賀清堯,石明菲,馮 椋,艾 平,袁巧霞,晏水平
基于膜蒸餾的沼液資源化處理研究進展
賀清堯,石明菲,馮 椋,艾 平,袁巧霞,晏水平※
(1. 華中農業大學工學院,武漢 430070;2. 農業農村部長江中下游農業裝備重點實驗室,武漢 430070)
沼液可占濕法厭氧發酵后發酵剩余物總質量的80%以上,在農田土地承載量和運輸成本的雙重限制條件下,大型沼氣工程的沼液很難通過還田利用的方式進行完全消納。對沼液實行資源化處理既能減少沼液體積和降低對環境的潛在威脅,還可實現高附加值的資源回收,促進可持續的農業循環經濟發展。作為膜分離技術中的重要分支,膜蒸餾在沼液處理過程中具有適應性強、膜污染程度低、避免發泡與快速脫氨等多方面的優勢。在沼液處理與農業廢棄物資源回收中具有廣闊發展前景。為此,該研究從介紹膜蒸餾的基本原理出發,就膜蒸餾處理沼液過程中最核心的氨氮與水分回收部分進行詳細的綜述,并針對沼液處理過程中的營養物質回收與減量化處理進行了綜合分析,最后對膜蒸餾用于沼氣工程中的可行性進行簡要計算。相比于其他沼液處理技術,膜蒸餾可在低成本與低碳足跡下實現沼液的資源回收與減量化處理,其處理沼液的成本與反滲透過程基本一致。在無外部能源供給的沼氣工程中,膜蒸餾更適用于高有機負荷沼液處理,或對反滲透后剩余的高濃度沼液進行處理。
沼氣;膜;蒸餾;沼氣工程;沼液;資源回收;水回收
畜禽養殖污染物排放是導致農業污染的重要源頭,亟需構建與完善畜禽養殖污染物處理與資源化策略,推行先進與可持續化的污染物處理技術[1]。在畜禽糞污處理主流技術中,厭氧發酵可同時處理固態糞污與液態廢水,殺滅病菌并將糞污轉化為沼氣與富含營養物質的沼肥,實現畜禽糞污處理的無害化、能源化與肥料化[2]。沼氣可為畜禽養殖場提供可再生能源,沼肥的還田利用可以實現營養物質循環并增加農作物產量,促進農業循環經濟的發展[3]。因此,厭氧發酵是畜禽糞污資源化處理的重要手段,但濕法厭氧發酵后沼液可占沼肥總質量的80%以上,在農田土地承載量和運輸成本的雙重約束條件下,沼液很難通過還田利用的方式消納[4]。現階段,沼液的安全高效處理與資源化回收已然成為限制糞污厭氧處理與沼氣工程發展的主要因素。因此,亟需開發沼液綜合處理與資源化利用技術。
沼液的理化特性與厭氧發酵原料及發酵濃度密切相關,沼液含水率高達95%以上[5],pH值呈弱堿性(7.5~9.0)。沼液中總氮濃度約為500~5 000 mg/L,且主要以銨態氮(NH3和NH4+)形式存在,沼液中還富含磷元素(約20~300 mg/L)和鉀元素(500~3 000 mg/L)[6]。沼液的主要成分決定了其不適合采用高成本的市政污水處理技術,更適合高附加值的開發性處理,如果能對其中的主要營養元素(N、P、K等)進行合理的高附加值開發,可有效彌補沼液處理中的成本投入[7]。現有的沼液資源化技術主要有化學沉淀法、微藻養殖、膜分離技術等[3]。其中,膜分離技術因為其操作靈活、設備簡單且可用于多種資源的高效回收,備受關注[8-9]。膜蒸餾作為膜分離技術的一種,由于其分離過程中僅允許蒸氣透過膜,因此在處理高有機物濃度的沼液中具備適應性強、膜污染程度低、避免發泡及快速脫氨等多重優勢[10]。
沼液中能夠以蒸氣形式分離的主要成分為H2O和NH3,其次還有少量溶解性氣體和揮發性有機物[11]。若能實現沼液中H2O和NH3的高效分離回收,即可實現沼液的養分回收和減量化處理等目標[12]。僅從沼液中回收H2O而氨氮留在沼液中,可實現沼液濃縮和水分回收,而僅從沼液中分離NH3也能實現沼液中氮素回收和降低沼液施用帶來的環境風險[13]。此外,從沼液中回收NH3還可用于沼氣提純或原料預處理,提升氨氮附加值。為此,本文以促進沼液的循環利用、降低農業面源污染為導向,首先介紹了膜蒸餾的基本理論,隨后綜述了多種膜蒸餾過程處理沼液的研究進展,重點關注了沼液中NH3與H2O的分離與回收,文章還綜合分析了膜蒸餾用于沼氣工程中的可行性。最后,本文對不同沼液處理方法的優缺點及成本進行了總結。
膜蒸餾是一種熱驅動型的膜分離過程,進料液和滲透側的溫度差導致了膜兩側的蒸氣分壓差,在蒸氣分壓差的驅動下,NH3和H2O等可揮發成分以氣體分子的形式從進料側透過膜孔傳質到滲透側,溶液中不可揮發性成分被截留在進料側,從而實現進料溶液的濃縮及相關資源的回收[13]。以水的傳質為例,可將膜蒸餾傳質簡化為三個部分:首先,進料側形成的水蒸氣從進料邊界層傳遞到達膜表面;隨后,水蒸氣從膜表面以自由擴散的形式穿過膜孔傳遞到達滲透側;最后,穿過滲透側邊界層進入滲透側主體。因此,水蒸汽的傳質阻力主要包含進料側傳質阻力、膜傳質阻力和滲透側傳質阻力,它們之間對傳質阻礙的關系與電阻串聯關系類似[14]。膜蒸餾的傳熱過程與傳質過程類似,也分為三個部分:進料側、膜和滲透側。其中,膜內傳熱主要依靠多孔膜自身的熱傳導和蒸汽的汽化潛熱。在一個穩定的狀態下,總傳熱通量和三個部分的傳熱通量相等[15]。
膜蒸餾過程中主要采用疏水膜,用于防止進料側溶液直接滲透進入滲透側。常用的有機膜有聚丙烯(Polypropylene,PP)、聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、聚偏氟乙烯(Polyvinylidene Fluoride,PVDF)和聚四氟乙烯(Polytetrafluoroethylene,PTFE)微孔膜,膜孔徑一般在0.1~1.0m,孔隙率30%至80%[16]。常見膜的結構形式有平板膜、中空纖維膜、毛細膜及管狀膜等,可根據不同的應用場景進行選擇。一般情況下,膜孔越大越有利于減少膜內傳質阻力和提升傳質系數,但膜孔過大更易導致膜孔潤濕,進而導致膜蒸餾過程失敗,因此應用中的膜孔徑一般不大于0.5m[14]。孔隙率越高和膜越薄,膜傳質阻力越低,但厚度降低,膜的機械性能也會減弱。在針對尿液的直接接觸膜蒸餾過程中,進料液和滲透側溫度分別為70 ℃和20 ℃條件下,采用厚度為89m的PTFE膜的總通量可比厚度為140m的PVDF膜高1.74倍[17]。
