999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

復合井修復地下水硝酸鹽污染的效果

2021-06-01 14:54:46劉佩貴曾康輝尚熳廷劉湘偉
農業工程學報 2021年6期
關鍵詞:污染

劉佩貴,曾康輝,尚熳廷,劉湘偉,陽 輝

復合井修復地下水硝酸鹽污染的效果

劉佩貴1,曾康輝1,尚熳廷2※,劉湘偉3,陽 輝3

(1. 合肥工業大學土木與水利工程學院,合肥 230009;2. 合肥工業大學汽車與交通工程學院,合肥 230009;3. 西藏自治區水文水資源勘測局,拉薩 850000)

為探尋更適用于農田周邊硝酸鹽污染地下水的原位生物修復技術,該研究構建了A、B、C3套試驗裝置,分別刻畫管井(A)、大口井與管井組成的復合井(B、C)。基于3套物理試驗模型,定量對比分析了管井與復合井修復地下水硝酸鹽污染的效果。結果表明:受水力停留時間的影響,相同流速條件下,A、B、C三套修復系統的硝酸鹽負荷分別介于75~100、100~125、125~150 mg/L之間;在允許硝酸鹽負荷范圍內,去除率均可達到95%以上,且不會出現亞硝酸鹽累積及氨氮超標現象,表明了復合井修復系統的可行性,可以實現地下水開采與修復同步進行,提高了地下水水源地供水安全保證率。

地下水;污染;硝酸鹽去除;反硝化作用;復合井;水力停留時間

0 引 言

受農業長期施肥及土壤中微生物的影響,遷移能力較強的硝酸鹽易隨水分運動進入到飽和帶,致使農田周邊地下水面臨被硝酸鹽氮污染的威脅,影響到地下水水源地的供水安全[1-4]。為解決該問題,眾多研究學者基于物理吸附[5-8]、化學反應[9-12]和生物轉化[13-16]等原理提出了相應的原位或異位修復技術,其中,原位生物修復方法以去除率高、碳源經濟安全、無二次污染或二次污染危害程度低、占地空間小等優點成為研究熱點。現階段常用的修復介質載體可概括為原位反應帶(In-situ Reactive Zone,IRZ)[17-18]和可滲透反應墻(Permeable Reactive Barrier,PRB)[19-20]兩大類,通過擴大IRZ的面積或者增加PRB的厚度均可以有效提高硝酸鹽污染地下水的修復效果,但受含水層空間展布情況和修復工程經濟成本等的影響,實際工程運行過程中,多存在去除效率與修復介質載體體積及工程運維成本之間的矛盾,制約了該技術的推廣與應用。此外,已有的修復技術和方法多是圍繞切斷污染源展開,然而,因農作物生長和產量需求,農業化肥面源污染不易阻截,進一步增加了農田區域地下水硝酸鹽污染修復的難度。劉明朝[21]設計了原位水平井修復系統,該系統實現了地下水開采與修復的同步進行,破解了需要切斷污染源才可修復地下水污染的問題,但該系統的不足是水平井成井結構技術要求較高,操作復雜,亟需尋求施工工藝相對簡單、修復效果佳的原位修復介質。

為此,本文基于管井和大口井的適用條件,借助生物修復技術,通過設計管井與大口井組成的復合井,構建室內物理試驗模型,研究復合井原位生物修復地下水硝酸鹽污染的效果,探討該類井結構應用于實際工程的可行性和適用性,以期提出一種簡便易操作的原位生物修復地下水污染系統,為解決農田周邊地下水硝酸鹽污染問題提供切實可行的技術與方法。

1 材料與方法

1.1 試驗裝置與運行

為構建復合井原位修復系統,自制了3套試驗裝置(圖1和表1),每套裝置均由井、儲液池、蠕動泵、乙醇注入桶組成,其中裝置A模擬的是一口直徑7 cm的管井,裝置B和C模擬的是由直徑14 cm的大口井和直徑7?cm的管井組成的復合井,井的材料均為亞克力板材。

