谷士艷,閆屹嵩,張文一,孫繼陽,張 敏,李 軼
高鹽高油對餐廚垃圾厭氧發酵酶活性及產VFAs的影響
谷士艷,閆屹嵩,張文一,孫繼陽,張 敏,李 軼※
(沈陽農業大學工程學院,沈陽 110866)
為探究高鹽高油對厭氧發酵產酸及相關酶活性的影響,該研究以餐廚垃圾為發酵原料,在接種物質量為30%、TS(Total Solids)為8%、溫度為35 ℃、初始pH值為7的條件下進行批式厭氧發酵試驗,研究鹽、油質量濃度為5、7、9、11、13、16 g/L的6個條件對發酵過程中的SCOD(Solluted Chemical Oxigen Demand)、VFAs(Volatile Fatty Acids)、淀粉酶、蛋白酶、輔酶F420和脫氫酶活性的影響。結果表明:隨著鹽油濃度的提高,SCOD峰值下降了23%~38%,并出現了2~3 d的延遲;高鹽高油條件下產酸以丁酸為主,丙酸、乙酸和異戊酸含量次之,正己酸、異丁酸、正戊酸的含量最低,不同鹽油條件下VFAs各組分比例差距較小;相關酶活性峰值均降低了5%~35%,相關酶活性峰值均推遲了3~6 d出現,鹽油濃度越高抑制現象越明顯。研究結果可為高鹽高油對厭氧發酵的影響和后續試驗提供參考。
垃圾;發酵;酶活性;鹽分;油脂;揮發性脂肪酸(VFAs)
餐廚垃圾是中國城市生活垃圾的重要組成部分,調查顯示北京市朝陽區日均餐廚垃圾產生量約為282 t/d,單個餐飲單位餐廚垃圾日均產生量為51.66 kg/d[1]。餐廚垃圾來源廣泛、成分復雜,具有富含有機物、含水率高、易腐化變質的特點[2],如果不能妥善處理將會導致衛生安全問題,滋生病菌對人體健康產生威脅[3],產生的氣體和廢水還對環境造成污染[4]。因此餐廚垃圾的減量化、無害化、資源化處理已成為國際普遍關注的焦點[5]。而采用厭氧發酵工藝可將餐廚垃圾中的有機物質轉化利用,不但可以實現廢棄物的資源化利用,還可以有效解決環境污染等問題[6],餐廚垃圾的有機質含量高達80%[7],富含淀粉、蛋白質是一種良好的反應原料[8]。
受餐廚垃圾的原料特性影響,發酵原料中富含大量的鹽分和油脂[9],以沈陽農業大學小吃街為例,部分餐廚垃圾的部分干基鹽質量分數最低為2.73 g/100 g,干基鹽質量分數最高可達27.6 g/100 g;濕基油脂質量分數最低為3.03 g/100 g,濕基油脂質量分數最高可達10.8 g/100 g,同時這些油脂大量附著在原料表面還以含油肉、肥油肉的形式存在去除難度大、去除效果差、成本高[10]。餐廚垃圾中的鹽分和油脂會對發酵活動產生影響[9-10],研究發現低水平的NaCl促進了水解酸化過程抑制產甲烷過程[11],當NaCl質量濃度超過6.0 g/L后,對產酸的抑制明顯[12],但對厭氧發酵產酸類型影響不顯著[13],隨著NaCl的質量濃度從6.0 g/L進一步提高到15 g/L時,甲烷積累量降低至11.4%~25.1%[14],揮發酸最大積累量降低至25.74%~70.04%,抑制現象極其顯著[15-16],高濃度的NaCl抑制酸化和產甲烷過程[17],另有研究發現高濃度的Na+也嚴重影響了產甲烷菌的活性[18];同時油脂也會抑制產甲烷菌活性[10],油脂濃度[19]、種類均會影響產酸過程[20],當油脂質量濃度低于4 g/L時,油脂對脂肪酸的產生略有促進作用[21],隨著油脂質量濃度進一步增加至32 g/L時,揮發酸最大積累量降至50.2%[22],同時高濃度是油脂也抑制了甲烷化過程并降低輔酶F420的活性[23]。但少有研究高鹽高油條件對餐廚垃圾厭氧發酵產VFAs及酶活性的影響,本試驗以餐廚垃圾為原料,通過預試驗和原料性質確定高鹽高油的標準和試驗梯度,在不同鹽油濃度下進行厭氧發酵試驗,通過檢測厭氧發酵過程沼液中的SCOD(Solluted Chemical Oxigen Demand)、揮發性脂肪酸(Volatile Fatty Acids,VFAs)種類和含量變化及淀粉酶、蛋白酶、輔酶F420和脫氫酶活性的變化來分析高鹽高油對餐廚垃圾厭氧發酵產酸過程及相關酶活性的影響,以期為高鹽高油條件下餐廚垃圾厭氧發酵提供理論依據。