除有機膜被廣泛應用于膜蒸餾外,無機陶瓷膜經過疏水改性后也可用于膜蒸餾,與有機膜相比,陶瓷膜材料具備更好的耐高溫和耐機械沖擊等優良性能,但其在組件總體積方面沒有優勢[18]。為降低膜污染和膜潤濕的風險,研究人員在膜材料改性方面有大量的研究工作,通過對膜表面進行改性,提高其疏水性能,增強抗污染性能并提升過程的傳質通量[19]。
膜結構失穩主要包括膜孔徑尺寸的變化、膜孔潤濕、膜孔堵塞、膜表面污染等[20]。膜孔徑變化主要是由于機械沖擊或膜材料性質本身發生變化等造成的。膜孔潤濕則是由于溶液的表面張力降低或者液相壓力差超過膜的最大浸潤壓力。膜孔堵塞和膜表面污染均是由于污染物導致。膜污染可以通過一定的物理或化學方法進行清洗,進而實現膜通量的恢復[21]。膜蒸餾處理沼液過程中最常見的是有機物和無機物共同作用形成的污染層,此外還有少量的微生物參與和強化該污染層的形成[22-23]。
根據膜蒸餾基本原理,溫度差導致的蒸氣分壓差是膜蒸餾過程的主要驅動力。進料溫度直接影響被分離物質的蒸氣分壓[14],根據安托尼方程,蒸氣分壓與進料溫度呈指數曲線關系,因此,在滲透側溫度和壓力不變時,提升進料溫度,傳質通量呈指數曲線上升[24]。相比之下進料速率對整體傳質效果影響較小,但增加進料速率可降低流體邊界層的厚度進而降低邊界層傳質阻力,有利于提升膜通量[25]。采用直接接觸膜蒸餾處理沼液的研究發現,跨膜溫差由20 ℃增加到60 ℃過程中,傳質通量呈指數型增加,但流速為0.18和0.27 m/s下通量差異不顯著[26]。采用減壓膜蒸餾從沼液中進行氨氮分離的研究發現,沼液流量對氨通量和水通量的影響均呈現出顯著的線性關系[24]。
極化現象是由于在進料邊界層發生蒸發現象而導致邊界層側溫度降低和濃度增加,進而出現和進料側主體溫度和濃度不一致的情況,極化現象包括溫度極化和濃度極化,且兩種極化現象可同時發生[27]。其中溫度極化是指液相邊界層的溫度低于液相主體溫度,進而阻礙傳熱和傳質。濃度極化是指由于水分的蒸發,導致進料邊界層鹽分的濃度增加,而導致蒸汽分壓降低而減少傳質的現象。通過在液相增加擾動或降低傳質通量等措施可緩解極化現象的發生[28]。雖然關于沼液膜蒸餾過程中降低極化現象的報道較少,但利用極化現象對促進沼液膜蒸餾處理和氨氮回收有利。減壓膜蒸餾處理沼液過程中,可通過利用邊界層形成的pH極化現象來促進氨氮回收,減少沼液pH值調節的化學品消耗,大幅降低沼液處理成本[29-30]。
膜蒸餾處理沼液的基本形式如圖1所示,其基本原理為:加熱后沼液的揮發性組分通過膜孔自由擴散到滲透側,餾出物在滲透側冷凝并收集,實現沼液的資源回收與減量化處理[12]。沼液中的揮發性組分主要包括水分、氨氮(200~5 000 mg/L)[31]以及揮發酸等低含量的揮發性有機物等[11]。因此,根據從沼液中回收組分的不同,所采用膜蒸餾的形式也存在差異[32]。根據滲透側組分收集形式的不同,膜蒸餾可分為直接接觸膜蒸餾(Direct Contact Membrane Distillation,DCMD)、氣隙式膜蒸餾(Air Gap Membrane Distillation,AGMD)、氣掃式膜蒸餾(Sweep Gas Membrane Distillation,SGMD)與減壓膜蒸餾(Vacuum Membrane Distillation,VMD)(圖1)[33]。其中,相比于其他膜蒸餾過程,DCMD不需要額外的冷凝裝置,在沼液處理的試驗初期研究中使用較多[18,34]。
膜蒸餾可從沼液中直接回收獲得水分,而其余大部分物質,如有機物、氮、磷、鉀等營養元素可被疏水膜截留在濃縮沼液中,實際應用和試驗研究均重點關注沼液膜蒸餾過程中的水質和水通量。對從沼液中獲得的回收水的水質,主要影響因素為沼液中揮發性有機物的成分與含量、沼液的pH值等。而對沼液水分回收通量影響較大的因素有:進料溫度、進料速度、膜污染及膜材料特性等。
將沼液pH值調節至酸性是最常用的提高回收水分水質的方法,其可最大限度的將氨氮在內的營養物質截留濃縮在進料側,從而有利于營養物質的回收。Yan等[23]的研究結果表明,將沼液從pH值為8.5酸化至pH值為5.0可使氨氮截留率從66%增加至99%。酸性條件下沼液膜蒸餾滲透側回收水的電導率可保持在100S/cm以下,另外,酸性條件下可大幅降低水回收過程中的膜污染[35],降低鈣、鎂、硅等無機元素在膜表面或膜孔內的沉積,從而減少膜污染[22]。因此,將沼液酸化不僅可以提升對營養元素的截留率,同時能夠降低膜污染程度,是目前可以用于沼液減量化處理且同時回收營養元素和水分的重要途徑。但Kim 等[26]的研究發現,DCMD運行72 h后,由于膜表面污染物的形成,其對總氮(Total Nitrogen,TN)的截留率在pH值為8.5時可達90%以上,遠高于理論值65%。該研究結果與超濾(Ultrafiltration,UF)處理湖水時,隨著膜污染程度的增加而氨的截留率也相應增加的規律一致[36]。其主要原因在于膜污染的形成,既阻礙了水分的傳質也阻礙了氨氮的傳質。說明膜蒸餾過程中污染物的形成在一定程度上可提升氨氮的回收性能,但其過程機理和實際運行可行性還有待深入研究。
增加跨膜溫差、增加流速、采用低傳質阻力的膜并保持膜結構特性的穩定是獲得沼液膜蒸餾過程中高水分回收通量的主要措施。當跨膜溫差在50 ℃,采用厚度89m、膜孔0.45m和孔隙率為73%的PTFE平板膜處理尿液時,水回收通量可高達65.84 L/m2·h[17]。通過對比DCMD、VMD和SGMD三種結構形式的膜蒸餾發現,VMD具有最大的跨膜驅動力,因此能夠獲得最大的膜通量,而DCMD獲得的膜通量最小[37]。沼液本身的特性也會影響膜蒸餾回收水的通量,Jacob等[38]報道了DCMD處理沼液時滲透通量隨溫度和進料流量的關系,同時闡明了沼液中有機物含量增加會大幅增加膜污染進而降低滲透通量。