試驗所用含水介質為粒徑<0.25 mm的均質細砂,為保證3個系統的滲透性能一致,試驗中采用相同均質砂的干容重分層填砂,邊壓實邊填入A、B、C試驗裝置的管井中,保證管井中均填入相同體積和高度的細砂(細砂高度均為12 cm),裝置B和C的大口井中介質填充高度分別為4?cm和8?cm的介質,壓實度與管井相同。管井和大口井底部密封,側壁通過過濾器進水,每個管井上部安裝蠕動泵模擬抽水,3組試驗裝置抽水期間不形成干擾井。本文的目標是分析井的類型對硝酸鹽修復效果的影響,為了保證其他因素完全相同,3套試驗裝置放置于同一模擬硝酸鹽污染地下水的儲液池中,盡可能保證外界環境完全相同。

表1 試驗運行參數

注:S1~S6表示反應階段。

Note : S1-S6 represent the reaction stages.

1.2 試驗方法

自然界中廣泛存在反硝化微生物,為提高復合井原位系統中生物反硝化作用的效果及反應速率,需要人為添加碳源,對比固態、液態碳源的優缺點[22-24],本次選用無毒無害、經濟實惠的乙醇作為反硝化碳源,根據公式(1)計算試驗運行一定時間內需要注入的乙醇量

為避免地下水中其他離子成分對反硝化作用的干擾,采用去離子水與KNO3(分析純)配置模擬不同濃度硝酸鹽污染地下水。試驗開始前將3套試驗裝置靜置于模擬硝酸鹽污染地下水的儲液池中,使水流從下往上緩慢飽和介質,并保證排空介質中的空氣,待試驗柱充分飽水后開始試驗。首先,進行第一個試驗段(S1),啟動乙醇注入泵,為保證碳源分析的均勻性,將傳輸乙醇直徑為1cm的軟管在大口井中部纏繞一圏,軟管側壁均勻打孔,以便使乙醇均勻擴散到介質中;然后啟動補水泵和抽水泵。該階段為生物自然掛膜階段,通過自然馴化優勢菌種實現反應系統中的反硝化作用[25]。試驗期間每天8:00從抽水泵中取樣,使用哈希DR6000型紫外可見光分光光度計檢測NO3--N、NO2--N、NH4+-N(總稱為三氮)的濃度,待三氮濃度穩定后結束該階段。然后,保持所有泵正常工作,增大儲液池內NO3--N濃度至50 mg/L(S2階段),乙醇的注入量根據公式(1)作相應的調整,繼續試驗過程,重復取樣和檢測過程,待出口處三氮濃度穩定后再進入S3階段,依次進行,直至出口處硝酸鹽的濃度超過標準限值才停止試驗。本文硝酸鹽的限值采用世界衛生組織(WHO)規定的硝酸鹽氮濃度(11.3 mg/L)。

2 結果與分析

2.1 修復效果分析

根據生物反應過程,將原位生物修復硝酸鹽過程分為自然掛膜和正常運行兩個階段。為保障自然掛膜效果,初始管井進水流速為0.13?m/d,NO3--N濃度為25?mg/L,3套反應系統的NO3--N濃度均在第4 d降至1.0?mg/L以下,去除率大于97%,持續穩定4 d后,認為掛膜成功。由于進水流速將對反硝化作用效果產生一定的影響[21],硝酸鹽修復過程中不宜使進水流速過大,根據本次試驗的介質條件,正常運行階段進水流速控制為0.26 m/d。根據反硝化作用程度及NO3--N濃度,本次試驗自然掛膜和正常運行共包括6個階段。

由圖2的NO3--N濃度變化過程可以看出,每個反應階段NO3--N濃度均隨著反應時間的增加和進水NO3--N濃度的變化,出現先上升后逐漸下降并逐漸趨于穩定的狀態。當反應階段發生變化,即瞬時增大硝酸鹽濃度時,濃度變化情況表明反應介質中的微生物基本在1d內即可完成篩選優勢菌種,以便適應硝酸鹽負荷條件的變化,提高反硝化能力。

