陳 航,馬家慶,王 霄
(貴州大學 電氣工程學院,貴陽550025)
IGBT(Insulated Gate Bipolar Transistor,絕緣柵雙極晶體管)是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅動式功率電力電子器件,具有驅動功率小、飽和壓降低的特點,是能源轉換與傳輸的核心控制器件,其安全性與可靠性已成為電力電子技術研究領域的重點之一。據統計變流器中31%的故障是由功率模塊引發,60%以上的模塊故障是由熱疲勞引起[1]。隨著IGBT器件結溫的升高,其安全運行裕度越小。通常IGBT模塊是由不同熱膨脹系數的疊裝材料組成,IGBT模塊在大功率狀態運行下會產生大量的熱量,散熱不足時,結溫升高致使IGBT模塊主要散熱材料焊料層失效,導致IGBT模塊不能正常工作,對整個輸電網絡造成一定程度的破壞[2]。隨著絕緣柵雙極晶體管向高功率和高集成度方向發展,在高頻傳導和開合下不斷產生大量的熱,熱產生問題日益突出,對IGBT模塊內部結構優化設計,散熱屬性分析和散熱的要求越來越高[3]。因此,研究IGBT的溫升抑制方法對提高其壽命具有重大意義。
國內外學者對IGBT模塊的散熱效率進行了大量的研究工作。風力發電系統中IGBT模塊長時間工作會使焊料層疲勞失效,借助建立IGBT模塊電-熱-機械應力多物理場模型,探究了焊料層空洞大小和位置對IGBT模塊熱-機械應力的影響規律,同時對不同焊料層失效程度對溫度梯度的影響規律進行了分析,這對IGBT模塊的壽命評估具有重要意義[4]。通過建立較為準確的IGBT模塊通態損耗和開關損耗的計算方法,考慮了溫度對損耗的影響,并采用等效熱阻法推導出各點溫度,在此基礎上設計了適用的強迫風冷散熱系統[5]。一種利用有限元體積法研究并分析了翅片厚度和翅片間距對熱管式散熱器散熱性能的影響的方法,對研制優化結構的散熱器有一定意義[6]。通過在散熱器進風側和散熱風扇之間加裝導風板來改變冷卻氣流在翅片間風道分布的改進措施,一定程度上解決了安裝有雙IGBT模塊的翅片式散熱器通風不暢、冷卻效率低的問題[7]。為滿足CRH2高速動車組牽引變流器散熱要求,通過改進傳統銅熱管建立一種階梯狀變截面熱管結構,并設計出新型熱管散熱器[8]。根據散熱系統熱阻模型,獲得散熱器的熱阻值和散熱器的溫度,并通過Icepak軟件對散熱器進行熱仿真和熱分析,設計了一種三相不平衡調節裝置的IGBT模塊散熱裝置,經實驗驗證其散熱性能良好[9]。針對電子器件的散熱問題,提出4種具有對稱和等距凹槽的微通道,并通過三維數值模擬,研究了不同雷諾數下凹槽形狀及布局對微通道性能的影響,實驗表明三角凹槽在雷諾數為600時獲得最優熱性能,而在雷諾數為900時等距圓形凹槽的熱性能超過三角凹槽[10]。對以電子散熱為背景的豎通道自然對流強化換熱進行分析并通過計算研究影響自然對流特征的熱源布置、通道當量直徑、氣流物性變化等對壁溫的影響,討論了自然對流的流動阻塞特征以及影響因素,在一定情況下獲取了熱源最佳位置與最佳散熱面積,為肋式散熱片設計優化提供參考[11]。
上述文獻中涵蓋了IGBT模塊在不同應用領域中的散熱方式,普遍的散熱方法有風冷,液冷,散熱器結構優化設計以及IGBT模塊內部散熱材料(焊料層)的制作等,這些方法都在一定程度上保證了IGBT模塊的工作效率以及提高了其使用壽命。然而,對于需要IGBT器件高頻運行的應用領域,器件開關頻率過大時,其累積熱量在現有的散熱方法下不能快速降低,同樣會對功率器件造成損壞。通常可結合不同的散熱方法以達到更快的散熱效果,但是對上述傳統的物理散熱方式的結合并不是單純的疊加效應,而且方法結合難度大,同時也耗費資源,甚至給原有的IGBT模塊帶來“負重”,影響正常的功能使用。所以,探索更高效的散熱效率方式是十分迫切的。
本文分析了一種Logistic混沌映射隨機PWM驅動方式,保證整體的IGBT模塊輸入功率不變時,對輸出PWM波的周期及占空比隨機化,在極短的導通時間里,可將IGBT等效成一般電阻[12],隨機PWM驅動下的IGBT導通時間是隨機的,運用熱傳導理論,隨機PWM作用下IGBT模塊的整體溫度梯度大于無隨機情況,散熱增多模塊溫升得以抑制,導通損耗隨之降低。本實驗中通過IGBT模塊安裝散熱片,引入隨機PWM驅動的方式驗證了IGBT模塊的溫升抑制效果,實驗情況驗證良好,這對設有外部散熱器的功率模塊在高強度工作環境中的應用中具有借鑒意義。
服從均勻分布的隨機數稱為均勻隨機數,若要生成某個數值范圍內的均勻隨機數,可利用傳統線性同余算法(LCG)先產生[0,1]均勻隨機數[13],公式(1)如下:

