王麗麗,李一博,許 雷,王忠江,2,王一豪,隋宇航
高固體負荷下尿素預處理對玉米秸稈主要成分和結構的影響
王麗麗1,李一博1,許 雷1,王忠江1,2,王一豪1,隋宇航1
(1. 東北農業大學工程學院,哈爾濱,150030;2. 寒地農業可再生資源利用技術與裝備黑龍江省重點實驗室,哈爾濱 150030)
該研究將尿素作為單獨預處理試劑,利用大豆粉中的脲酶促進尿素向NH3的轉化,預處理過程中采用較高固體負荷,試圖在相對較低溫度下通過尿素的轉化實現玉米秸稈的氣態NH3預處理,系統研究預處理過程中的總固體負荷(Total Solids,TS)、大豆粉與秸稈質量比、尿素與秸稈質量比、預處理溫度和預處理時間對玉米秸稈的主要成分及其表面形態結構和基團結構的影響,獲得高TS下尿素預處理玉米秸稈的較優條件。結果表明,質量分數50%TS的尿素預處理能夠很好的保護秸稈中的糖類;大豆粉中的脲酶可以顯著提高尿素預處理秸稈中葡聚糖和阿拉伯聚糖的含量;秸稈葡聚糖的含量隨著尿素與秸稈質量比、預處理溫度和預處理時間的增加而增加,而木質素、木聚糖和阿拉伯聚糖含量的差異不顯著;質量分數50%TS、1∶20大豆粉與秸稈質量比、1∶1尿素與秸稈質量比、80 ℃預處理溫度、10 d的預處理效果最優,預處理后玉米秸稈木質素、葡聚糖、木聚糖和阿拉伯聚糖的質量分數分別達到14.20%、51.75%、20.67%和4.23%;尿素預處理秸稈過程中,C-O基(1 032 cm-1)波動最顯著,木質素和羥基肉桂酸鍵破裂明顯,證明了高TS下,利用尿素實現氣態NH3預處理玉米秸稈的可行性,為尿素預處理理論體系的研究提供基礎。
玉米;秸稈;尿素預處理;木質素;葡聚糖;木聚糖;阿拉伯聚糖
近年來,木質纖維類生物質被公認為是長期可獲得的能夠代替化石燃料的一種原料[1-2],而農業秸稈是其中產量最大的廢棄生物質,在中國年產量高達7×108t以上[3]。因此,以農業秸稈為原料生產沼氣、生物乙醇等新能源越來越受到關注[4-5]。
預處理是打破和脫除木質素,提高木質纖維的疏松多孔性,降低纖維素的結晶度,提高秸稈纖維素后續轉化利用率的關鍵步驟[1,6]。氨化預處理作為一種弱堿預處理方法對木質纖維類生物質結構的破壞非常有效,且腐蝕性較小,目前主要包括氨水預處理、無水液氨預處理、碳酸銨預處理、氨纖維爆破、氨循環浸透、氨氣吸附纖維爆破等[7-11]。尿素易溶于水,在脲酶的催化作用下快速轉化為NH3(或NH4+、HCO3?),其運輸和使用無需專用設備及特殊條件,常用作NaOH預處理的輔助試劑[12-13],近年來也逐漸作為一種單獨試劑在總固體負荷(Total Solids,TS)<10%的較低TS下預處理木質纖維類生物質[14-17]。但是,NH3不僅具有較強的揮發性,也極易溶于水,當預處理的TS較高,尿素轉化的NH3溶于水的濃度達到飽和或更高時(32%~35%),則一部分NH3將以氣態形式存在于預處理設備中,預處理設備中的壓力將會隨之升高,而TS過高時也會阻礙生物質間的傳熱傳質,甚至由于水的不足抑制尿素向NH3的轉化,從而影響預處理效果[14]。此外,Yoo等[7]在實驗室條件下,運用無水液氨預處理玉米秸稈時發現,NH3與秸稈中水分的反應是放熱反應,在無外加熱源的條件下,利用自發產熱可以將預處理溫度提高到70 ℃,而且在80 ℃條件下的預處理效果很好。該結果極大的支持NH3預處理的規模化應用,因為在規模化預處理過程中,如果采取有效的保溫措施,只依靠系統自身的反應熱,完全不需要或需要很少的外加熱量就可以達到需要的預處理溫度,且高TS的預處理也可減少水的消耗和廢水的產生量,從而降低設備處理規模及能耗成本。所以,在高TS下,通過固態尿素的轉化在70 ℃左右實現氣態NH3預處理具有實際的應用價值,然而該方面的研究相對較少[18-19],且在不同條件下的預處理過程中,尿素對秸稈主要成分及理化結構的影響仍不明晰。
因此,論文以玉米秸稈為原料,尿素為單獨預處理試劑,利用大豆粉中的脲酶促進尿素向NH3的轉化,系統研究預處理過程中的TS、大豆粉與秸稈質量比、尿素與秸稈質量比、預處理溫度和預處理時間對玉米秸稈的主要成分及其表面形態結構和基團結構的影響,探索不同預處理條件下,尿素對高TS預處理玉米秸稈的影響規律及關鍵優化參數,證明在相對較低溫度、較低壓力、高TS下,通過固態尿素轉化的NH3預處理玉米秸稈的可行性,為尿素預處理理論體系的研究提供基礎。