S1和S2兩個階段A、B、C3套修復系統NO3--N的去除率均大于97%,當進水NO3--N濃度增大至75 mg/L時,僅反應系統A的去除率略有降低,約為89%,但此時硝酸鹽氮濃度的檢測值為7.94 mg/L,仍小于WHO規定的限值11.3?mg/L,滿足水質要求。繼續增大進水NO3--N濃度至100?mg/L時(S4),系統A、B、C持續反應11d后NO3--N濃度分別穩定在50?mg/L、3?mg/L、0.5?mg/L,表明A系統內的反硝化菌群的處理能力已不能滿足標準限值的要求,超出了其最大硝酸鹽處理負荷。其他兩個復合井系統去除率仍大于97%,修復效果仍非常好,此后停止試驗裝置A的運行。當進水NO3--N濃度增大至125?mg/L(S5)時,裝置B的NO3--N去除率由97%降至68%(圖3),穩定濃度超過了11.3?mg/L,表明地下水硝酸鹽濃度超過了裝置B的處理能力即承載負荷,停止裝置B的試驗。此時,系統C的去除率仍接近98%,表明硝酸鹽濃度還可以繼續增大。當進水NO3--N濃度持續增大至150?mg/L,待試驗穩定后去除率下降至70%,出水濃度約45?mg/L,超過了WHO的標準限值。由此得出,A、B、C3套試驗裝置,以0.26?m/d的流速穩定運行時的硝酸鹽負荷分別介于75~100、100~125、125~150?mg/L之間。

NO2--N是微生物反硝化過程的中間產物,裝置A、B、C分別在S3、S4、S6階段出現NO2--N的累積現象(圖3),特別在S4階段A和B兩個系統中NO2--N濃度均大于10 mg/L,出現了NO2--N嚴重累積問題。但S1-S5反應階段3個修復系統的NH4+-N濃度基本在0~1 mg/L之間,僅在裝置處理能力小于硝酸鹽負荷時NH4+-N濃度才增大至地下水III類水限值(0.5?mg/L)以上。

2.2 修復效果差異性分析

綜合圖2~圖3的結果可以看出,3套試驗裝置的硝酸鹽負荷和去除率總體效果C>B>A。造成系統間差異的主要原因是由于B、C兩個裝置中的取水建筑物為管井與大口井組成的復合井。從管井中抽水,被硝酸鹽污染的地下水通過過濾器首先進入大口井,經過反硝化作用后才進入管井,管井中的地下水在微生物的作用下進一步降低了硝酸鹽的濃度,復合井增大了反硝化作用的面積、延長了微生物反硝化時間。三個試驗裝置反應介質的體積比為1﹕2﹕3,管井和大口井的直徑相同,試驗裝置表現在介質填充厚度不同,裝置C大口井的厚度是裝置B的2倍,流速相同條件下,水力停留時間()之比為1 ﹕2﹕4,C>B>A,而水力停留時間是決定修復效果的重要因素[26]。從3套試驗裝置可處理的硝酸鹽負荷(NL)也可以看出,NLC>NLB>NLA。由此得出,裝置C的修復效果最優,B次之,A最差,復合井的修復能力和效果明顯優于管井。

NO2--N的濃度主要受反應速率、生物菌群、還原酶的影響,試驗后期出現了NO2--N積累現象,可能是由于NO2--N的降解速率小于NO3--N的降解速率[27],因為進行異化硝酸鹽還原的異樣細菌可分為兩類,a類菌群只含有硝酸鹽還原酶,b類菌群含有反硝化中的全部酶系。當某些因素抑制b類菌群的生長而對a類菌群影響較小時,就會造成NO2--N積累[28],且硝酸鹽還原酶的活性比亞硝酸鹽還原酶的活性更高[29],隨著微生物的不斷生長,修復系統內能夠反應NO3--N的生物量遠遠多于能夠反應NO2--N的生物量,反應優先進行NO3--N→NO2--N,此后才發生NO2--N→NO的過程。