餐廚垃圾取自沈陽農業大學食堂和附近小吃店,分揀后確定各類物質的比例并自行配置以保證原料的穩定性[14],餐廚垃圾中各物質含量分別為米飯40%±2.8%、肉類25%±3.2%、蔬菜15%±1.8%、面類15%±0.3%、蛋類5%±0.7%,pH值6.4±0.2,原料混合破碎處理后低溫保存;接種物取自沈陽市祝家鎮戶用沼氣池,原料的理化性質見表1。

表1 發酵原料和接種物的主要理化指標
本試驗以餐廚垃圾為反應原料,沼液為接種物。采用中溫批次厭氧發酵工藝,發酵溫度(35±0.1)℃,發酵基質總固體(TS)濃度為8%,反應裝料800 g。鹽油的最高標準取自沈陽農業大學小吃街,多次分批取樣檢測后得出;最低標準取自沈陽市沈河區天柱山老年公寓和高壽府老年公寓,分批多次取樣后進行預試驗檢測和響應面分析后確定高鹽高油的最低標準近似為5 g/L。因試驗樣品為多點分批多次取樣而來,再結合實際情況可知,混合打碎的餐廚垃圾后不存在高鹽低油或低鹽高油的情況,故未進行交叉試驗設計。各試驗組的鹽油質量濃度是由高鹽高油和低鹽低油兩種餐廚垃圾按一定比例混合后結合預試驗結果確定的,根據試驗梯度劃分為6組試驗,每組3個平行試驗;各個試驗組的鹽油濃度如表2所示。

表2 各批次發酵的NaCl與油質量濃度
試驗中添加的鹽為NaCl藥品[14],油為從餐廚垃圾中收集的油脂[15]。各試驗組的接種物質量為30%,并用蒸餾水補足質量;試驗在35 ℃的恒溫水浴鍋中進行,進料完畢后立即密封并接好氣體收集管路。在試驗過程中連續3 d產氣量均低于累計產氣量的1%時即可視為產氣停止[24]。
試驗結果使用SPSS、omnic和origin進行分析。
試驗原料的TS 與 VS 含量采用重量法測定,總氮采用凱氏定氮法測定,粗蛋白質含量用Folin法測得,油脂含量采用索式提取法測定,原料中的鹽含量用原子吸收分光光度計檢測Na+確定,用重鉻酸鉀法檢測沼液的SCOD含量,溶液中的VFAs種類和含量用氣相色譜儀測得[25],相關酶活性均使用分光法測量后計算得出。試驗前6 d連續取樣然后每3 d取樣一次直至反應結束,檢測沼液中的SCOD值、VFAs種類和含量以及淀粉酶、蛋白酶、輔酶F420和脫氫酶的活性。
SCOD則是指發酵液中溶解性COD所占的量,該指標可以反應檢測樣品中含有有機物的量[26]。厭氧發酵體系中碳水化合物和蛋白質多以固相形式存在,他們在轉化為VFAs之前首先需要溶解并釋放至發酵液中[27],通過SCOD 可以表征發酵過程中有機物的溶出情況。各個試驗組的SCOD變化如圖1所示。
隨著發酵活動的進行大量淀粉水解,SCOD含量先快速上升后受酸抑制影響下降,產酸和產甲烷過程受到抑制,相關微生物的生命活動使SCOD含量下降,隨后相關微生物和酶恢復活性使SCOD含量上升,然后隨著反應進行下降直至反應結束。隨著反應進行,鹽油濃度的提高使得SCOD含量峰向后拖延了1~3 d到來;隨著鹽油濃度的增加,抑制現象更加明顯,SCOD的峰值出現了明顯的差距,SCOD的峰值從第一組的715.43 g/L提升到最高的889.78 g/L,隨后快速大幅下降到最低值551.51 g/L,最低值較第一組降低23%,較最高值降低38%,高鹽高油抑制的現象顯著。該現象與王權、趙建偉等的結論基本一致[26-27],本文的抑制起始濃度為5 g/L略低于王權等的6 g/L,與本文所選的餐廚垃圾原料有關,本試驗原料中含有55%的易水解酸化的淀粉類物質,遠高于王權等35%淀粉類物質含量,導致高鹽高油的抑制起始濃度降低。鹽油抑制使餐廚垃圾內各種原料的SCOD特征峰均延后1~3d出現,各種原料SCOD特征峰的出現時間和順序與林志龍的結果略有延遲但基本相符[28]。
各試驗組VFAs含量變化規律和各組分含量如圖2所示。