試驗用玉米秸稈洗凈風干后粉碎過1 mm篩(Retsch cutting mill,Haan,Germany),室溫(20±1℃)下密封保存,其總固體、纖維素、半纖維素、木質素和灰分的質量分數分別為(94.25±0.13)%、(33.90±0.35)%、(21.36±0.57)%、(12.42±0.29)%和(1.71±0.07)%。所用大豆來源于農貿市場采購的食用大豆(distributed by Haitai,INC. Montebello,CA90640)。采用高速磨粉機(Magic Mill III Plus)間歇性的將大豆磨成0.5 mm的大豆粉,大豆粉總固體質量分數為(90.76±0.34)%,大豆粉脲酶活性為2.61±0.04。
將20 g玉米秸稈粉裝入500 mL帶有螺旋密封蓋的玻璃三角瓶,用蒸餾水調成試驗所需的TS,然后按比例裝入一定量的尿素和大豆粉,均勻攪拌后密封。密封后的三角瓶放入控溫爐中(BLUE M Electric Company,Blue Island,Illinois,USA)按照設定的預處理溫度進行預處理。當達到一定的預處理時間后將三角瓶置入通風廚內10~15 min以釋放揮發的NH3,然后用蒸餾水清洗秸稈至pH值為7.0,經真空分離后用于成分分析及秸稈表面的形態結構(SEM,Scanning Electron Micrographs)和基團結構(FTIR,Fourier Transform Infrared Spectroscopy)測定。
本試驗包括TS、大豆粉與秸稈質量比、尿素與秸稈質量比、預處理溫度、預處理時間5個影響因素。已有研究表明,氨化預處理過程中,TS與預處理試劑的添加量、預處理溫度、預處理時間沒有顯著的交互作用[20]。因此,本試驗分為3部分:
1)理論上,1 g尿素與0.3 g水反應產生0.57 g NH3[14],其反應方程為
NH3溶于水時飽和氨水的濃度為32%~35%[18],為使系統中存在一定壓力的氣態NH3,TS需要接近40%,且小于80%。因此,本部分采用控制變量法研究TS對尿素預處理玉米秸稈的影響規律。尿素與秸稈質量比、預處理溫度、預處理時間、大豆粉與秸稈質量比分別為1∶1、80 ℃、6 d、1∶20,TS分別為30%、40%、50%、60%和70%。
2)基于1)選取較優的TS,采用控制變量法研究大豆粉與秸稈質量比對尿素預處理玉米秸稈的影響規律。尿素與秸稈質量比、預處理溫度、預處理時間分別為1∶1、80 ℃、6 d,大豆粉與秸稈質量比分別為1∶40、1∶20、3∶40和1∶10,未添加大豆粉為空白對照組。
3)理論上,預處理溫度越高,預處理所需時間越短,且在一定范圍內增加預處理試劑的添加量也可加快預處理的進程,縮短預處理周期,但提高溫度和增加試劑量必將增加預處理成本,而如果預處理時間過長也是工程實際所不能接受的。由于高TS、70 ℃左右條件下的尿素預處理時間及尿素對玉米秸稈理化結構的影響不明晰。因此,本部分基于前文獲得較優的TS和大豆粉與秸稈質量比,適當延長相對較低預處理溫度下的預處理時間,采用全因子試驗方法研究尿素與秸稈質量比、預處理溫度和預處理時間對尿素預處理玉米秸稈的影響規律及交互作用。尿素與秸稈質量比分別為1∶10、1∶4、1∶2、3∶4和1∶1;預處理溫度分別為60、70、80 ℃;3個預處理溫度的預處理時間分別為6、8、10、12、14 d,4、6、8、10、12 d和2、4、6、8、10 d。