工程上采用氣隙式膜蒸餾(AGMD)的方式處理廢水時,滲透側設置有一層空氣間隙,以便于餾出物透過空氣間隙后在冷凝板上冷凝液化后進行收集[37],相比較DCMD,AGMD過程可有效減少熱傳導帶來的能量損失。在沒有熱量循環利用的情況下,AGMD的熱能消耗為900~1 300 kW·h /m3,低于DCMD的熱能消耗(1 600~2 000 kW·h /m3)[23,39]。具備熱能回收利用的AGMD過程的熱能消耗可降低至66~170 kW·h /m3[39],用于沼液和接收液循環泵的電能消耗僅為1.22 kW·h /m3,遠低于反滲透過程的3~4 kW·h /m3[23]。該過程既可實現對沼液中水分的回收,也能對氨氮進行回收,同時,該方法可降低接收液的使用[39]。雖然AGMD相比于DCMD有更多優點,但AGMD在沼液處理中的研究還較少。
除膜蒸餾外,還可采用正滲透、反滲透、納濾和超濾等過程實現對沼液中水分的回收。但是,由于沼液富含氨氮,簡單的超濾及納濾過程對氨氮截留效果不佳,需與生化反應過程結合,形成膜生物反應器[38]。本文總結了可直接用于沼液水分回收的三種膜分離過程的水回收通量(圖2)。顯然,采用壓力驅動的反滲透過程具有最高的水回收通量,處理效率最高[40]。而采用滲透壓力驅動的正滲透和采用熱驅動的膜蒸餾的水回收通量均較低[41-42]。通過條件優化與材料改性,膜蒸餾可獲得高達115 kg/m2·h的水回收通量[12]。正滲透和反滲透工藝均可實現對沼液濃縮至5倍左右,而膜蒸餾過程還可實現對反滲透濃縮液進行處理和深度濃縮。因此,膜蒸餾具備單獨運行并處理高濃度沼液的優點。
與酸性條件下將氨氮截留在濃縮液中不同,堿性條件下主要以氨氮回收為主。例如DCMD回收沼液氨氮過程中,一般調節沼液pH值至9~11,此時氨氮以自由氨的形式透過膜孔,被滲透側的酸液接收[16],該過程也被稱為透氣膜回收氨氮過程[43],或者液-液膜接觸器過程[44]。在沼液pH值呈中性偏堿性的條件下采用DCMD用于沼液氨氮脫除是目前最接近實際應用的一項技術[45],主要歸功于其穩定性、高污染物耐受性、低操作成本與簡單的操作流程,針對該過程已經有多篇綜述從不同角度進行了報道[16, 46]。
膜蒸餾分離沼液氨氮的研究集中在沼液pH值提升、膜傳質通量的穩定、氨氮選擇性分離特性提高與接收液選取等四個方向。除直接向沼液中添加堿性物質外[47],還可通過液相氣體吹脫[48]、施加真空[49]、耦合電化學過程等方式提升沼液pH值[50-51]。其中液相直接氣體吹脫和施加真空促進自由氨的形成更加適合于沼液處理,可大幅降低堿性化學品的消耗。在DCMD長期運行后,由于膜表面受無機物結垢以及有機物污染的影響,導致膜表面疏水性和整體通量降低[10],可通過對沼液進行過濾預處理結合受污染膜的清洗策略,穩定膜過程的正常運行[52]。除膜污染物控制外,膜材料的改性也被用于強化廢水氨氮回收,其中,通過在膜上固定功能性碳納米管等材料,可強化膜對氨氮的吸附作用,進而增加氨氮傳質通量和分離因子[53]。等溫膜蒸餾配合酸吸收過程也被用于發酵過程中沼液氨氮的原位脫除,進而解除氨氮抑制[54-55]。水、碳酸、有機酸、無機強酸等用于氨氮接收均有報道[56-57],其中硫酸用于氨氮的接收液最為常見[58]。但是,目前報道的氨氮接收液僅能一次使用,而關于可循環利用的氨氮吸收液的報道還較少[59]。
已有多種形式的膜蒸餾過程用于沼液氨氮回收。除最常見的DCMD用于沼液氨氮回收外,采用SGMD也可實現對沼液氨氮脫除[32]。相比于DCMD,SGMD對于氨氮分離的傳質系數和分離因子均較低[37],但SGMD在回收沼液氨氮過程中,可采用類似于氣體吹脫氨氮脫除的結構,更加方便的用于厭氧發酵的中期和后期沼液氨氮回收[60]。SGMD處理沼液時,必須配合吸收塔對尾氣進行凈化,不如其他膜蒸餾過程精簡。
將沼液調節至堿性后,采用減壓膜蒸餾(VMD)的方式在膜的滲透側施加真空,可以獲得更高的氨氮傳質系數[37],同時得到低濃度的可再生氨水[61-63]。相比于以氮肥形式回收氨氮,氨水具有更高的工業價值,如氨水是重要的化工原料[64],氨水可用于沼氣CO2分離[24,65-66],用于厭氧發酵原料預處理等[67]。膜蒸餾回收氨過程中,氨氮分離傳質系數與水通量呈現出正向關系,有研究表明可采用等溫膜蒸餾的方式回收氨氮,實現降低水通量的同時進而提升氨氮分離因子[57]。值得注意的是,目前關于沼液膜蒸餾過程中膜污染與膜結垢的研究大多基于直接接觸膜蒸餾進行開展,關于SGMD、AGMD和VMD過程中的穩定性運行研究還較少,其中,堿性沼液在膜蒸餾過程中的污染物沉積與結垢機理還需要深入解析[66]。
圖3所示的膜分離過程對氨氮的回收率均高于80%,但由于氨氮分子量與水分子接近,采用壓力驅動型膜分離技術不能實現對沼液氨氮達到100%截留。而在酸性條件下對沼液進行膜蒸餾,由于氨氮以離子態形式存在而不會揮發,因此可實現近100%的氨氮截留。
沼液膜蒸餾過程中主要靠熱能驅動揮發性組分的跨膜傳質,在單級膜蒸餾且不具備熱能回收的系統中,DCMD的熱能耗可高達2 000~3 500 kW·h/m3,VMD的熱能耗可高達1 100 kW·h/m3[68]。雖然膜蒸餾過程中的熱能耗可采用低品位熱源如沼氣發電機或沼氣鍋爐的余熱、太陽能、甚至空氣源熱泵等提供[69-71],但其能源消耗量巨大,遠高于多效蒸餾過程的熱能消耗(30~120 kW·h/m3)和反滲透過程的電能消耗(4~6 kW·h/m3)。為降低膜蒸餾的能源消耗,研究者開發了多級膜蒸餾、多效膜蒸餾并配合余熱回收等技術來實現膜蒸餾過程中的能源多級循環利用(圖4)[72]。
對于單級膜蒸餾的熱能回收利用,主要是針對濃縮液和滲透液回流對進料液進行加熱(圖4a)。當采用熱能回收技術后,單級減壓膜蒸餾的熱能耗可降低至800 kW·h/m3左右[73]。多級與多效膜蒸餾的主要工作形式如圖4b和4c所示,多級膜蒸餾主要是在單級的基礎上串聯、并聯或者串聯并聯混合的方式組合多個膜組件進行工程應用[74]。多級膜蒸餾與多效膜蒸餾過程降低熱能耗的實質均是熱能的多級利用,不同的是多級膜蒸餾主要通過外部換熱器對熱量進行回收和再利用,而多效膜蒸餾是在膜組件內部對熱量進行直接回收和再利用[75-76]。一般情況下,多效膜蒸餾過程中膜組件的級數越多,熱能回用效率越高,進而獲得更低的比熱能消耗。例如,多效減壓膜蒸餾淡化海水過程中,內部膜組件級數為6時,比熱能消耗為200 kW·h /m3[73]。另外,進料液溫度、進料流量、膜孔隙率和膜孔徑的增加均會降低膜蒸餾過程中的熱能消耗。多效減壓膜蒸餾過程中,當采用廢熱作為膜蒸餾熱源時,其產水成本可降低至0.59 $/m3,與反滲透過程的產水成本相當(0.63 $/m3)[74,77]。