其中,M,a,c,xn均為非負整數,rn為[0,1]的均勻隨機數;再令ξn=(A-B)r n+A,則ξn為[A,B]之間的均勻隨機數,其中A,B均為整數。
當上述中的參數選擇合適時,獲得的隨機數的均勻性更佳。
以Devaney定義的混沌如下[14]:
設(X,ρ)為緊致的度量空間,f:X→X是連續映射,則稱f在X上是混沌的,且滿足:
(1)f對初始條件有敏感依賴性;
(2)f在X上拓撲傳遞;
(3f的周期點在X中稠密。
利用混沌算法產生的隨機序列具有非周期性和偽隨機屬性,敏感度依賴于初始參數,初始條件存在微小差別時的混沌系統的迭代軌跡也會自重合逐漸偏離,直至完全不同,該特質非常適合產生偽隨機數序列。
Logistic映射是典型的一維非線性離散混沌系統,已成為廣泛應用的混沌映射之一,其迭代方程如式(2)所示[15]:

式中,μ是控制參數,X n是迭代狀態值,隨著控制參數μ改變,Logistic映射的迭代行逐漸發生明顯變化。當迭代值散步在一定的區間內時,迭代映射進入混沌狀態,在此狀態下的Logistic映射的Lyapunov指數為正數,該指數是衡量混沌運動的數值特征,定義如式(3):

二值量化是混沌序列最常用的量化方法之一,主要目的是定義一個閾值t,先取序列的理論均值,然后將混沌實值序列量化成二值序列,量化過程如式(4):

其中,x i為混沌實值,y i為二值序列,當均值為0時,閾值t取0。
根據式(1)中產生一般隨機序列方法,加入擾動機制,并由Logistic映射生成混沌實值序列,經二值量化處理得到最終的隨機數序列,其生成圖如圖1所示。

圖1 隨機數序列生成圖Fig.1 Random number sequence generation figure
1.5.1 熱傳導
本次實驗IGBT模塊中的熱量傳導是從芯片核心位置逐漸向不同層級材料之間傳遞,最后經過散熱片傳入外部環境。熱傳導可用傅里葉導熱定律描述,式(5)[16]:

式中,-表示熱量從高溫處向低溫處傳遞;Q為傳導熱流量;υ為材料導熱系數;A為垂直于傳熱方向的截面積為溫度T對傳熱x方向上的變化率。
1.5.2 溫度梯度
溫度梯度是描述同種或不同介質之間熱量從不同等溫面傳導的速率,具有方向性,可表示成式(6):

