 欧美有码在线观看| 精品一区二区三区中文字幕| 亚洲视频免费播放| 国产成人高清在线精品| 欧美精品1区| 国产aⅴ无码专区亚洲av综合网| 91精品国产情侣高潮露脸| 全部免费毛片免费播放| 亚洲AV无码一区二区三区牲色| 亚洲嫩模喷白浆| 老司机精品一区在线视频 | 欧美区一区二区三|