曹迷霞 陳奇 楊劍 劉夢倩 賈妮娜 韋英益 胡庭俊



摘要:【目的】探究山豆根多糖(SSP)對豬圓環病毒Ⅱ型(PCV2)感染RAW264.7細胞增殖活性及炎癥相關因子的影響,揭示SSP對PCV2感染免疫細胞炎癥相關因子的調控作用。【方法】PCV2體外感染RAW264.7細胞建立炎癥模型,以不同濃度(25、50、100、200、400、800和1600 μg/mL)SSP進行培養處理,然后采用CCK-8和ELISA分別測定SSP對PCV2體外感染RAW264.7細胞增殖活性及炎癥相關因子(IL-1β、IL-8和MCP-1)分泌水平和胞內環氧合酶-1(COX-1)活性的影響。【結果】與細胞對照組相比,SSP濃度≤400 μg/mL對RAW264.7細胞增殖活性無顯著影響(P>0.05),但SSP濃度達800和1600 μg/mL時RAW264.7細胞增殖活性極顯著降低(P<0.01,下同),且隨培養時間的延長,細胞增殖活性呈先降低后升高的變化趨勢,于培養48 h時達最低值。PCV2感染RAW264.7細胞后其增殖活性極顯著降低,炎癥相關因子IL-1β、IL-8和MCP-1分泌水平及胞內COX-1活性極顯著升高;100~400 μg/mL SSP能極顯著提高PCV2感染RAW264.7細胞增殖活性,且能有效降低RAW264.7細胞的IL-1β、IL-8和MCP-1分泌水平及胞內COX-1活性。具體表現為:與PCV2模型組相比,100 ?g/mL SSP能顯著降低PCV2感染RAW264.7細胞的IL-1β和MCP-1分泌水平(P<0.05,下同);200 ?g/mL SSP能極顯著降低PCV2感染RAW264.7細胞的MCP-1分泌水平,同時顯著降低細胞IL-1β和IL-8的分泌水平及胞內COX-1活性;400 ?g/mL SSP能極顯著降低PCV2感染RAW264.7細胞的IL-1β、IL-8和MCP-1分泌水平及胞內COX-1活性。【結論】SSP對RAW264.7細胞增殖活性無顯著影響,也未表現出細胞毒性作用,且100~400 μg/mL SSP能極顯著提高PCV2感染RAW264.7細胞增殖活性,并通過調節PCV2感染免疫細胞的炎癥相關因子水平而發揮抗炎作用。
關鍵詞: 豬圓環病毒Ⅱ型;山豆根多糖;RAW264.7細胞;增殖活性;炎癥相關因子
中圖分類號: S853.74? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2021)02-0439-09
Abstract:【Objective】This study aimed to investigate the proliferation activity and inflammation-related factors of Sophora subprostrate polysaccharide(SSP) on porcine circovirus Ⅱ(PCV2) infected RAW264.7 cells, and to reveal its regulation on PCV2 infected immune cells inflammation-related factors. 【Method】 Established the inflammatory model of PCV2 infected RAW264.7 cells in vitro, and then cultured with different concentrations(25, 50, 100, 200, 400, 800 and 1600 μg/mL) of SSP. CCK-8 method was used to determine the proliferation activity of RAW264.7 cells and PCV2 infec-ted RAW264.7 cells with SSP at different concentrations. The effect of SSP at different concentrations on inflammation-related factors(IL-1β, IL-8, MCP-1 and COX-1) in PCV2 infected RAW264.7 cells were determined by enzyme linked immunosorbent assay(ELISA). 【Result】Compared with the cell control group, the results showed that the concentration of SSP≤400 μg/mL had no significant effect on RAW264.7 cell viability(P>0.05), but SSP concentrations at 800 μg/mL and 1600 μg/mL? extremely significantly decreased the viability of RAW264.7 cells(P<0.01,the same below). After PCV2 infection, the proliferation activity of RAW264.7 cells was extremely decreased, the secretion levels of inflammatory cytokines IL-1β, IL-8 and MCP-1 and the activity of intracellular COX-1 were extremely increased. 100-400 μg/mL of SSP exttemely increased the viability of PCV2 infected RAW264.7 cells, and the secretion levels of IL-1β, IL-8, MCP-1 and the activity of COX-1 in RAW264.7 cells were decreased compared to PCV2 group. Compared with PCV2 model group, 100 μg/mL of SSP significantly decreased IL-1β and MCP-1 secretion levels in PCV2 infected RAW264.7 cells(P<0.05, the same below); 200 μg/mL of SSP extremely decreased the secretion level of MCP-1, significantly decreased the secretion levels of? IL-1β and IL-8, and the activity of COX-1 in PCV2 infected RAW264.7 cells; SSP at 400 μg/mL of could extremely reduce the levels of IL-1β, IL-8 and MCP-1 and the activity of COX-1 in PCV2 infected RAW264.7 cells. 【Conclusion】 SSP has no significant effect on the proliferation activity of RAW264.7 cells, and shows no cytotoxicity. 100-400 μg/mL of SSP extremely increases the proliferation activity of PCV2 infected RAW264.7 cells, and play an anti-inflammatory effect via regulating the secretion levels of inflammation-related factors.