在具備熱電聯產的沼氣工程中,膜蒸餾可利用發電余熱對沼液進行處理,可大幅降低膜蒸餾處理沼液的成本。以沼氣產量10 000 Nm3/d的沼氣工程為例,若采用如圖5所示的工藝流程圖對沼液進行膜蒸餾處理,厭氧發酵中產生的沼氣視為100%的化學能,熱電聯產過程的發電效率為35%,產熱效率為45%。
將所產熱能全部用于驅動膜蒸餾處理沼液,并提供對應的電能,則沼氣工程還能輸出占沼氣化學能33.45%的電能。因此,當采用膜蒸餾處理沼液時,在不影響沼氣工程對電能輸出的前提下,還能獲得循環用水。由于厭氧發酵原料和發酵濃度不同,所產生的沼液體積也存在差異[78]。根據不同原料的VS (Volatile Solids)產氣率,可計算不同原料和發酵濃度下圖5所示的工藝流程中水的回收率。根據第2節的分析,膜蒸餾過程的熱能耗假定為100 kW·h/m3,電能耗假定為1.22 kW·h/m3。沼液中水分回收率如圖6所示,當原料TS(Total Solids)濃度為4%時,采用豬糞、雞糞和牛糞為原料時,沼液中僅有30%左右的水分可回收,而采用餐廚垃圾為原料時,可實現50%至100%的水回收。因為餐廚垃圾的VS產氣率較高,相同TS濃度下達到同樣的沼氣產量所產生的沼液較少。水回收率隨發酵原料的TS濃度的增加而升高,當發酵罐中TS濃度提升到8%時,基本可實現60%以上的水分回收率,當發酵TS濃度提升到10%則基本上可實現沼液中水分的全部回收。顯然,在無外部熱源供給的情況下,膜蒸餾適合于較高濃度下厭氧發酵后沼液的處理與水回收利用。另外,當采用高濃度厭氧發酵的沼氣工程也更適合選用膜蒸餾作為處理沼液的主要技術,因為在高濃度發酵條件下,沼液中有機物濃度和鹽分均較高,不利于反滲透技術或其他生化處理技術的應用。

注:SM、CHM、CM、FW分別表示豬糞、雞糞、牛糞和餐廚垃圾,數字代表平行試驗次數。
現階段,可用于沼液處理的技術如表1所示,分為氣體吹脫、膜分離、化學沉淀和生化反應處理等。其中,生化反應處理沼液比較徹底,可實現沼液的達標排放處理,如硝化-反硝化技術、厭氧氨氧化技術等,但生化反應過程無法回收資源,且更加適合低濃度養殖廢水處理,對于高濃度沼液處理還需要進行深入研究。化學沉淀法可方便用于營養物質回收,操作簡單且對于高污染物的耐受性好,其用于沼液處理還需要和其他技術配合使用。氣體吹脫法是近期可用于沼液氮磷回收的重要手段,操作簡單且適用于高污染物含量的沼液,但該技術不能實現沼液達標排放。膜分離技術如超濾、反滲透等技術配合使用可從沼液中回收水分和營養物質豐富的有機肥,但膜容易受污染,反滲透后剩下的濃縮沼液體積大,還需進一步處理。膜蒸餾是膜分離技術的一種,可直接用于沼液氨氮回收、沼液水回收,也可用于反滲透后剩下的濃縮沼液處理,其對于污染物的耐受性要顯著高于壓力驅動下的膜分離過程。因此,近年來膜蒸餾技術用于沼液處理的研究也日益增加[12]。

表1 不同沼液處理技術對比
本文通過對膜蒸餾技術處理沼液的基本原理、過程、系統構建、經濟分析等方面的研究進展進行了總結,主要結論如下:1)相比于其他沼液處理技術,僅采用膜蒸餾技術可實現對沼液中營養物質和水分的回收,進而實現沼液資源化與減量化處理,膜蒸餾在處理不同濃度的沼液時適應性強,在簡化操作過程方面具備優勢。2)沼液資源化處理時,可采用膜蒸餾技術直接從沼液中提取氨氮等營養元素,也可采用膜濃縮的方式實現資源回收。3)在利用余熱驅動水回收時,膜蒸餾與反滲透處理沼液的成本基本一致,且膜蒸餾處理沼液時具有更高的水分回收率。4)膜蒸餾可在低品位熱源驅動下實現沼液氨氮回收和減量化處理,降低沼液處理的碳足跡。
現階段膜蒸餾處理沼液的研究主要集中在操作性能優化、膜污染特性以及與其他膜過程結合應用研究。但因為其熱能耗較高,運行通量較低等因素,導致其中試研究和工程化應用還較少。未來需要在以下幾個方面加強研究:1)開展膜蒸餾處理沼液的中試研究,并在長期運行過程中積累實踐數據,用于指導沼液膜蒸餾處理的基礎研究和工程實踐。2)開發專門針對高有機物含量沼液處理的膜材料,提升過程的穩定性并減少膜污染。3)氨氮作為沼液中可回收的重要資源,針對氨氮回收的高性能膜材料尚需進一步開發;此外,可循環使用的沼液氨氮接收液還有待篩選。4)基于余熱或可再生能源驅動型的低成本沼液膜蒸餾技術值得深入研究;采用多效膜蒸餾過程處理沼液的報道還較少,多效膜蒸餾過程對沼液營養物質及水分的回收特性還有待開展。5)不同形式的膜蒸餾過程在處理沼液時各有優缺點,將不同形式的膜蒸餾過程組合使用進行沼液處理值得進一步研究。6)基于膜蒸餾技術構建沼液處理中資源回收與溫室氣體減排系統,對減少農業源溫室氣體排放有重要意義和現實價值,值得深入研究。
[1] Nicholson F, Bhogal A, Cardenas L, et al. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land[J]. Environmental Pollution, 2017, 228: 504-516.
[2] Deng L, Liu Y, Zheng D, et al. Application and development of biogas technology for the treatment of waste in China[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 845-851.
[3] Robles á, Aguado D, Barat R, et al. New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the circular economy[J]. Bioresource Technology, 2020, 300: 122673.