TS采用105 ℃烘干8~12 h的烘干法[21]。成分分析包括木質素、葡聚糖、木聚糖和阿拉伯聚糖,采用美國可再生能源實驗室的標準分析方法[14],即經72%的硫酸(30 ℃,60 min)和4%的稀硫酸(121 ℃,60 min)水解后的單糖采用高效液相色譜儀(HPLC,Shimadzu,Kyoto,Japan,monosaccharide column (300×7.8 mm)(Phenomenex,Torrance,CA)測定,流動相的流速為0.6 mL/min,爐溫為80 ℃;酸溶木質素采用紫外分光光度計(BioMate 3,Thermo,USA)測定。大豆粉脲酶活性的測定采用美國谷物師協會的標準分析方法——pH差值法[22]。SEM和FTIR分別采用高分辨率掃描電鏡(S-3500M,Hitachi,Japan)和傅里葉紅外光譜儀(Nicolet iS10,Thermo Fisher,USA)測定。
采用Excel 2010進行數據整理,取3次重復平均值;運用SPSS20.0 和Design-Expert 8.0.6進行統計性分析和交互作用分析。
TS對預處理秸稈主要成分的影響如圖1所示。由圖 1可知,秸稈木質素含量的質量分數隨著TS的增加從15.46%增加到16.37%,但差異不顯著,而葡聚糖、木聚糖和阿拉伯聚糖的含量則隨著TS 的增加先增加后降低,TS為50%時的質量分數最高,分別為49.95%、21.25%和6.14%,此時可以獲得較高的碳水化合物的含量,有利于后續進一步的轉化利用。
大豆粉中含有豐富的脲酶,本研究將大豆粉作為脲酶的來源,研究脲酶對尿素預處理玉米秸稈的影響。大豆粉與秸稈質量比對預處理秸稈主要成分的影響如圖2所示。
由圖2可知,秸稈木質素的質量分數在15.15%~16.06%的范圍內波動,隨著大豆粉與秸稈質量比的變化沒有顯著性差異,葡聚糖和阿拉伯聚糖的含量隨著大豆粉與秸稈質量比的增加呈現先增加而后降低,大豆粉與秸稈質量比為1∶20時最大,其質量分數分別達到49.95%和6.14%。木聚糖的含量除了大豆粉與秸稈質量比增加到3∶40和1∶10時出現較明顯的降低外,其他條件下差異并不顯著,添加大豆粉各組的葡聚糖的含量顯著大于未添加大豆粉的空白對照。
綜合TS和大豆粉與秸稈質量比對尿素預處理玉米秸稈主要成分的影響結果,重點研究質量分數50%TS和1∶20大豆粉與秸稈質量比時,尿素與秸稈質量比、預處理溫度和預處理時間對尿素預處理玉米秸稈主要成分的影響及關鍵優化參數。
尿素預處理秸稈木質素的含量如圖3所示。由圖3可知,在3個溫度下,預處理后秸稈木質素的含量均隨著尿素與秸稈質量比和預處理時間的增加而減少(< 0.01),且隨著預處理溫度的增加略有降低。尿素與秸稈質量比為1∶1,預處理溫度為80、70、60 ℃,分別預處理10、12、14 d時秸稈的木質素質量分數分別為14.20%、15.91%、17.34%,比空白(20.35%、20.39%、19.83%)分別減少30.22%、21.97%、12.56%。同時,預處理時間均為10 d,尿素與秸稈質量比為1∶1的樣本比尿素與秸稈質量比為1∶10、1∶4、1∶2和3∶4樣本的木質素質量分數分別減少23.66%、17.82%、13.41%和4.63%。
尿素預處理秸稈葡聚糖的含量如圖4所示。葡聚糖是由纖維素水解轉化而來的,其含量能直接說明尿素預處理秸稈中纖維素的含量。由圖4可知,在3個溫度下,預處理后秸稈葡聚糖的含量均隨著尿素與秸稈質量比和預處理時間的增加而增加(< 0.01),且隨著預處理溫度的增加而升高。預處理過程中的總固體回收率是預處理后剩余的總固體質量與預處理前總固體質量的百分比。理論上,預處理后秸稈的總固體回收率是在一定范圍內隨著秸稈木質素含量的減少而降低的,從而促進秸稈葡聚糖含量的增加,同時也說明預處理的效果更好。本試驗中,尿素與秸稈質量比為1∶1,預處理溫度為80、70、60 ℃,分別預處理10、12、14 d時秸稈葡聚糖的質量分數分別為51.75%、45.57%、42.87%,比空白(39.31%、38.24%、38.10%)分別增加31.65%、19.17%、12.52%;此時,對應預處理后秸稈的總固體回收率為63.69%、69.73%、73.01%,比空白總固體回收率(95.53%、96.67%、97.93%)減少33.33%、27.87%、25.45%,而該條件下的葡聚糖回收率分別為97.24%、93.75%、92.34%,說明該方法能夠很好的保護纖維素不被破壞,進而為提高纖維素后續的利用效率創造條件。