由圖2可發現,高鹽高油對餐廚垃圾產酸有較強影響,隨著鹽油含量的上升,揮發酸峰延遲出現,這一現象與王權、趙建偉等的結論基本相符[26-27],但抑制起始濃度較兩人的試驗結果均較低,可能是餐廚垃圾的原料差異所導致的,本文所選的餐廚垃圾中含有大量易水解酸化的淀粉類物質,高鹽高油的抑制、酸抑制產生了協同作用,使得抑制起始濃度下降。
各組試驗在發酵過程中均產出了大量的VFAs,并因為酸抑制的原因形成了兩個產酸高峰。第一個產酸高峰峰值分別為6 515.67、3 964.67、5 611.67、7 484.33、7 140.67、7 010.01 mg/L,隨著鹽油含量的增加,VFAs峰值先降低后增加,產酸高峰延后1~3 d出現,這可能是因為低濃度的鹽油的抑制作用不強,使得產酸活動雖受抑制但產出的酸被消耗掉了[28],使得VFAs濃度下降,同時隨著鹽油的濃度提高抑制作用增強,又因油脂自身降解也會產生VFAs導致揮發酸高峰峰值增加[28]。第二個產酸高峰按各個試驗組峰值分別為11 217、7 317.67、7 543.33、8 184.5、9 954.5及11 467 mg/L。最大VFAs濃度與試驗組1相比分別降低了34.76%、32.75%、27.03%、11.26%,提高2.22%。由此可見,隨著鹽油含量的提高,酸積累情況會進一步加劇,VFAs峰值也延后3~6 d到來。同時高濃度的油脂也會降解產生VFAs[29],導致VFAs峰值會隨著鹽油含量的增加而增加[30],餐廚垃圾中高濃度的鹽油對厭氧發酵的產酸過程影響強烈。
各組試驗的VFAs含量變化規律與SCOD含量變化規律相符,VFAs峰與SCOD峰出現時間相差不大,高鹽高油對水解、產甲烷過程的抑制導致峰值的出現時間相差較大[26]。
圖3為各反應器中VFAs各組分含量比例隨時間的變化。當各反應器VFAs達到最大值時,各反應器中正丁酸含量最高,約占54%~75%;隨后是丙酸、乙酸和異戊酸,三者含量相近,約占10%~20%;正己酸、異丁酸、正戊酸的百分含量最低,僅占1%~8%。進一步研究發現各反應器VFAs達到最大值時各組分百分比相差不明顯。這一結果表明鹽分和油脂對餐廚垃圾厭氧發酵產VFAs組分影響不顯著[31],但本試驗丁酸含量較高,這可能是因為本文的鹽油含量有所提高,酸化、甲烷化過程受到抑制,導致丁酸大量積累含量上漲。
綜合分析圖2、圖3可以發現,VFAs的變化趨勢可分為3個階段,第1階段為酸積累階段,在此階段大分子有機物會先被分解為小分子物質如丁酸、己酸等[26],發酵液中VFAs濃度大幅提高,丁酸所占比例最高;第2階段為酸轉換階段,此階段發酵體系中VFAs濃度達到最高值,發酵體系中VFAs濃度基本平穩,VFAs的產生和消耗達到了一定程度的平衡[18],發酵液中的丁酸被分解為乙酸,同時油脂分解產生甘油進一步分解產生丙酸[26],丁酸比例下降,乙酸、丙酸比例開始上升;第3階段為酸消耗階段,由于大量的有機物被消耗,此階段VFAs消耗的速度比產生快,發酵體系中的乙酸、丙酸濃度下降,但VFAs各組分比例變化不大。
餐廚垃圾厭氧發酵過程中相關酶活性能很好的反應鹽油對厭氧發酵產酸過程的影響。將相關酶的活性與SCOD,VFAs聯合分析以得出更全面的結論。
在反應過程中淀粉酶和蛋白酶活性變化如圖4所示,隨著鹽油濃度的升高,淀粉酶活性高峰出現時間也隨之延后,同時酶活性下降5%~35%,鹽油濃度越高抑制現象越明顯;高鹽高油對蛋白酶活性的抑制作用明顯,隨著鹽油濃度提高酶活性下降7%~17%;而蛋白質較淀粉更難水解,導致蛋白酶活性的峰值來的較淀粉酶晚。在反應過程中輔酶F420和脫氫酶的活性變化如圖4所示,酶活性不但受到高鹽高油和揮發酸積累導致的抑制作用,也受到有機物水解情況的影響。隨著鹽油濃度的提升,酶活性也受到了抑制,輔酶F420活性下降8%~27%,脫氫酶活性下降5%~26%,輔酶F420和脫氫酶的活性高峰均向后延遲了3~6 d,鹽油濃度越高抑制現象越明顯。
試驗過程中酶活性的變化規律符合餐廚垃圾的原料特性[32],各酶活性的變化規律和特征峰的出現時間與SCOD和VFAs的變化規律相符[28,33]。