[4] Drosg B, Fuchs W, Al Seadi T, et al. Nutrient recovery by biogas digestate processing[R]. IEA Bioenergy, 2015.
[5] Sheets J P, Yang L, Ge X, et al. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste[J]. Waste Management, 2015, 44: 94-115.
[6] Li H, Tan F, Ke L, et al. Mass balances and distributions of C, N, and P in the anaerobic digestion of different substrates and relationships between products and substrates[J]. Chemical Engineering Journal, 2016, 287: 329-336.
[7] 馬艷茹,丁京濤,趙立欣,等. 沼液中氮的回收利用技術研究進展[J]. 環境污染與防治, 2018,40:339-344.
Ma Yanru, Ding Jingtao, Zhao Lixin, et al. Advances in recycling and reuse of nitrogen from biogas slurry[J]. Environmental Pollution & Control, 2018, 40: 339-344. (in Chinese with English abstract)
[8] Montalvo S, Huilinir C, Castillo A, et al. Carbon, nitrogen and phosphorus recovery from liquid swine wastes: A review[J]. Journal of Chemical Technology and Biotechnology, 2020, 95(9): 2335-2347.
[9] Yan T, Ye Y, Ma H, et al. A critical review on membrane hybrid system for nutrient recovery from wastewater[J]. Chemical Engineering Journal, 2018, 348: 143-156.
[10] Zarebska A, Nieto D R, Christensen K V, et al. Ammonia recovery from agricultural wastes by membrane distillation: Fouling characterization and mechanism[J]. Water Research, 2014, 56: 1-10.
[11] Wang Y, Feng L, Zhao X, et al. Characteristics of volatile compounds removal in biogas slurry of pig manure by ozone oxidation and organic solvents extraction[J]. Journal of environmental sciences, 2013, 25: 1800-1807.
[12] Naidu G, Tijing L, Johir M A H, et al. Hybrid membrane distillation: Resource, nutrient and energy recovery[J]. Journal of Membrane Science, 2020, 599: 117832.
[13] Dow N, Gray S, Li J D, et al. Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment[J]. Desalination, 2016, 391: 30-42.
[14] Chiam C K, Sarbatly R. Vacuum membrane distillation processes for aqueous solution treatment: A review[J]. Chemical Engineering and Processing: Process Intensification, 2013, 74: 27-54.
[15] Gryta M, Tomaszewska M. Heat transport in the membrane distillation process[J]. Journal of Membrane Science, 1998, 144: 211-222.
[16] Hou D, Jassby D, Nerenberg R, et al. Hydrophobic gas transfer membranes for wastewater treatment and resource recovery[J]. Environmental Science & Technology, 2019, 53: 11618-11635.
[17] Tun L L, Jeong D, Jeong S, et al. Dewatering of source-separated human urine for nitrogen recovery by membrane distillation[J]. Journal of Membrane Science, 2016, 512: 13-20.