造成部分階段NH4+-N濃度增大的主要原因是由于異化還原成銨作用(Dissimilatory Nitrate Reduction to Ammonium, DNRA)[30-31]。由于反硝化作用與DNRA作用均需要有機質提供電子供體,故二者呈競爭關系。根據細菌將選擇獲取能量較大的反應這一理論[32],細菌從反硝化作用中獲得的能量(2 333.84?kJ/mol)遠高于從DNRA作用中獲得的(679.605?kJ/mol),因此優先發生反硝化作用。故在修復系統的硝酸鹽負荷范圍內,NH4+-N積累程度較低,DNRA作用較弱,反硝化作用呈主體作用,而超過硝酸鹽負荷范圍后,反硝化作用減弱,DNRA作用增強,NH4+-N積累程度有所增加。

2.3 復合井的應用性探討

常見的取水建筑物有管井、大口井、滲渠、輻射井,其中管井和大口井適用范圍廣、適用性強[33],因此,本次研究過程中選用了管井和大口井。大口井一般適用于地下水埋藏較淺、含水層厚度不大和富水性好的地區,實際應用中井徑多在5~10m,具有較大的反硝化面積,較管井存在施工條件要求高、基建費用高的缺點。管井適用范圍較廣、成井工藝相對簡單,但反硝化面積有限,影響修復效果,因此,本文結合兩種類型井的優勢,構建了大口井與管井組成的復合井,用其開展原位修復地下水硝酸鹽污染,試驗結果表明了復合井的去除率和處理負荷明顯優于管井。

決定裝置修復效果的關鍵因素是反硝化面積和時間,類比分析,理論上可以僅建立一個大口井開展地下水的修復和開采,但從成井成本和便于管理角度,一般不采用大口井開采地下水,但為了滿足地下水供水中硝酸鹽標準限值的要求,建議借助本次研究中提出的復合井結構提升修復效果。實際成井結構示意圖如圖4所示,施工過程中底部的大口井可以通過擴孔解決,實際應用中大口井的口徑由含水層中地下水硝酸鹽污染的濃度和去除率共同決定。

3 結 論

本文通過構建管井和大口井組成的復合井原位生物修復系統,研究了復合井原位生物修復地下水硝酸鹽污染的效果及硝酸鹽負荷。在試驗裝置尺寸條件下,當以0.26?m/d的水流流速抽水時,三個試驗裝置的硝酸鹽負荷分別介于75~100、100~125、125~150?mg/L之間。因復合井的水力停留時間和體積是管井的2倍,增加了反硝化時間和面積,修復能力和效果明顯優于管井。當試驗裝置的硝酸鹽負荷小于其處理能力時,去除率均可達到95%以上,且未出現亞硝酸鹽累積及氨氮超標現象,從而表明了復合井修復系統的可行性,并對其應用性進行了探討,設計了實際工程應用中建議的成井結構示意圖,在不需要切斷農業面源污染條件下,可以實現地下水開采與修復同步進行,提高了地下水水源地供水安全保證率。此外,復合井為管井與大口井的組合,不僅成井工藝相對簡單,適用范圍也廣(包括潛水、承壓水),可以根據含水層厚度、需水量大小、硝酸鹽污染地下水的程度等調整大口井的井徑及反應介質載體高度,在不影響開采量的同時保障硝酸鹽的去除效果。

受試驗時間的限制,物理試驗不可能窮盡所有的試驗方案,因此,基于物理試驗模型,本文僅確定了三個修復系統的最大硝酸鹽負荷區間,未明確具體的硝酸鹽負荷。后續工作中將通過建立水文地球化學模擬模型,精確確定不同復合井修復系統的最大硝酸鹽負荷,并探討介質的非均質性對修復效果的影響程度。

[1]嚴冬冬,徐從海,黃永軍,等. 郯城縣農村飲用水源地硝酸鹽污染及防治對策[J]. 環境研究與監測,2020,33(3):59-63. Yan Dongdong, Xu Conghai, Huang Yongjun, et al. Nitrate pollution in rural drinking water sources in Tancheng county and countermeasures[J]. Environmental Research and Monitoring, 2020, 33(3): 59-63. (in Chinese with English abstract)