本文研究了高鹽高油對餐廚垃圾產酸及酶活性的影響,檢測并分析了發酵過程中SCOD含量,VFAs和相關酶活性的變化,結論如下:
1)鹽油含量的提高并沒有改變有機物溶出即SCOD的變化規律,但影響了在發酵過程中SCOD的峰值和出現時間,隨著鹽油濃度的提高,SCOD峰值從第一組的715.43 g/L略微提升到了最高的889.78 g/L隨后快速大幅下降直到551.51 g/L,較第一組降低了23%,較最高值降低了38%,峰值出現時間均有2~3 d的推遲。試驗結果表明隨著鹽油濃度的提高,抑制現象愈發強烈。
2)高鹽高油延遲了VFAs高峰的出現時間,并導致了VFAs的積累。隨著鹽油含量的提高,VFAs的積累峰的峰值也先下降后增加。在高鹽高油條件下餐廚垃圾的產酸以丁酸為主,約占54%~75%;丙酸、乙酸和異戊酸,三者含量相近,約占10%~20%;正己酸、異丁酸、正戊酸的含量最低,僅占1%~8%,鹽油條件對產酸過程中各組分含量比例的影響不大。
3)隨著鹽油含量的提高,酶活性均有所降低,淀粉酶活性峰值降低5%~35%、蛋白酶活性峰值降低7%~17%、輔酶F420活性峰值降低8%~27%,脫氫酶活性峰值5%~26%,相關酶活性峰值均推遲了3~6 d出現,鹽油濃度越高抑制和推遲現象越明顯。
[1] 王桂琴,陳日暉,張麗,等. 北京市朝陽區餐廚垃圾產生量調查及特性分析[J]. 中國資源綜合利用,2020,38(9):41-44. Wang Guiqin, Chen Rihui, Zhang Li, et al. Investigation and characteristic analysis of kitchen waste in chaoyang district of Beijing[J]. China Resources Comprehensive Utilization, 2020, 38(9): 41-44. (in Chinese with English abstract)
[2] Peter C Slorach, Harish K Jeswani, Rosa Cué, et al. Assessing the economic and environmental sustainability of household food waste management in the UK: Current situation and future scenarios[J]. Science of the Total Environment, 2020, 710: 135580.
[3] 劉臻. 關于餐廚垃圾無害化處理與資源化利用的思考[J]. 環境與發展,2020,32(9):217-218. Liu Zhen. Thinking about the harmless treatment and resource utilization of kitchen waste[J]. Environment and Development, 2020, 32(9): 217-218. (in Chinese with English abstract)
[4] Li Yanzeng, Chen Zhou, Peng Yanyan, et al. Changes in aerobic fermentation and microbial community structure in food waste derived from different dietary regimes[J]. Bioresource Technology, 2020, 317: 123948.
[5] Zhang Cunsheng, Su Haijia, Jan Baeyens, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 383-392.