Key words: porcine circovirus Ⅱ;? Sophora subprostrate polysaccharide; RAW264.7 cell; proliferation activity; inflammation-related factors
Foundation item: National Natural Science Foundation of China(31960715); Project of Guangxi Graduate Education Innovation(YCBZ2020004)
0 引言
【研究意義】豬圓環病毒(Porcine circovirus,PCV)是圓環病毒科(Circoviridae)圓環病毒屬(Circovirus)的成員之一,無囊膜,含有共價閉合的環狀單鏈DNA基因組,主要包括PCV I型(PCV1)、PCV II型(PCV2)和PCV III型(PCV3)等基因型(劉國陽等,2019;張柱青等,2019;蘇芮等,2020)。其中,PCV1對豬為非致病性,而PCV2和PCV3均對豬表現出致病性(賀會利等,2017)。PCV2能引發一大類免疫抑制性的多系統傳染病,主要侵害機體的免疫系統(鄧文芳等,2020)。單核細胞和巨噬細胞是PCV2的靶細胞,PCV2感染可引起仔豬斷奶后多系統衰竭綜合癥、皮炎和腎病綜合征、增生性壞死性間質性肺炎和繁殖障礙等,是豬圓環病毒相關疾病(Porcine circovirus associated disease,PCVD)的主要病原(方博,2019;沈順新和和玉丹,2020)。山豆根多糖(Sophora subprostrate polysaccharide,SSP)是一種從越南槐(Sophora tonkinensis Gapnep.)根和根莖中經干燥后提取獲得的多糖,具有多種生物活性,如抗炎、抗氧化、抗病毒及抗腫瘤等(彭湘君等,2012)。山豆根多糖可通過調節一氧化氮(NO)分子水平而影響免疫細胞內的cAMP/cGMP和6-keto-PGF1信號體系,進而調節免疫功能(帥學宏等,2010)。已有研究證實,山豆多糖通過抑制PCV2的CAP基因復制而增強免疫功能,達到抗病毒效果(Sun et al.,2020)。因此,明確SSP對PCV2感染細胞增殖活性及其相關炎癥因子分泌水平的調節作用,可為PCVD的綜合防控提供新思路。【前人研究進展】炎癥是機體對致炎因子產生的一種應答性反應,而炎癥細胞因子是指參與炎癥反應的各類細胞因子(Yao et al.,2016;Ho et al.,2020)。SSP可調節炎癥細胞因子表達,緩解炎癥癥狀。Su等(2013)研究表明,SSP可緩解PCV2誘導的RAW264.7細胞氧化應激,降低PCV2感染細胞中活性氧(ROS)和NO生成,抑制過氧化物酶(MPO)活性和誘導型一氧化氮合酶(iNOS)表達。路海濱等(2018)研究發現,以SSP處理Lewis肺癌小鼠后其血清腫瘤壞死因子α(TNF-α)和血管內皮生長因子(VEGF)水平均顯著升高,即SSP可通過調節血清TNF-α和VEGF水平以緩解炎癥反應,進而達到抗腫瘤效果。Yang等(2020)探究SSP對PCV2感染RAW264.7細胞炎癥反應及組蛋白乙酰化修飾的影響,發現SSP通過增加組蛋白去乙酰化酶(HDAC)活性和HDAC基因表達,以降低H3和H4的乙酰化水平并激活NF-κB/MAPKs/c-Jun信號通路,即通過調節炎癥細胞因子表達水平進一步抑制炎癥反應。此外,陳云等(2014)研究表明,山豆根多糖硫酸酯(sBSRPS)可作為抗Ⅰ型鴨肝炎病毒(Duck hepatitis virus 1,DHV-1)藥物的重要組分。Chen等(2014,2018)、Voronov等(2014)通過對比分析SSP和sBSRPS對DHV-1在鴨肝細胞上復制及釋放的影響,發現SSP和sBSRPS均能較好地發揮體外抗DHV-1作用,且sBSRPS的抗病毒效果更明顯,能有效抑制DHV-1的體外復制和釋放。何淼等(2020)也研究證實,SSP和sBSRPS均具有明顯的體外抗DHV-1活性,且sBSRPS的抗病毒效果優于SSP,可顯著下調DHV-1的體外復制和釋放,即sBSRPS在體外對DHV-1具有良好的拮抗作用。可見,sBSRPS具備良好的抗病毒活性,可作為主要成分用于研發抗病毒新型藥物。