[2]孟春霞,鄭西來,馬振宇,等. 青島市農村供水中硝酸鹽氮污染狀況及健康風險評價[J]. 水利水電技術,2014,45(9):24-26. Meng Chunxia, Zheng Xilai, Ma Zhenyu, et al. Assessment on status of nitrate pollution in rural water supply of Qingdao and its healthy risk[J]. Water Resoures and Hydropower Engineering, 2014, 45(9): 24-26. (in Chinese with English abstract)

[3]Liu Jiutan,Peng Yuming,Li Changsuo,et al. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health-ScienceDirect[J]. Environmental Pollution, 2021, 268: 115947.

[4]Cameira M D R, Rolim J, Valente F, et al. Translating the agricultural N surplus hazard into groundwater pollution risk: Implications for effectiveness of mitigation measures in nitrate vulnerable zones-ScienceDirect[J]. Agriculture, Ecosystems & Environment, 2021, 30: 107204.

[5]Bergquist A M, Choe J K, Strathmann T J, et al. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water[J]. Water Research, 2016, 96(1): 177-187.

[6]Shafiekhani H, Barjoizadeh R. Modification of activated carbon by ZnCl2, CaCl2, MgCl2and their applications in removal of nitrate ion from drinking water[J]. Asian Journal of Green Chemistry, 2019, 3: 1-12.

[7]Lékéné R B N, Nsami J N, R A, et al. Optimization conditions of the preparation of activated carbon based Egusi (Naudin) seed shells for nitrate ions removal from wastewater[J]. American Journal of Analytical Chemistry, 2018, 9(10): 439-463.

[8]趙爽. 給水廠污泥改性活性炭去除硝酸鹽氮的性能研究[D]. 北京:北京建筑大學,2020. Zhao Shuang. Study on the Performance of Water Treatment Residuals Modified Granular Activated Carbon to Remove Nitrate[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. (in Chinese with English abstract)

[9]沈靜,項凱民,繆澤群,等. 鈷卟啉催化硝酸鹽電化學還原反應[J]. 湖南科技大學學報:自然科學版,2020,35(4):89-95. Shen Jing, Xiang Kaimin, Mou Zequn, et al. Nitrate electrochemical reduction catalyzed by cobalt protoporphyrin[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2020, 35(4): 89-95. (in Chinese with English abstract)

[10]Sheydaei M, Ayoubi-Feiz B. Nitrate reduction through the visible-light photoelectrocatalysis and photoelectrocatalysis/reverse osmosis processes: Assessment of graphene/Ag/N-TiO2nanocomposite[J]. Journal of Water Process Engineering, 2021, 39: 101856.

[11]Dortsiou M, Katsounaros I, Polatides C, et al. Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate[J]. Environmental Technology, 2013, 34: 373-381.

[12]王樂樂. 納米電極制備及電化學去除地下水中硝酸鹽行為與機理[D]. 北京:中國地質大學(北京),2020. Wang Lele. Preparation of Nano Electrode and Behavior and Mechanism for Electrochemical Reduction of Nitrate in Groundwater[D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract)

[13]張蘭河,莊艷萍,王旭明,等. 溫度對改良A2/O工藝反硝化除磷性能的影響[J]. 農業工程學報,2016,32(10):213-219. Zhang Lanhe, Zhuang Yanping, Wang Xuming, et al. Effect of temperature on denitrifying phosphorus removal efficiency using modified A2/O process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 213-219. (in Chinese with English abstract)

[14]Yan S, Cheng K Y, Ginige M P, et al. Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control[J]. Journal of Hazardous Materials, 2020, 402: 123770.

[15]Zhang Yichong, Xu Qiang, Huang Guangtuan, et al. Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(58): 34099-34109.

[16]易能,邸攀攀,王巖,等. 富氧灌溉池塘中反硝化細菌豐度晝夜垂直變化特征分析[J]. 農業工程學報,2015,31(15):80-86. Yi Neng, Di Panpan, Wang Yan, et al. Diel vertical variability analysis of denitrifying bacteria abundance in oxygen-enriched irrigation pond[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 80-86. (in Chinese with English abstract)

[17]Khan I A, Spalding R F. Development of a procedure for sustainable in situ aquifer denitrification[J]. Remediation Journal, 2003, 13(2): 53-69.