預處理秸稈的木聚糖和阿拉伯聚糖含量分別如圖 5和圖6所示。半纖維素包括木聚糖、阿拉伯聚糖、甘露聚糖和半乳聚糖等,其中木聚糖占總量的50%以上。由圖5可知,在3個溫度下,預處理后秸稈木聚糖含量的變化趨勢類似木質素,也是隨著尿素與秸稈質量比和預處理時間的增加而減少(< 0.01),而隨著預處理溫度的變化差異不顯著。由圖6可知,預處理后秸稈阿拉伯聚糖的含量雖然隨著預處理時間的延長整體呈略下降的趨勢,但隨著尿素與秸稈質量比、預處理溫度變化的差異不顯著,均在3.93%~6.65%范圍內波動,呈現出非線性關系。尿素與秸稈質量比為1∶1,預處理溫度為80、70、60 ℃,分別預處理10、12、14 d時秸稈木聚糖的質量分數分別為20.67%、20.40%、19.92%,比空白(24.52%、24.47%、25.11%)分別減少15.7%、16.63%、20.67%,而阿拉伯聚糖的質量分數分別為4.23%、4.67%、4.28%;同時,木聚糖和阿拉伯聚糖的回收率分別為61.63%、66.70%、68.09%和64.55%、66.92%、64.24%。
理論上,預處理試劑的添加量、預處理溫度和預處理時間對預處理效果具有一定的交互作用[14,20],說明在尿素添加量較小、預處理溫度較低的條件下,只要預處理時間足夠長,同樣可以達到較好的預處理效果,但工程實際不能接受預處理的時間過長。本研究中,針對尿素與秸稈質量比(1∶2、3∶4、1∶1)、預處理溫度(60、70、80 ℃)和預處理時間(6、8、10 d)3個因素3個水平的交互作用分析得出,尿素與秸稈質量比和預處理溫度2個因素對秸稈葡聚糖、阿拉伯聚糖含量的交互作用影響顯著(< 0.01),尿素與秸稈質量比、預處理溫度和預處理時間3個因素對秸稈阿拉伯聚糖含量的交互作用影響顯著(< 0.01),其響應曲面如圖7所示,而其他因素的交互作用并不顯著。這是因為在本試驗尿素與秸稈質量比、預處理溫度和預處理時間3個因素選取的水平范圍內,預處理后秸稈的各主要成分(阿拉伯聚糖除外)與尿素與秸稈質量比、預處理溫度和預處理時間近似呈線性關系,80 ℃、1∶1尿素與秸稈質量比,且預處理時間越長時的預處理效果越好,所以呈平面線性關系的交互作用不顯著。
由于NH3與秸稈中水分的反應是放熱反應,在無外加熱源的條件下,容積為670 mL反應系統的溫度能夠達到70 ℃[7]。因此,在本試驗的溫度范圍內高TS下的尿素預處理,尿素與秸稈質量比是預處理的核心因素,其次是預處理溫度和預處理時間。
秸稈表面的形態結構分析是驗證木質素是否被打破和尿素預處理方法可行性的最直觀方法。預處理溫度為80、70、60 ℃,分別預處理10、12、14 d時玉米秸稈的掃描電鏡圖如圖8所示。由圖8可知,未經預處理的原秸稈表現出完整的、未受任何損傷的纖維結構,其表面是光滑、堅硬和緊密的形態,說明木質素完好的包裹著纖維素和半纖維素。然而,經過尿素預處理后,其表面的纖維結構變得粗糙,纖維雜亂無章的膨脹和剝落使秸稈表面形成多孔性,且隨著預處理溫度的升高越突出,從而促進內部纖維素的有效利用[23-24]。
綜合以上結果得出,溫度為80 ℃時的預處理效果最好,且尿素與秸稈質量比是核心影響因素,本部分選取預處理時間為10 d,尿素與秸稈質量比為1∶10和1∶1的樣本,分析尿素預處理前、后玉米秸稈基團結構的變化,具體如圖9所示。
由圖9可知,預處理前、后玉米秸稈基團結構的變化不明顯,只有與纖維素、半纖維素和木質素相關的C-O基(1 032 cm-1)波動最顯著,但尿素與秸稈質量比為1∶10的樣本與未經預處理的原秸稈沒有明顯差異,而尿素與秸稈質量比為1∶1樣本C-O基的拉伸最小[25]。同時,與纖維素相關的C-H基(896 cm-1)和與木質素相關的芳香族(1 157、1 424、1 508 cm-1)及C-O基(1 233、1 316、1 367 cm-1)波動均較小[6,26-30],木質素和羥基肉桂酸鍵破裂明顯,有效的打破了秸稈表面木質素的密封。