[18] Goh P S, Ismail A F. A review on inorganic membranes for desalination and wastewater treatment[J]. Desalination, 2018, 434: 60-80.
[19] Efome J E, Baghbanzadeh M, Rana D, et al. Effects of superhydrophobic SiO2nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation[J]. Desalination, 2015, 373: 47-57.
[20] Tijing L D, Woo Y C, Choi J S, et al. Fouling and its control in membrane distillation: A review[J]. Journal of Membrane Science, 2015, 475: 215-244.
[21] Goh S, Zhang Q, Zhang J, et al. Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process[J]. Journal of Membrane Science, 2013, 438: 140-152.
[22] Yan Z, Yang H, Qu F, et al. Application of membrane distillation to anaerobic digestion effluent treatment: Identifying culprits of membrane fouling and scaling[J]. Science of the Total Environment, 2019, 688: 880-889.
[23] Yan Z, Liu K, Yu H, et al. Treatment of anaerobic digestion effluent using membrane distillation: Effects of feed acidification on pollutant removal, nutrient concentration and membrane fouling[J]. Desalination, 2019, 449: 6-15.
[24] He Q, Tu T, Yan S, et al. Relating water vapor transfer to ammonia recovery from biogas slurry by vacuum membrane distillation[J]. Separation and Purification Technology, 2018, 191: 182-191.
[25] Li L, Sirkar K K. Studies in vacuum membrane distillation with flat membranes[J]. Journal of Membrane Science, 2017, 523: 225-234.
[26] Kim S, Lee D W, Cho J. Application of direct contact membrane distillation process to treat anaerobic digestate[J]. Journal of Membrane Science, 2016, 511: 20-28.
[27] Alsaadi A S, Francis L, Amy G L, et al. Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation[J]. Journal of Membrane Science, 2014, 471: 138-148.
[28] Jang E, Nam S H, Hwang T M, et al. Effect of operating parameters on temperature and concentration polarization in vacuum membrane distillation process[J]. Desalination and Water Treatment, 2015, 54: 871-880.
[29] Yang X, Pang H, Zhang J, et al. Sustainable waste water deammonification by vacuum membrane distillation without pH adjustment: Role of water chemistry[J]. Chemical Engineering Journal, 2017, 328: 884-893.
[30] Shi M, He Q, Feng L, et al. Techno-economic evaluation of ammonia recovery from biogas slurry by vacuum membrane distillation without pH adjustment[J]. Journal of Cleaner Production, 2020, 265: 121806.
[31] He Q, Ji L, Yu B, et al. Renewable aqueous ammonia from biogas slurry for carbon capture: Chemical composition and CO2absorption rate[J]. International Journal of Greenhouse Gas Control, 2018, 77: 46-54.
[32] Xie Z, Duong T, Hoang M, et al. Ammonia removal by sweep gas membrane distillation[J]. Water Research, 2009, 43: 1693-1699.
[33] Wang P, Chung T S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring[J]. Journal of Membrane Science, 2015, 474: 39-56.
[34] Conidi C, Drioli E, Cassano A. Membrane-based agro-food production processes for polyphenol separation, purification and concentration[J]. Current Opinion in Food Science, 2018, 23: 149-164.
[35] Yan Z, Yang H, Qu F, et al. Reverse osmosis brine treatment using direct contact membrane distillation: Effects of feed temperature and velocity[J]. Desalination, 2017, 423: 149-156.
[36] Shao S, Li Y, Jin T, et al. Biofouling layer maintains low hydraulic resistances and high ammonia removal in the UF process operated at low flux[J]. Journal of Membrane Science, 2020, 596: 117612.
[37] Ding Z, Liu L, Li Z, et al. Experimental study of ammonia removal from water by membrane distillation (MD): The comparison of three configurations[J]. Journal of Membrane Science, 2006, 286: 93-103.
[38] Jacob P, Phungsai P, Fukushi K, et al. Direct contact membrane distillation for anaerobic effluent treatment[J]. Journal of Membrane Science, 2015, 475: 330-339.
[39] Khan E U, Nordberg ?. Membrane distillation process for concentration of nutrients and water recovery from digestate reject water[J]. Separation and Purification Technology, 2018, 206: 90-98.
[40] 梁康強,閻中,朱民,等. 沼氣工程沼液反滲透膜濃縮應用研究[J]. 中國礦業大學學報, 2011,40(3):470-475.
Liang Kangqiang, Yan Zhong, Zhu Min, et al. Application research of reverse osmosis in concentrating biogas slurry from biogas projects[J]. Journal of China University of Mining & Technology, 2011, 40(3): 470-475. (in Chinese with English abstract)
[41] Chekli L, Kim Y, Phuntsho S, et al. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions[J]. Journal of Environmental Management, 2017, 187: 137-145.
[42] Chekli L, Kim J E, E l Saliby I, et al. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution[J]. Separation and Purification Technology, 2017, 181: 18-28.
[43] Vanotti M B, Dube P J, Szogi A A, et al. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes[J]. Water Research, 2017, 112: 137-146.
[44] Sancho I, Licon E, Valderrama C, et al. Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors[J]. Science of the Total Environment, 2017, 584–585: 244-251.
[45] Brennan B, Briciu-Burghina C, Hickey S, et al. Pilot scale study: First demonstration of hydrophobic membranes for the removal of ammonia molecules from rendering condensate wastewater[J]. International Journal of Molecular Sciences, 2020, 21: 20.
[46] Darestani M, Haigh V, Couperthwaite S J, et al. Hollow fibre membrane contactors for ammonia recovery: Current status and future developments[J]. Journal of Environmental Chemical Engineering, 2017, 5: 1349-1359.
[47] Bonmat?? A, Flotats X. Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion[J]. Waste Management, 2003, 23: 261-272.
[48] García-González M C, Vanotti M B, Szogi A A. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration[J]. Journal of Environmental Management, 2015, 152: 19-26.
[49] He Q, Xi J, Shi M, et al. Developing a vacuum-assisted gas-permeable membrane process for rapid ammonia recovery and CO2capture from biogas slurry[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 154-162.
[50] Christiaens M E R, Udert K M, Arends J B A, et al. Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants[J]. Water Research, 2019, 150: 349-357.
[51] Hou D, Iddya A, Chen X, et al. Nickel-Based Membrane electrodes enable high-rate electrochemical ammonia recovery[J]. Environmental Science & Technology, 2018, 52: 8930-8938.