[18]Kim Y, Kim J H, Son B H, et al. A single well push-pull test method for in situ determination of denitrification rates in a nitrate-contaminated groundwater aquifer[J]. Water Science & Technology, 2005, 52(8): 77-86.

[19]何培芬. 絲瓜絡作為模擬可滲透反應墻介質處理地下水中硝酸鹽研究[D]. 廣州:廣州大學,2019. He Peifen, Study on Removal of Nitrogen from Groundwater by Loofah Sponge Solid Carbon as Simulate Permeable Reactive Barrier Media[D]. Guangzhou: Guangzhou University, 2019. (in Chinese with English abstract)

[20]Liu Yong, Liu Yajing, Ma Lei, et al. Corncob PRB for on-site nitrate removal in groundwater[J]. Arabian Journal of Geosciences, 2020, 13(20): 1-11.

[21]劉明朝. 地下水水源地硝酸鹽污染的原位修復試驗研究[D]. 合肥:合肥工業大學,2019. Liu Mingchao. Experimental Study on In-situ Remediation of Nitrate Pollution in Groundwater Well Field[D]. Hefei: Hefei University of Technology, 2019. (in Chinese with English abstract)

[22]姜婷婷. 乙醇作為生活污水同步硝化反硝化脫氮外碳源可行性研究[J]. 環境科學與管理,2019,44(1):128-131. Jiang Tingting. Feasibility study of using ethanol as external carbon source for simultaneous nitrification and denitrification of domestic sewage[J]. Environmental Science and Management, 2019, 44(1): 128-131. (in Chinese with English abstract)

[23]余猛,楊鳳根. PRB修復受硝酸鹽污染地下水的碳源材料研究進展[J]. 凈水技術,2020,39(4):96-101,107. Yu Meng, Yang Fenggen. Research progress of PRB carbon source materials for groundwater rehabilitation polluted by nitrate[J]. Water Purification Technology, 2020, 39(4): 96-101, 107. (in Chinese with English abstract)

[24]黃駿宇. 利用米酒為碳源去除飲用地下水中硝酸鹽的現場試驗研究[D]. 桂林:桂林理工大學,2018. Huang Junyu. An In-situ Test Study on Nitrate Removal from the Drinking Groundwater by Using Rice Wine as Carbon Source[D]. Guilin: Guilin University of Technology, 2018. (in Chinese with English abstract)

[25]徐佩. 外加碳源生物濾池處理城市污水廠尾水脫氮試驗研究[D]. 武漢:武漢科技大學,2011. Xu Pei. The Study on Nitrogen Removal in Biological Filter of Extra Carbon Source for The Secondary Effluent of Municipal Wastewater Treatment Plant[D]. Wuhan: Wuhan University of Science and Technology, 2011. (in Chinese with English abstract)

[26]Westerhoff P, James J. Nitrate removal in zero-valent iron packed columns[J]. Water Research, 2003, 37(8): 1818-1830.

[27]付昆明,曹相生,孟雪征,等. 污水反硝化過程中亞硝酸鹽的積累規律[J]. 環境科學,2011,32(6):1660-1664. Fu Kunming, Cao Xiangsheng, Meng Xuezheng, et al. Characteristics of nitrite accumulation during wastewater denitrification[J]. Environmental Science, 2011, 32(6): 1660-1664. (in Chinese with English abstract)

[28]Payne W J. Reduction of nitrogenous oxides by microorganisms[J]. Bacteriol Rev, 1974, 37(4): 409.

[29]Bock E, Sundermeyer-Klinger H, Stackebrandt E. New facultative lithotrophic nitrite oxydizing bacteria[J]. Archives of Microbiology, 1983, 136(4): 281-284.

[30]Woods D D. The reduction of nitrate to ammonia by Clostridium welchii[J]. Biochemical Journal, 1938, 32(11): 2000-2012.