[6] 任霞,徐靜. 中國餐廚垃圾處理技術專利申請現狀分析[J]. 中國發明與專利,2020,17(6):78-83. Ren Xia, Xu Jing. Analysis of patent application current status of kitchen waste treatment technology in China[J]. China Invention & Patent, 2020, 17(6): 78-83. (in Chinese with English abstract)
[7] Esra U?kun Kiran, Antoine P Trzcinski, Wun Jern Ng, et al. Bioconversion of food waste to energy: A review[J]. Fuel, 2014, 134: 389-399.
[8] 炊春萌,李保國,劉莉,等. 餐廚垃圾厭氧發酵研究進展[J]. 食品與發酵科技,2020,56(4):60-64,112. Chui Chunmeng, Li Baoguo Liu Li, et al. Advances in anaerobic fermentation of kitchen waste[J]. Food and Fermentation Sciences & Technology, 2020, 56(4): 60-64, 112. (in Chinese with English abstract)
[9] 王權,宮常修,蔣建國,等. NaCl對餐廚垃圾厭氧發酵產VFA濃度及組分的影響[J]. 中國環境科學,2014,34(12):3127-3132. Wang Quan, Gong Changxiu, Jiang Jianguo, et al. Effect of NaCl content on VFA concentration and composition during anaerobic fermentation of kitchen waste[J]. China Environmental Science, 2014, 34(12): 3127-3132. (in Chinese with English abstract)
[10] 李小風. 油脂對餐廚垃圾厭氧消化抑制效應的試驗研究[D]. 重慶:重慶大學,2010. Li Xiaofeng. Study on Inhibitory Mechanism of Lipid in Anaerobic Digestion for Food Waste[D]. Chongqing: Chongqing University, 2010. (in Chinese with English abstract)
[11] 雷中方. 高濃度鈉鹽對廢水生物處理系統的失穩影響綜述[J]. 工業水處理,2000,20(4):6-9. Lei Zhongfang. Malfunction effects of sodium salts with high concentration on existing wastewater biological treatment systems[J]. Industrial Water Treatment, 2000, 20(4): 6-9. (in Chinese with English abstract)
[12] 陶治平,趙明星,阮文權. 氯化鈉對餐廚垃圾厭氧發酵產沼氣影響[J]. 食品與生物技術學報,2013,32(6):596-602. Tao Zhiping, Zhao Mingxing, Ruan Wenquan. Effect of sodium chloride on biogas generation of kitchen waste by anaerobic fermentation[J]. Journal of Food Science and Biotechnology, 2013, 32(6): 596-602. (in Chinese with English abstract)
[13] Su Gaoqiang, Wang Shuying, Yuan Zhiguo, et al. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms[J]. Journal of Bioscience and Bioengineering, 2016, 121(3): 293-298.
[14] 王攀,李冰心,黃燕冰,等. 含鹽量對餐廚垃圾干式厭氧發酵的影響[J]. 環境污染與防治,2015,37(5):27-31. Wang Pan, Li Bingxin, Huang Yanbing, et al. Effect of salt content on dry anaerobic fermentation for food waste[J]. Environmental Pollution & Control, 2015, 37(5): 27-31. (in Chinese with English abstract)
[15] Zhao Jianwei, Liu Yiwen, Wang Dongbo, et al. Potential impact of salinity on methane production from food waste anaerobic digestion[J]. Waste Management, 2017, 67: 308-314.
[16] 徐家英,王楠楠. 餐廚垃圾厭氧消化過程中鹽度對產氣量的毒性抑制研究[J]. 中國資源綜合利用,2020,38(9):5-7. Xu Jiaying, Wang Nannan. Study on toxicity inhibition of salinity on gas production in anaerobic digestion of kitchen waste[J]. China Resources Comprehensive Utilization, 2020, 38(9): 5-7. (in Chinese with English abstract)
[17] Cao Xianyan, Zhao Youcai. The influence of sodium on biohydrogen production from food waste by anaerobic fermentation[J]. Journal of Material Cycles and Waste Management, 2009, 11(3): 244-250.
[18] Hierholtzer A, Akunna J C. Modelling sodium inhibition on the anaerobic digestion process[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2012, 66(7): 1565-1573.