【本研究切入點】PCV2作用于細胞或組織會促使炎癥細胞因子上調表達,尤其是TNF-α、IL-1β、IL-6、IL-8和IL-10等細胞因子,但這些炎癥細胞因子的分泌時間段及上調幅度各不相同,其變化可能是病毒通過刺激炎癥反應,導致動物機體免疫系統發生紊亂,最終促進PCV2感染相關疾病的發生發展(李海花等,2016;石坤等,2016;崔貝貝,2017;譚紅連等,2017;張蕾等,2018)。至今尚無研究報道SSP對PCV2感染免疫細胞增殖活性及炎癥相關因子的調節作用。【擬解決的關鍵問題】通過建立PCV2體外感染RAW264.7細胞的炎癥模型,以不同濃度SSP處理后采用CCK-8和ELISA分別測定SSP對PCV2體外感染RAW264.7細胞增殖活性及其炎癥相關因子(IL-1β、IL-8和MCP-1)分泌水平和胞內環氧合酶-1(COX-1)活性的影響,旨在揭示SSP對PCV2感染免疫細胞炎癥相關因子的調控作用。
1 材料與方法
1. 1 試驗材料
PCV2(SH株)為南京農業大學農業農村部動物疫病診斷與免疫重點開放實驗室分離獲得,后經本課題組采用豬腎細胞系(PK-15細胞)增殖保存;RAW264.7細胞購自武漢大學細胞庫;SSP由廣西大學動物科學技術學院獸醫藥理與毒理學實驗室提取獲得;脂多糖(LPS)購自上海索萊寶生物科技有限公司;細胞培養相關試劑包括DMEM高糖培養基(Gibco)、胎牛血清(Gibco)、青鏈霉素混合液(北京康為世紀生物科技有限公司)、蛋白酶K[生工生物工程(上海)股份有限公司]、飽和酚(上海索萊寶生物科技有限公司)、CCK-8試劑盒(上海碧云天生物技術有限公司);LA Taq DNA聚合酶購自TaKaRa公司;小鼠IL-1β(Lot.M191008-001a)、IL-8(Lot.M191008-104a)、MCP-1(Lot.M191008-113a)和COX-1(Lot.M191008-135a)等ELISA試劑盒購自深圳欣博盛生物科技有限公司。
1. 2 RAW264.7細胞復蘇傳代與培養
RAW264.7細胞復蘇后用含10% FBS-DMEM完全培養液稀釋并移至細胞培養瓶中,置于37 ℃、5% CO2培養箱中培養,待瓶底細胞貼壁融合至70%~80%后進行傳代,連續穩定傳代3次后即可用于后續試驗。
1. 3 PCV2增殖及鑒定
將RAW264.7細胞稀釋至5×104個/mL,按100 μL/孔添加至96孔細胞培養板中。將-80 ℃保存的PCV2接種至RAW264.7細胞,2 h后棄培養液,PBS洗滌3次后加入含5% FBS的DMEM培養液,置于37 ℃、5% CO2的培養箱中培養24 h,收集細胞懸液,反復凍融3次后5000 r/min離心5 min,提取DNA。采用PCR檢測病毒核酸,根據GenBank已公布PCV2的ORF-2基因設計引物(F:5'-CACTTCTTTCGTTTTC AG-3'和R:5'-TTTATCACTTCGTAATGGT-3'),并委托深圳華大基因科技服務有限公司合成。PCR反應體系25.0 μL:Ex Taq DNA聚合酶12.5 μL,上、下游引物各1.0 μL,DNA模板2.0 μL,ddH2O 8.5 μL。擴增程序:94 ℃預變性3 min;94 ℃ 40 s,55.5 ℃ 40 s,72 ℃ 50 s,進行30個循環;72 ℃延伸7 min。PCR擴增產物以1.0%瓊脂糖凝膠電泳進行檢測。
1. 4 CCK-8測定SSP對RAW264.7細胞增殖活性的影響
將RAW264.7細胞稀釋至5×104個/mL,按100 μL/孔添加至96孔細胞培養板中,置于37 ℃、5% CO2培養箱中培養,使其貼壁長成單層細胞融合至70%。如表1所示,分別設細胞對照組、LPS陽性對照組及不同濃度藥物組,其中,細胞對照組只加入10% FBS-DMEM完全培養液,LPS陽性對照組加入終濃度為1 μg/mL的LPS(以10% FBS-DMEM完全培養液稀釋),不同濃度藥物組加入終濃度分別為25、50、100、200、400、800和1600 μg/mL的SSP(以10% FBS-DMEM完全培養液稀釋),每組4個重復孔,進行3個平行試驗。在37 ℃、5% CO2培養箱中培養12、24、48和72 h后,每孔分別加入10.0 μL CCK-8溶液繼續孵育4 h,于450 nm處測定吸光值。