[31]Li Xiaowen, Song Chunlei, Zhou Zijun, et al. Comparison of community and function of dissimilatory nitrate reduction to ammonium (DNRA) bacteria in Chinese Shallow Lakes with Different Eutrophication Degrees[J]. Water, 2020, 12(1): 174.

[32]斯塔姆. 水化學:天然水體化學平衡導論[M]. 湯鴻宵,譯. 北京:科學出版社,1987.

[33]王威,楊在文,楊廣焱,等. 地下水取水工程驗收技術要點分析[J]. 地下水,2017,39(6):98-99,157. Wang Wei, Yang Zaiwen, Yang Guangyan, et al. Analysis of technical points for acceptance of groundwater intake engineering[J]. Ground water, 2017, 39(6): 98-99, 157. (in Chinese with English abstract)

Remediation effects of compound well on nitrate pollution in groundwater

Liu Peigui1, Zeng Kanghui1, Shang Manting2※, Liu Xiangwei3, Yang Hui3

(1.,,230009,;2.,,230009,; 3.,,850000,)

Nitrate pollution has posed a great threat to groundwater near farmlands, due mainly to the long-term agricultural fertilization and soil microorganisms. Nitrates with strong migration ability have entered the zone of saturation along with water movement. High concentrations of nitrates aredirectly detrimental to the safety of groundwater source areas. In this study, three systems A, B, and C were constructed to explore an in-situ bioremediation technology for the detection of nitrate-contaminated groundwater around farmland. Every system consisted of wells, storage tanks, and peristaltic pumps. System A was used to simulate a tube well with a diameter of 7 cm. System B and C were used to simulate compound wells, where there were a large well with a diameter of 14 and a tube well with a diameter of 7 cm. Every tube well was filled with fine sand in the same volume and height, where the height of fine sand was 12cm. The large diameter wells in system B and C were filled with fine sand with the heights of 4 cm and 8 cm, respectively. Both tube wells and large wells were used to simulate the complete penetration wells. The bottom of the wells was sealed, where water flowed in from the side walls. The peristaltic pumps were installed on the top of wells to simulate water pumping. The volume ratio of the reaction medium was 1:2:3 in three systems. The ratio of hydraulic retention time was also 1:2:4 under the same flow rate. The biofilm was naturally domesticated. Ethanol was used as the carbon source. A total of 6 groups were set in the reaction stage, including 25, 50, 75, 100, 125 and 150 mg/L, according to the concentration gradients of nitrate nitrogen. The test results showed that the microorganisms in the reaction medium could basically select the dominant strains within one day when the nitrate concentration increased instantaneously, leading to match the changes in nitrate loading conditions for the better denitrification capacity. In-situ bioremediation systems were also constructed with compound wells including tube wells and large diameter wells, in order to repair nitrate-contaminated groundwater and the nitrate loading of every system. The nitrate loadings of three remediation systems A-C were 75-100 mg/L, 100-125 mg/L, and 125-150 mg/L at the flow rate of 0.26 m/d. The removal rate of remediation systems reached more than 95% within nitrate loading. There was no accumulation of nitrite and excessive ammonia nitrogen, indicating the feasibility of repair systems with compound wells. Groundwater mining and remediation were carried out simultaneously without the need to cut off agricultural non-point source pollution, indicating high security for groundwater source area. In addition, a combination of tube wells and large diameter wells can be installed to compound wells with a relatively simple well drilling (including phreatic water and confined water). The diameter of wells and height of the reaction medium can be adjusted for better removal of nitrates, according to the thickness of the aquifer, the amount of water demand, and the level of nitrate-contaminated groundwater. Physical test models were used to determine the nitrate loading intervals of three remediation systems. In the future work, the hydrogeochemical model will be established to accurately determine the maximum nitrate loadings of repair systems with compound wells, together with the influence of medium heterogeneity on the remediation performance.

groundwater; pollution; nitrate removal; denitrification; compound wells; hydraulic retention time