在高TS且較低溫度下,通過尿素轉化為氣態NH3的預處理能夠有效改變玉米秸稈表面木質素的結構,促進木質素和羥基肉桂酸鍵的明顯破裂,并能去除一些木質素,但玉米秸稈木質素含量的波動不大,質量分數50%TS可以獲得較高的葡聚糖、木聚糖和阿拉伯聚糖含量。1∶40~1∶10的大豆粉與秸稈質量比對預處理玉米秸稈木質素的變化沒有顯著影響,大豆粉中的脲酶可以提高尿素預處理秸稈中葡聚糖和阿拉伯聚糖的含量,1∶20的大豆粉與秸稈質量比較好。該結果與氨纖維爆破[8]和無水液氨[7,11]等氨化預處理方法的結果相似,因為這些預處理過程中的TS均較高,是以打破木質素的密封來提高纖維素的利用率為核心目標[31-32],雖然該類方法不如低TS下的氨水、碳酸銨等預處理方法可以較好的溶解木質素,不能獲得較高的木質素去除率[7-9],但能獲得較高的纖維素含量及后續的纖維素利用率[7-11],因此,通過固態尿素轉化的NH3預處理玉米秸稈是可行性的,質量分數50%TS,1∶20大豆粉與秸稈質量比,1∶1尿素與秸稈質量比,80 ℃預處理溫度,10 d的預處理效果最優,該結果與Yoo等[7]采用高壓無水液氨的預處理結果相似,雖然氣態NH3與秸稈中水分反應產生的熱量可能將預處理溫度提高到70 ℃[7],但仍是更高的80 ℃時的預處理效果更好。
尿素預處理過程中能夠很好地保護纖維素不被破壞,但會損失一部分半纖維素,因為半纖維素相對木質素和纖維素不是很穩定,在經過預處理后沖洗的過程中較易溶于水[18]。預處理后秸稈木質素、葡聚糖、木聚糖的含量與尿素與秸稈質量比、預處理溫度和預處理時間近似呈線性關系,溫度(80 ℃)最高、尿素與秸稈質量比最大(1∶1),且預處理時間越長時的預處理效果越好。而秸稈阿拉伯聚糖的含量隨著預處理時間的延長整體呈略下降的趨勢,但隨著尿素與秸稈質量比、預處理溫度變化的差異不顯著,呈現出非線性關系,該結果與Zhang等[33]采用1.5%稀硫酸預處理不同品種的大須芒草和柳枝稷的研究結果類似,這是因為阿拉伯聚糖在纖維類生物質中的含量較低,經預處理后,其含量增加或減少的趨勢并不顯著,不同的生物質差別也較大[34-35]。因此,在本試驗尿素與秸稈質量比、預處理溫度和預處理時間選取的水平范圍內,除了尿素與秸稈質量比和預處理溫度2個因素對秸稈葡聚糖、阿拉伯聚糖含量的交互作用顯著(< 0.01),以及尿素與秸稈質量比、預處理溫度和預處理時間3個因素對秸稈阿拉伯聚糖含量的交互作用顯著(< 0.01)外,其他因素之間的交互作用并不顯著。尿素與秸稈質量比是高TS尿素預處理的核心因素,其次是預處理溫度和預處理時間。
1)尿素預處理玉米秸稈木質素的含量隨著總固體負荷(Total Solids,TS)的增加而增加,葡聚糖、木聚糖和阿拉伯聚糖的含量則隨著TS 的增加先增加后降低,質量分數50%TS的尿素預處理能夠很好的保護秸稈中的糖類。
2)大豆粉中的脲酶可以顯著提高尿素預處理玉米秸稈中葡聚糖和阿拉伯聚糖的含量,而對木質素和木聚糖含量的影響不顯著,1∶20大豆粉與秸稈質量比較好。
3)尿素預處理玉米秸稈木質素和木聚糖的含量隨著尿素與秸稈質量比和預處理時間的增加有小幅度的降低,隨著預處理溫度的增加差異不顯著,葡聚糖的含量隨著尿素與秸稈質量比、預處理溫度和預處理時間的增加則具有相對較大幅度的升高,阿拉伯聚糖的含量雖然隨著預處理時間的延長整體呈現略下降的趨勢,但隨著尿素與秸稈質量比、預處理溫度的變化差異不顯著。質量分數50%TS、1∶20大豆粉與秸稈質量比時,1∶1尿素與秸稈質量比、80 ℃、10 d的預處理效果最優,預處理后玉米秸稈木質素、葡聚糖、木聚糖和阿拉伯聚糖的質量分數分別達到14.20%、51.75%、20.67%和4.23%。
4)尿素預處理玉米秸稈過程中,與纖維素、半纖維素和木質素相關的C-O基(1 032 cm-1)波動最顯著,木質素和羥基肉桂酸鍵破裂明顯,有效的打破了秸稈表面木質素的結構,證明了高TS下,通過固態尿素轉化的NH3預處理玉米秸稈是可行性的。
[1] Chen J X, Wang X, Zhang B Y, et al. Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw[J]. Science of the Total Environment, 2021, 770: 145321.