[52] Zarebska A, Amor áC, Ciurkot K, et al. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure[J]. Journal of Membrane Science, 2015, 484: 119-132.
[53] Intrchom W, Roy S, Mitra S. Functionalized carbon nanotube immobilized membrane for low temperature ammonia removal via membrane distillation[J]. Separation and Purification Technology, 2020; 235: 116188.
[54] Wang X, Gabauer W, Li Z, et al. Improving exploitation of chicken manure via two-stage anaerobic digestion with an intermediate membrane contactor to extract ammonia[J]. Bioresource Technology, 2018, 268: 811-814.
[55] Bayrakdar A, Sürmeli R?, ?alli B. Anaerobic digestion of chicken manure by a leach-bed process coupled with side-stream membrane ammonia separation[J]. Bioresource Technology, 2018, 258: 41-47.
[56] Zhang C, Ma J, Waite T D. The impact of absorbents on ammonia recovery in a capacitive membrane stripping system[J]. Chemical Engineering Journal, 2020, 382: 122851.
[57] McCartney S N, Williams N A, Boo C, et al. Novel isothermal membrane distillation with acidic collector for selective and energy-efficient recovery of ammonia from urine[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 7324-7334.
[58] Vecino X, Reig M, Bhushan B, et al. Liquid fertilizer production by ammonia recovery from treated ammonia-rich regenerated streams using liquid-liquid membrane contactors[J]. Chemical Engineering Journal, 2019, 360: 890-899.
[59] Huang H, Zhang P, Xiao J, et al. Repeatedly using the decomposition product of struvite by ultrasound stripping to remove ammonia nitrogen from landfill leachate[J]. Ultrasonics Sonochemistry, 2017, 38: 622-628.
[60] Sürmeli R?, Bayrakdar A, ?alli B. Ammonia recovery from chicken manure digestate using polydimethylsiloxane membrane contactor[J]. Journal of Cleaner Production, 2018, 191: 99-104.
[61] Yang X, Duke M, Zhang J, et al. Modeling of heat and mass transfer in vacuum membrane distillation for ammonia separation[J]. Separation and Purification Technology, 2019, 224: 121-131.
[62] Wu C, Yan H, Li Z, et al. Ammonia recovery from high concentration wastewater of soda ash industry with membrane distillation process[J]. Desalination and Water Treatment, 2016, 57: 6792-6800.
[63] El-Bourawi M S, Khayet M, Ma R, et al. Application of vacuum membrane distillation for ammonia removal[J]. Journal of Membrane Science, 2007, 301: 200-209.
[64] Xie M, Shon H K, Gray S R, et al. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction[J]. Water Research, 2016, 89: 210-221.
[65] He Q, Yu G, Wang W, et al. Once-through CO2 absorption for simultaneous biogas upgrading and fertilizer production[J]. Fuel Processing Technology, 2017, 166: 50-58.
[66] He Q, Yu G, Tu T, et al. Closing CO2loop in biogas production: recycling ammonia as fertilizer[J]. Environmental Science & Technology, 2017, 51: 8841-8850.
[67] Mouthier T M B, de Rink B, van Erven G, et al. Low liquid ammonia treatment of wheat straw increased enzymatic cell wall polysaccharide degradability and decreased residual hydroxycinnamic acids[J]. Bioresource Technology, 2019, 272: 288-299.
[68] Criscuoli A, Carnevale M C, Drioli E. Evaluation of energy requirements in membrane distillation[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47: 1098-1105.
[69] Soomro M I, Kim W S, Kim Y D. Performance and cost comparison of different concentrated solar power plants integrated with direct-contact membrane distillation system[J]. Energy Conversion and Management, 2020, 221: 113193.
[70] Schwarzw?lder Sprovieri J A, Octavio de Souza T S, Contrera R C. Ammonia removal and recovery from municipal landfill leachates by heating[J]. Journal of Environmental Management, 2020, 256: 109947.
[71] Semiat R. Energy issues in desalination processes[J]. Environmental Science & Technology, 2008, 42: 8193-8201.
[72] Zhang Y, Peng Y, Ji S, et al. Review of thermal efficiency and heat recycling in membrane distillation processes[J]. Desalination, 2015, 367: 223-239.
[73] Boutikos P, Mohamed E S, Mathioulakis E, et al. A theoretical approach of a vacuum multi-effect membrane distillation system[J]. Desalination, 2017, 422: 25-41.
[74] Lee J G, Kim W S. Numerical study on multi-stage vacuum membrane distillation with economic evaluation[J]. Desalination, 2014, 339: 54-67.
[75] Andrés-Ma?as J A, Ruiz-Aguirre A, Acién F G, et al. Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery[J]. Desalination, 2018, 443: 110-121.
[76] Kiefer F, Spinnler M, Sattelmayer T. Multi-effect vacuum membrane distillation systems: Model derivation and calibration[J]. Desalination, 2018, 438: 97-111.
[77] Zhang Y, Peng Y, Ji S, et al. Numerical modeling and economic evaluation of two multi-effect vacuum membrane distillation (ME-VMD) processes[J]. Desalination, 2017, 419: 39-48.
[78] He Q, Shi M, Liang F, et al. B. E. E. F: A sustainable process concerning negative CO2emission and profit increase of anaerobic digestion[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 2276-2284.
[79] Bolzonella D, Fatone F, Gottardo M, et al. Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full scale applications[J]. Journal of Environmental Management, 2018, 216: 111-119.
[80] Errico M, Fjerbaek Sotoft L, Kj?rhuus Nielsen A, et al. Treatment costs of ammonia recovery from biogas digestate by air stripping analyzed by process simulation[J]. Clean Technologies and Environmental Policy, 2018, 20: 1479-1489.
[81] Provolo G, Perazzolo F, Mattachini G, et al. Nitrogen removal from digested slurries using a simplified ammonia stripping technique[J]. Waste Management, 2017, 69: 154-161.
[82] 龔川南. 氨吹脫對奶牛養殖場沼液脫氮與氮回收研究[D]. 重慶:西南大學,2016.