[19] 任連海,黃燕冰,王攀,等. 含油率對餐廚垃圾干式厭氧發酵的影響[J]. 環境科學學報,2015,35(8):2534-2539. Ren Lianhai, Huang Yanbing, Wang Pan, et al. Effect of oil contents on dry anaerobic digestion of restaurant garbage[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2534-2539. (in Chinese with English abstract)
[20] 王夢芝,王曙,潘曉花,等. 4種油脂對瘤胃微生物體外產氣及輔酶F_(420)的影響[J]. 動物營養學報,2011,23(10):1819-1825. Wang Mengzhi, Wang Shu, Pan Xiaohua, et al. Supplementation of four different oils affects gas production and coenzyme F420 of ruminal microbe in vitro[J]. Chinese Journal of Animal Nutrition, 2011, 23(10): 1819-1825. (in Chinese with English abstract)
[21] Angelidaki I, Petersen S P, Ahring B K. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite[J]. Applied microbiology and biotechnology, 1990, 33(4): 469-72
[22] Zhang Wanqin, Lang Qianqian, Fang Ming, et al. Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste[J]. Bioresource Technology, 2017, 232: 304-312
[23] 李詩宣,溫沁雪,季業,等. 甘油投加對餐廚垃圾厭氧產酸性能的影響[J]. 環境科學學報,2020,40(10):3621-3628. Li Shixuan, Wen Qinxue, Ji Ye, et al. The effect of adding glycerin on volatile fatty acid production from anaerobic fermentation of food waste[J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3621-3628. (in Chinese with English abstract)
[24] 李超,劉剛金,劉靜溪,等. 基于產甲烷潛力和基質降解動力學的沼氣發酵物料評估[J]. 農業工程學報,2015,31(24):262-268. Li Chao, Liu Gangjin, Liu Jingxi, et al. Organic substrates evaluation based on biochemical methane potential and degradation kinetic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 262-268. (in Chinese with English abstract)
[25] 李森. 沼液回流對玉米秸稈厭氧發酵特性的影響研究[D]. 沈陽:沈陽農業大學,2018. Li Sen. Study on the Effect of the Reflux of Biogas Slurry on the Anaerobic Fermentation Characteristics of Corn Straw[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract)
[26] 王權. 油脂及鹽對餐廚垃圾產VFAs的影響研究及工程示范[D]. 北京:清華大學,2015. Wang Quan. Research on Enhanced Production of Volatile Fatty Acid from Food Waste: Effects of Salt and Grease[D]. Beijing: Tsinghua University, 2015. (in Chinese with English abstract)
[27] 趙建偉. 鹽度和油脂對餐廚垃圾和剩余污泥厭氧發酵產短鏈脂肪酸的影響與機理[D]. 長沙:湖南大學,2018. Zhao Jianwei. Effects and Mechanisms of Salinity, Fat, Oil and Grease (FOG) on Short Chain Fatty Acids Production from Food Waste and Waste Activated Sludge Anaerobic Fermentation[D]. Changsha: Hunan University, 2018. (in Chinese with English abstract)
[28] 林志龍. 餐廚垃圾代表性組分厭氧發酵產甲烷性能研究[D]. 福州:福建師范大學,2017. Lin Zhilong. Methanogenesis Performance of Representative Components of Kitchen Waste in Anaerobic Fermentation[D]. Fuzhou: Fujian Normal University, 2017. (in Chinese with English abstract)
[29] Li Yangyang, Jin Yiying, Borrion Aiduan, et al. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste[J]. Waste Management (New York, N. Y. ), 2018, 73: 156-154.
[30] 侯曉聰,蘇海佳. 高鹽濃度對厭氧發酵產甲烷的影響[C]. 2015年中國化工學會年會論文集,2015. Hou Xiaocong, Su Haijia. Effect of high salt concentration on methane production by anaerobic fermentation [C]. Proceedings of 2015 China Chemical Industry Society Annual Meeting, 2015.