[2] 王鐵軍,王瑞麗,孫軍德,等. 秸稈-糞便屬地化微貯制肥工藝參數優化[J]. 農業工程學報,2021,37(2):251-257.
Wang Tiejun, Wang Ruili, Sun Junde, et al. Parameter optimization of the small-scale compost technology with localization maize stover and livestock manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 251-257. (in Chinese with English abstract)
[3] 王金武,唐漢,王金峰. 東北地區作物秸稈資源綜合利用現狀與發展分析[J]. 農業機械學報,2017,48(5):1-21.
Wang Jinwu, Tang Han, Wang Jinfeng. Comprehensive utilization status and development analysis of crop straw resource in Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 1-21. (in Chinese with English abstract)
[4] Lyu H S, Yang S Y, Zhang J, et al. Impacts of utilization patterns of cellulosic C5 sugar from cassava straw on bioethanol production through life cycle assessment[J]. Bioresource Technology, 2021, 323: 124586.
[5] 蔣滔,韋秀麗,肖璐,等. 玉米秸稈固態和液態厭氧發酵產氣性能與微生物種類比較研究[J]. 農業工程學報,2020,36(3):227-235.
Jiang Tao, Wei Xiuli, Xiao Lu, et al. Comparison of biogas production and microbial species of maize straw in solid-state anaerobic digestion (SS-AD) and liquid anaerobic digestion (L-AD)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 227-235. (in Chinese with English abstract)
[6] EI Mansouri N E, Yuan Q L, Huang F R. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins[J]. Bioresources, 2011, 6(3): 2647-2662.
[7] Yoo C G, Kim H, Lu F C, et al. Understanding the physicochemical characteristics and the improved enzymatic saccharification of maize stover pretreated with aqueous and gaseous ammonia[J]. BioEnergy Research, 2016, 9(1): 67-76.
[8] Mathew A K, Parameshwaran B, Sukumaran R K, et al. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production[J]. Bioresource Technology, 2016, 199: 13-20.
[9] Bouxin F P, Jackson S D, Jarvis M C. Isolation of high quality lignin as a by-product from ammonia percolation pretreatment of poplar wood[J]. Bioresource Technology, 2014, 162: 236-242.
[10] Apiwatanapiwat W, Vaithanomsat P, Ushiwaka S, et al. A new pretreatment using ammonia gas absorption fiber expansion for saccharification of cassava pulp[J]. Biomass Conversion and Biorefinery, 2016, 6(2): 181-188.
[11] Yang M L, Rosentrater K A. Comparison of sealing and open conditions for long term storage of maize stover using low-moisture anhydrous ammonia pretreatment method[J]. Industrial Crops and Products, 2016, 91: 377-381.
[12] Mohsenzadeh A, Jeihanipour A, Karimi K, et al. Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(8): 1209-1214.
[13] Dong L L, Cao G L, Zhao L, et al. Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production[J]. Bioresource Technology, 2018, 267: 71-76.
[14] Wang L L, Zhang K, Xu Y J, et al. High-solid pretreatment of maize stover using urea for enzymatic saccharification[J]. Bioresource Technology, 2018, 259: 83-90.
[15] Yao Y Q, Bergeron A D, Davaritouchaee M. Methane recovery from anaerobic digestion of urea-pretreated wheat straw[J]. Renewable Energy, 2018, 115: 139-148.
[16] 羅立娜,丁清華,公維佳,等. 尿素氨化預處理改善稻秸干法厭氧發酵特性[J]. 農業工程學報,2015,31(19):234-239.