Gong Chuannan, Removal and Recovery of Nitrogen from Dairy Farm Biogas Slurry by Ammonia Stripping[D]. Chongqing: Southwest University, 2016. (in Chinese with English abstract)
[83] 岳彩德. 不同膜技術組合處理出廠沼液效果的研究[D]. 北京:中國農業科學院,2018.
Yue Caide. Studies on Treatment Performance of Different Membrane Combinations for Pig Manure Digested Slurry[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2018. (in Chinese with English abstract)
[84] 占源航. 紙帶過濾與中空纖維超濾膜結合工藝預處理出廠沼液應用研究[D]. 北京:中國農科院,2019.
Zhan Yuanhang. The Combination of Paper Filtration and Hollow Fiber Ultrafiltration for Pretreatment of the Digestate from Swine Manure[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2019. (in Chinese with English abstract)
[85] Ledda C, Schievano A, Salati S, et al. Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: A case study[J]. Water Research, 2013, 47: 6157-6166.
[86] Lin Y, Guo M, Shah N, et al. Economic and environmental evaluation of nitrogen removal and recovery methods from wastewater[J]. Bioresource Technology, 2016, 215: 227-238.
[87] 曹雷鵬. 養豬廢水中氮磷回收銅鋅去除技術及水培空心菜食品安全性的研究[D]. 南昌:南昌大學. 2019.
Cao Leipeng. Study on the Technology of N, P Recovery and Cu(Ⅱ), Zn(Ⅱ) Removal from Swine Wastewater and Food Safety of Hydroponic Water[D]. Nanchang: Nanchang University 2019. (in Chinese with English abstract)
[88] 吳浩楠. 基于短程同步硝化反硝化技術的養豬廢水處理工程調試研究[D]. 重慶:重慶大學,2017.
Wu Hannan. The Engineering Adjusting for Wastewater of Scale Pig Farm Treated by Shortcut-simultaneous Nitrification and Denitrification[D]. Chongqing: Chongqing University, 2017. (in Chinese with English abstract)
Research progress of biogas slurry resourceful treatment by membrane distillation
He Qingyao, Shi Mingfei, Feng Liang, Ai Ping, Yuan Qiaoxia, Yan Shuiping※
(1.,,430070,;2.-,,430070,)
Biogas slurry can account for more than 80% of the total mass of anaerobic digestates in biogas production. A large amount of biogas slurry has posed a great challenge on the carrying capacity of farmland and transportation cost. Particularly, returning to the farmland cannot completely consume such a great amount of incurred biogas slurry in a large-scale plant. The resourceful treatment is widely expected to reduce the volume of biogas slurry, and the potential threat to the agro-ecological environment for high value-added resource recovery in the sustainable development of the agricultural circular economy. For instance, membrane distillation serves as an important branch of membrane separation available for the resourceful treatment of biogas slurry in recent years. Excellent performance of membrane distillation has been achieved, including strong adaptability, rapid ammonia removal, as well as less membrane fouling and foaming. However, the high heat consumption and low flux have confined to the more efficient application of membrane distillation, compared with other technologies of membrane separation. In this study, a special process of membrane distillation was firstly introduced to systematically review the ammonia nitrogen and water recovery from biogas slurry. Water can normally be recovered from the acidified biogas slurry, while the nutrients were retained, including nitrogen, phosphorus, and potassium in the concentration phase. The water recovery can also be promoted, because the acidified biogas slurry can be utilized to suppress the ammonia volatilization, while relieving the membrane fouling. Typical reverse and forward osmosis concentrated the biogas slurry up to about 5 times than before, meaning that about 20% concentrated biogas slurry was left. The thermal-driven membrane distillation can even be used for the resourceful treatment of concentrated biogas slurry after reverse osmosis, where little biogas slurry was left. Nevertheless, membrane distillation presented a relatively low water flux for water recovery, compared with the typical reverse osmosis. Conversely, ammonia can be recovered from the biogas slurry, and then serve as ammonium fertilizer or aqueous ammonia solution for CO2absorption. Consequently, the resulting biogas slurry was more suitable for agricultural utilization after ammonia removal. To date, membrane distillation behaved the highest ammonia recovery ratio of about 99%, compared with the reverse and forward osmosis. Meanwhile, the membrane used for ammonia recovery was a benefit to control the greenhouse gas emission. In addition, the multi-stage and multi-effect membrane distillation was introduced to reduce heat consumption. The reason is that the huge heat consumption can inevitably result in the high operation cost for the treatment of biogas slurry in a single membrane distillation. The heat consumption for water recovery was reduced from 2 000-3 500 kW·h/m3to 100-200 kW·h/m3. Finally, the feasibility of membrane distillation was briefly evaluated for the biogas slurry treatment in a large-scale plant. The treatment cost of biogas slurry can even be much lower than that of a typical pressure-derived membrane process, where the heat and power were used from the Combined Heat and Power (CHP) in a biogas plant. Membrane distillation can efficiently realize resource recovery of biogas slurry in a facile, cost-saving, and environment-friendly way. Specifically, the cost of membrane distillation for biogas slurry was basically consistent with that of reverse osmosis. Consequently, membrane distillation was suitable for the treatment of high organic load or high residual concentration of biogas slurry after reverse osmosis, without any supplement of external heat source in a biogas plant.
biogas; membrane; distillation; biogas plant; biogas slurry; resources recovery; water recovery
賀清堯,石明菲,馮椋,等. 基于膜蒸餾的沼液資源化處理研究進展[J]. 農業工程學報,2021,37(8):259-268.doi:10.11975/j.issn.1002-6819.2021.08.030 http://www.tcsae.org
He Qingyao, Shi Mingfei, Feng Liang, et al. Research progress of biogas slurry resourceful treatment by membrane distillation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 259-268. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.08.030 http://www.tcsae.org
2020-12-10
2021-03-20
國家自然科學基金(32002222,52076101);湖北省自然科學基金(2020CFB209,2020CFA107);中央高校基本業務經費(2662018QD028,2662018PY046)
賀清堯,講師,研究方向為基于膜分離技術的農業資源回收與溫室氣體控制。Email:qingyao.he@mail.hzau.edu.cn
晏水平,教授,博士生導師,研究方向為低能耗CO2化學吸收技術、沼氣提純技術與裝備、CO2植物與土壤固定技術。Email:yanshp@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2021.08.030
S216.4
A
1002-6819(2021)-08-0259-10