劉佩貴,曾康輝,尚熳廷,等. 復合井修復地下水硝酸鹽污染的效果[J]. 農業工程學報,2021,37(6):214-219.doi:10.11975/j.issn.1002-6819.2021.06.026 http://www.tcsae.org

Liu Peigui, Zeng Kanghui, Shang Manting, et al. Remediation effects of compound well on nitrate pollution in groundwater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 214-219. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.026 http://www.tcsae.org

2020-01-21

2021-03-01

水文水資源與水利工程科學國家重點實驗室“一帶一路”水與可持續發展科技基金(2018nkms06)

劉佩貴,博士,副教授,主要研究方向為水資源評價。Email:liupg2512@163.com

尚熳廷,博士,副教授,主要研究方向為土壤水分運動物理規律模擬。Email:hfut_smt@163.com

10.11975/j.issn.1002-6819.2021.06.026

S152.7

A

1002-6819(2021)-06-0214-06

猜你喜歡
污染
河流被污染了嗎?
什么是污染?
什么是污染?
堅決打好污染防治攻堅戰
當代陜西(2019年7期)2019-04-25 00:22:18
堅決打好污染防治攻堅戰
可以喝的塑料:污染解決之道?
飲用水污染 誰之過?
食品界(2016年4期)2016-02-27 07:36:15
對抗塵污染,遠離“霾”伏
都市麗人(2015年5期)2015-03-20 13:33:49
P265GH低合金鋼在模擬污染大氣環境中的腐蝕行為
污染防治
江蘇年鑒(2014年0期)2014-03-11 17:09:46
主站蜘蛛池模板: 国产三级韩国三级理| 毛片免费试看| 99久久精品免费视频| 亚洲日韩AV无码精品| 久久精品女人天堂aaa| 国产精品私拍在线爆乳| 国产主播在线观看| 婷婷伊人五月| 国产欧美日韩精品综合在线| 亚洲天堂成人| 经典三级久久| 久久9966精品国产免费| 美臀人妻中出中文字幕在线| 免费看a级毛片| 亚洲欧美另类日本| 凹凸国产分类在线观看| 欧美一级在线| 亚洲无线视频| 国产青榴视频| 日本午夜视频在线观看| 日本在线亚洲| 欧美综合成人| 亚洲精品麻豆| 97se亚洲综合在线韩国专区福利| 男女男精品视频| 成人午夜免费视频| 毛片免费在线视频| 国产福利大秀91| 日本人妻丰满熟妇区| 黄色福利在线| 自拍欧美亚洲| 欧美激情第一欧美在线| 草草影院国产第一页| 亚洲人成网站色7777| 尤物特级无码毛片免费| 国产在线视频福利资源站| 91视频区| 国产黄网永久免费| 亚洲AV无码乱码在线观看裸奔 | 91久久偷偷做嫩草影院精品| 四虎永久免费在线| 亚洲一区二区视频在线观看| 亚洲天堂视频网| 97国产成人无码精品久久久| 国产成人精品一区二区三区| 国产白浆在线| 亚洲狠狠婷婷综合久久久久| 久久久黄色片| www.youjizz.com久久| 精品久久久久无码| 精品91视频| 无码电影在线观看| 精品1区2区3区| 国产成人啪视频一区二区三区| 国内a级毛片| 欧美日韩精品在线播放| 少妇人妻无码首页| 真人免费一级毛片一区二区| 激情视频综合网| 欧美成人亚洲综合精品欧美激情| 亚洲天堂免费| 日本欧美午夜| 国产男人天堂| 国产91久久久久久| 制服无码网站| 亚洲欧美另类中文字幕| yjizz国产在线视频网| 亚洲精品午夜天堂网页| 亚洲福利片无码最新在线播放| 毛片手机在线看| 国产午夜无码专区喷水| 欧美翘臀一区二区三区| 亚洲免费福利视频| 无码内射中文字幕岛国片| 国产国产人免费视频成18| 亚洲视频黄| 欧美午夜理伦三级在线观看| 99视频只有精品| 青青草原偷拍视频| 国产乱人伦AV在线A| 国产福利在线观看精品| 亚洲综合中文字幕国产精品欧美|