式中,l是等溫面法線方向上的長度,l表示該方向上的單位矢量,即溫度梯度gradT是一個矢量,表示沿著l方向上的溫度變化率。
當gradT愈大時,物體傳熱速度越快,散熱更多。不同等溫面的熱量流向如圖2所示。

圖2 不同等溫面的熱量流向Fig.2 Heat flow at different isothermal surfaces
借助DSP系統中的epwm模塊生成一定頻率的PWM波,運用Logistic隨機數算法在有關寄存器中的設置中添加隨機數,以此達到PWM波的周期隨機化以及占空比隨機化的目的。無隨機PWM波,隨機周期PWM波和隨機占空比PWM波的對比圖如圖3所示。

圖3 無隨機、隨機周期PWM波形Fig.3 Waveforms of nonrandom,random period PWM
本實驗在永磁同步電機(PMSM)平臺上進行,利用熱電偶并通過萬用表測得IGBT模塊結溫,在IGBT模塊上安裝散熱片,主要目的是作為參照,驗證隨機周期PWM的IGBT模塊溫升抑制,同時觀察永磁同步電機運作是否正常,驗證是否影響實際的工作狀況,實驗平臺如圖4所示。

圖4 實驗平臺Fig.4 The experiment platform
設置無隨機PWM波的占空比為50%,周期為1/10 000 s,兩個實驗的平均時間約為400 s,在此過程中產生的隨機數約4×106個,為保證無隨機與隨機周期PWM的總體占空比基本保持不變,則隨機數的均勻性應良好。該實驗隨機數范圍(-5,5)的分布情況如圖5所示。

圖5 隨機數分布情況Fig.5 Random number distribution
從圖5中可知,隨機數數目在100以下的均勻性欠佳,隨機數數目達到10 000及以上時的均勻性效果好,該實驗隨機數的均勻性更佳。
在相關寄存器中添加適當的隨機數范圍將PWM波隨機化,考慮IGBT死區時間,隨機PWM程度不宜過高,在環境溫度基本保持不變的情況下(實際環境溫度為10.5℃),以IGBT模塊運行至45℃為起始溫度開始測其運行至53℃時的時間(升高8℃的運行時間),同時將永磁同步電機作為驅動負載,驗證溫升抑制效果,將測得的A,B,C三相負載電流進行諧波失真分析并將實驗數據和結果整理,見表1、表2。

%表1 兩種方式下三相負載電流的諧波失真比Tab.1 Three-phase load current harmonic distortion ratio in two ways

表2 兩種方式下IGBT模塊45℃~53℃的溫升時間Tab.2 The temperature rise time of IGBT element at 45℃to 53℃in two ways
從表1及表2可知:兩種PWM方式作用下的三相負載電流的諧波失真比無明顯變化,IGBT模塊從45℃升至53℃的過程中,永磁同步電機保持穩定運行,隨機周期PWM方法比無隨機PWM情況延時了88.8 s,證明了隨機周期PWM的溫升抑制效果好于無隨機PWM。此外,圖6詳細分析了這兩種方式下的溫升抑制趨勢,結果顯示IGBT模塊溫度從45℃~大約45.9℃時,隨機周期PWM方式與無隨機方式的時間隨溫度的變化率基本保持不變,從45.9℃開始隨機周期PWM方式的逐漸大于無隨機PWM方式,在該時間段內隨機周期PWM的溫升抑制較明顯,直至溫度升至50.8℃二兩者的基本保持不變,此后兩種方式的溫升抑制時間上升速率保持一致。

圖6 兩種方式下的溫升抑制趨勢Fig.6 Temperature rise suppression trend in two ways
隨機數算法一般多運用于軟件類領域,本文使用Logistic混沌映射隨機數算法并結合軟硬件,研究其對IGBT模塊的溫升抑制作用,同時加入參照物散熱片,對探究功率器件的多種散熱方式的結合具有借鑒意義,并且實驗結果的良好,證明了適用于工程技術領域。