Luo Lina, Ding Qinghua, Gong Weijia, et al. Urea ammoniated pretreatment improving dry anaerobic fermentation characteristics of rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 234-239. (in Chinese with English abstract)
[17] 丁紹蘭,張敏娜,黃振俠,等. 尿素氨化預處理對稻稈厭氧發酵產氣特性的影響[J]. 生態環境學報,2018,27(1):18-23.
Ding Shaolan, Zhang Minna, Huang Zhenxia, et al. Effect of urea ammoniation pretreatment on anaerobic fermentation characteristics of rice straw[J]. Ecology and Environmental Sciences, 2018, 27(1): 18-23. (in Chinese with English abstract)
[18] Wang L L, Cao Z, Zou J Y, et al. Urea-pretreated maize stover: Physicochemical characteristics, delignification kinetics, and methane production[J]. Bioresource Technology, 2020, 306: 123097.
[19] 王忠江,鄒艦洋,曹振,等. 尿素預處理玉米秸稈降解木質素動力學研究[J]. 農業機械學報,2020,31(19):234-239.
Wang Zhongojiang, Zou Jianyang, Cao Zhen, et al. Delignification kinetics of maize stover with urea pretreatment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 31(19): 234-239. (in Chinese with English abstract)
[20] 郜晉楠. 玉米干秸稈氨化過程機理及厭氧消化研究[D]. 鄭州:鄭州大學,2016.
Gao Jinnan. Processandmechanismofsoaking aqueous ammonia pretreatment for dry maize stover and its anaerobic digestion[D]. Zhengzhou: Zhengzhou University, 2016. (in Chinese with English abstract)
[21] Wang L L, Li W Z, Wang Z J, et al. Effects of digestate application depth on soil nitrogen volatilization and vertical distribution[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(5): 101-107.
[22] Yalcin S, Basman A. Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples[J]. Food Chemistry, 2015, 16: 203-210.
[23] Gao A H, Bule M V, Laskar D D, et al. Structural and thermal characterization of wheat straw pretreated with aqueous ammonia soaking[J]. Journal of Agricultural and Food Chemistry, 2012, 60(35): 8632-8639.
[24] Phitsuwan P, Permsriburasuk C, Waeonukul R, et al. Evaluation of fuel ethanol production from aqueous ammonia-treated rice straw via simultaneous saccharification and fermentation[J]. Biomass & Bioenergy, 2016, 93: 150-157.
[25] Shi J T, Li J. Metabolites and chemical group changes in the wood-forming tissue of pinus koraiensis under inclined conditions[J]. Bioresources, 2012, 7(3): 3463-3475.
[26] Sim S F, Mohamed M, Lu N A L M I, et al. Computer-assisted analysis of Fourier Transform Infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass[J]. Bioresources, 2012, 7(4): 5367-5380.
[27] Rana R, Langenfeld-Heyser R, Finkeldey R, et al. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae[J]. Wood Science and Technology, 2010, 44(2): 225-242.
[28] Pandey K K, Pitman A J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi[J]. International Biodeterioration & Biodegradation, 2003, 52(3): 151-160.
[29] Ferhan M, Yan N, Sain M. A new method for demethylation of lignin from woody biomass using biophysical methods[J]. Journal of Chemical Engineering & Process Technology, 2013, 4(5): 160. http: //doi. org/10. 4172/2157-7048.1000160
[30] Guo F F, Shi W J, Sun W, et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism[J]. Biotechnology for Biofuels, 2014, 7: 38. http: //doi. org/10.1186/1754-6834- 7-38
[31] Salvi D A, Aita G M, Robert D, et al. Ethanol production from sorghum by a dilute ammonia pretreatment[J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(1): 27-34.
[32] Domanski J, Borowski S, Marchut-Mikolajczyk O, et al. Pretreatment of rye straw with aqueous ammonia for conversion to fermentable sugars as a potential substrates in biotechnological processes[J]. Biomass & Bioenergy, 2016, 91: 91-97.
[33] Zhang K, Johnson L, Vara Prasad P V, et al. Comparison of big bluestem with other native grasses: Chemical composition and biofuel yield[J]. Energy, 2015, 83: 358-365.
[34] Zhang K, Johnson L, Nelson R, et al. Chemical and elemental composition of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains[J]. Industrial Crops and Products, 2012, 40: 210-218.
[35] Zhang K, Johnson L, Nelson R, et al. Thermal properties of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains. Energy, 2014, 64: 164-171.