[31] 鄭明月,鄭明霞,王凱軍,等. 溫度、pH 和負荷對果蔬垃圾厭氧酸化途徑的影響[J]. 可再生能源,2012,30(4):75-79. Zheng Mingyue, Zheng Mingxia, Wang Kaijun, et al. Effect of temperature, pH and organic loading rate on anaerobic acidification pathway of fruit and vegetable waste[J]. Renewable Energy Resources, 2012, 30(4): 75-79. (in Chinese with English abstract)
[32] 方卉. 餐廚垃圾單組分厭氧發酵產氣性能研究[D]. 重慶:西南交通大學,2019. Fang Hui. Experimental Study on Gas Production of Anaerobic Digestion of Food Waste Single Component[D]. Chongqing: Southwest Jiaotong University, 2019. (in Chinese with English abstract)
[33] 蔣彬,呂錫武,朱建國,等. 餐廚垃圾生化產甲烷潛力的數學模擬[J]. 環境工程學報,2017,11(3):1871-1877. Jiang Bin, Lyu Xiwu, Zhu Jianguo, et al. Mathematical simulations biochemical methane potential of food waste[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1871-1877. (in Chinese with English abstract)
Effects of high salt and high oil content on anaerobic fermentation enzyme activity and production of VFAs in food waste
Gu Shiyan, Yan Yisong, Zhang Wenyi, Sun Jiyang, Zhang Min, Li Yi※
(,,110866,)
Food waste is an excellent raw material for anaerobic fermentation, due to its rich in starch, protein, and high content of organic matter. But there are relatively high concentrations of salt and oil difficult to remove, particularly on a high removal cost in anaerobic fermentation. This study aims to explore the effects of high salt and oil in eat hutch garbage on the acid production and related enzyme activities of anaerobic fermentation. Taking food waste as the raw material in fermentation, a batch anaerobic fermentation test was carried out under the conditions of inoculation content of 30%, the Total Solid (TS) of 8%, the temperature of 35℃, and the initial pH of 7. A minimal inhibitory concentration test was selected to determine the high concentration in salt and oil. Initial raw materials were divided into six test groups for anaerobic fermentation according to the maximum concentration and gradient of salt and oil, including 5, 7, 9, 11, 13, 16 g/L. A detection was performed on the Soluble Chemical Oxygen Demand (SCOD) in biogas slurry, to determine the type and content of Volatile Fatty Acids (VFAs), as well as activity change of amylase, protease, coenzyme F420, and dehydrogenase. The experimental results are as follows. The SCOD did not change, but the peak SCOD decreased by 23%-38% with a 2-3 d delay, indicating a more intense inhibition phenomenon with the increase of salt/oil concentration. The high salt/oil content delayed the occurrence time for the peak of VFAs, leading to the accumulation of VFAs. The accumulation peak of VFAs decreased first and then increased with the increase of the salt/oil content, where the accumulation concentration of VFAs decreased by 34.76%. Moreover, the decomposition of oil-produced VFAs contributed to the increase in the concentration peak of VFAs. Butyric acid (accounting for 54%-75%) was the main acid product under the condition of high salt/oil. There were similar contents (about 10%-20%) of propionic acid, acetic acid, and isovaleric acid. The lowest contents were only 1%-8% of n-hexanoic acid, isobutyric acid, and n-valeric acid. There were few different proportions of VFAS components under various conditions of high salt/oil. The peak values decreased by 5%-35%, 7%-17%, 8%-27%, 5%-26% for the activity of amylase, protease, coenzyme F420, and dehydrogenase, respectively. Furthermore, the peak value of related enzyme activity all appeared 3-6 d later. There was more obvious inhibition of enzyme activity as the concentration of salt/oil increased. Therefore, the high salt/oil inhibited the dissolution of organic matter in anaerobic fermentation, further inhibiting the activities of hydrolase and methanase as a result of the accumulation of VFAs. This finding can provide a promising theoretical basis for the effect of high salt/oil on anaerobic fermentation.
wastes; fermentation; enzyme activity;salinity; oils and fats; volatile fatty acids (VFAs)
谷士艷,閆屹嵩,張文一,等. 高鹽高油對餐廚垃圾厭氧發酵酶活性及產VFAs的影響[J]. 農業工程學報,2021,37(6):228-234.doi:10.11975/j.issn.1002-6819.2021.06.028 http://www.tcsae.org
Gu Shiyan, Yan Yisong, Zhang Wenyi, et al. Effects of high salt and high oil content on anaerobic fermentation enzyme activity and production of VFAs in food waste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 228-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.028 http://www.tcsae.org
2020-12-01
2021-02-22
遼寧省自然基金面上項目(20170540813,2015020635);遼寧省教育廳項目;沈陽市科技局課題(18-013-0-86)
谷士艷,副教授,博士,研究方向為新能源及農業生物環境工程技術。Email:gushiyan@syau.edu.cn
李軼,副教授,博士,研究方向為新能源及農業生物環境工程技術。Email:yilisyau2000@163.com
10.11975/j.issn.1002-6819.2021.06.028
X713
A
1002-6819(2021)-06-0228-07