Effects of urea pretreatment on the main components and structure of maize stover with high-solid loading
Wang Lili1, Li Yibo1, Xu Lei1, Wang Zhongjiang1,2, Wang Yihao1, Sui Yuhang1
(1.,,150030,2.,150030,)
Urea is a common type of low-cost nitrogen fertilizer with a nitrogen content of 46%. Furthermore, urea is easily dissolved in water and then converted into gaseous ammonia or ammonium and bicarbonate ions upon catalysis by urease. To date, urea has served as an additive to pretreat the softwood spruce, hardwood birch, bamboo, and rice straw, because it can be transported, stored, and used without special equipment or conditions. However, the pretreatment of lignocellulosic biomass using only urea has not been extensively studied, especially for the pretreatment at high solids loading (TS). Furthermore, TS is a key factor in aqueous or gaseous ammonia production from urea. Therefore, this study aims to explore the effect of urea as a single reagent on the maize stover pretreated with TS. Meanwhile, the urease in soybean flour was used to promote the conversion of urea to ammonia, in order to realize the spontaneous pretreatment of maize stover with gaseous NH3at relatively low temperature. A variable-controlling and full factorial experiment was carried out at a relatively high TS.A systematic investigation was made to explore the effects of TS (30%-70%), soybean flour to maize stover ratio (1:40-1:10), urea to maize stover ratio (1:10-1:1), pretreatment temperature (60-80℃), and pretreatment time (2-14 d) on the compositional characteristics, the surface morphology, and group structure of maize stover. The results indicated that the lignin content of pretreated maize stover increased, whereas, the content of glucan, xylan and araban increased firstly and then decreased, as the TS increased. The carbohydrates in the maize stover were well protected after the urea pretreatment with 50% TS. The urease in soybean flour increased the glucan and araban content of urea-pretreated maize stover, but no influence on the lignin and xylan content. It was found that the 1:20 ratio of soybean flour to maize stover was favorable for the urea pretreatment of maize stover. The lignin and xylan content of pretreated maize stover decreased slightly, with the increase of urea to maize stover ratio and pretreatment time, but differed insignificantly as pretreatment temperature. Nevertheless, the glucan content of pretreated maize stover increased significantly, with the increase of urea to maize stover ratio, pretreatment temperature, and time. The araban content of pretreated maize stover decreased slightly with the increase of pretreatment time, but remained unchanged with the increase in the urea to maize stover ratio and pretreatment temperature. The solid recoveries of maize stover were 63.69%, 69.73%, and 73.01% at three temperatures (80, 70, 60℃) for 10, 12, and 14 d, after pretreatment with fixed 50% TS, 1:20 ratio of soybean flour to maize stover, and 1:1 ratio of urea to maize stover. Under the same conditions, the recoveries were 97.24%, 93.75% and 92.34% for glucan, 61.63%, 66.70% and 68.09% for xylan, and 64.55%, 66.92% and 64.24% for araban. The contents reached 14.20%, 15.91% and 17.34% for lignin, 51.75%, 45.57% and 42.87% for glucan, 20.67%, 20.40% and 19.92% for xylan, and 4.23%, 4.67% and 4.28% for araban. The C-O group (1 032 cm-1) related with cellulose, hemicellulose and lignin of maize stover fluctuated significantly, and the lignin and hydroxycinnamate linkages cleaved obviously during urea pretreatment. Consequently, it is feasible for the maize stover pretreatment with spontaneous gaseous NH3from urea at higher TS. The finding can provide a potential research basis for urea pretreatment.
maize; stover; urea pretreatment; lignin; glucan; xylan; araban
王麗麗,李一博,許雷,等. 高固體負荷下尿素預處理對玉米秸稈主要成分和結構的影響[J]. 農業工程學報,2021,37(8):204-211.doi:10.11975/j.issn.1002-6819.2021.08.023 http://www.tcsae.org
Wang Lili, Li Yibo, Xu Lei, et al. Effects of urea pretreatment on the main components and structure of maize stover with high-solid loading[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 204-211. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.08.023 http://www.tcsae.org
2021-01-11
2021-04-12
國家重點研發計劃(2018YFE026602);國家自然科學基金項目(51406032);東北農業大學“學術骨干”項目(18XG15);黑龍江省博士后科研啟動基金項目(LBH-Q19 008)
王麗麗,博士,教授,博士生導師,研究方向為農業生物環境與能源工程,Email:wanglili22663@163.com
10.11975/j.issn.1002-6819.2021.08.023
S216
A
1002-6819(2021)-08-0204-08