1. 5 CCK-8測定SSP對PCV2感染RAW264.7細胞增殖活性的影響
根據1.4的試驗結果,篩選出SSP濃度25、50、100、200和400 μg/mL作為后續試驗劑量。RAW264.7細胞傳代培養后,調整其細胞濃度為5×104個/mL,按100 μL/孔添加至96孔細胞培養板中,置于37 ℃、5% CO2培養箱中培養過夜使其貼壁融合至70%。分別設細胞對照組、PCV2模型組及不同濃度藥物組(表2),每組4個重復,進行3個平行試驗。PCV2模型組和不同濃度藥物組先用103 TCID50 PCV2懸液孵育感染2 h,棄病毒懸液后以PBS洗滌3次,再加入終濃度分別為25、50、100、200和400 μg/mL的SSP,細胞對照組和PCV2模型組加入10% FBS-DMEM完全培養液,置于37 ℃、5% CO2培養箱中培養,于培養12、24、48和72 h后,各處理組每孔分別加入10.0 μL CCK-8溶液繼續孵育4 h,于450 nm處測定吸光值。
1. 6 SSP對PCV2誘導RAW264.7細胞炎癥相關因子分泌水平的影響
取對數生長期的RAW264.7細胞,調整細胞濃度為1×105個/mL,添加至12孔細胞培養板中,1000 μL/孔,置于37 ℃、5% CO2培養箱中培養過夜,待其貼壁后進行試驗處理,設細胞對照組、LPS陽性對照組、PCV2模型組及不同濃度(100、200和400 ?g/mL)藥物組(表3),每組3個重復,進行3個平行試驗。細胞對照組加入500 ?L DMEM培養液,LPS對照組加入500 ?L終濃度為1 ?g/mL的LPS, PCV2模型組和不同濃度藥物組加入500 ?L的103 TCID50 PCV2懸液感染孵育2 h,棄病毒懸液,PBS洗3次;不同濃度藥物組分別加入1000 μL含不同終濃度(100、200和400 ?g/mL)SSP的10% FBS-DMEM完全培養液,細胞對照組、LPS陽性對照組和PCV2模型組則加入1000 μL的10% FBS-DMEM完全培養液。置于37 ℃、5% CO2培養箱中繼續培養24 h,收集細胞培養上清液置于1.5 mL滅菌EP管中,4 ℃下1500 r/min離心5 min,收集上清液,按ELISA試劑盒說明進行IL-1β、IL-8、MCP-1和COX-1測定。
2 結果與分析
2. 1 PCV2在RAW264.7細胞內的增殖鑒定結果
RAW264.7細胞接種PCV2后,反復凍融裂解RAW264.7細胞,釋放病毒,提取病毒DNA,檢測所提取DNA在260 nm和280 nm處的吸光值,得知A260/A280比值為1.81,表明提取獲得的病毒DNA不存在蛋白質污染,純度較高。以病毒DNA為模板進行PCR擴增,擴增產物經1.0%瓊脂糖凝膠電泳檢測得到單一明亮的目的條帶(圖1),擴增片段大小(1154 bp)與預期結果相符,即RAW264.7細胞成功感染PCV2。
2. 2 SSP對RAW264.7細胞增殖活性的影響
采用CCK-8檢測SSP對RAW264.7細胞增殖活性的影響,結果(表4)顯示,LPS處理RAW264.7細胞在各時間點的增殖活性均高于細胞對照組,且隨著培養時間的延長,細胞增殖活性呈先升高后降低的變化趨勢,以培養24 h時的細胞增殖活性最高,與細胞對照組間存在極顯著差異(P<0.01,下同)。SSP濃度≤400 μg/mL時,在各時間點的RAW264.7細胞增殖活性均無顯著差異(P>0.05,下同);但SSP濃度達800和1600 μg/mL時,各時間點的RAW264.7細胞增殖活性極顯著低于細胞對照組,且隨著培養時間的延長,細胞增殖活性呈先降低后升高的變化趨勢,于培養48 h時達最低值。因此,在后續研究中SSP使用濃度不宜超過400 μg/mL。
2. 3 SSP對PCV2感染RAW264.7細胞增殖活性的影響
由表5可知,PCV2感染RAW264.7細胞后,其增殖活性極顯著降低,且隨著培養時間的延長,細胞增殖活性整體上呈逐漸降低趨勢,于培養72 h時降至最低值。以25~50 μg/mL SSP培養PRV2感染RAW264.7細胞能有效提高細胞增殖活性,且培養72 h的細胞增殖活性極顯著高于PCV2模型組;以100~400 μg/mL SSP培養PRV2感染RAW264.7細胞能極顯著提高細胞增殖活性,且隨著培養時間的延長,其細胞增殖活性越高,故選擇100~400 ?g/mL SSP進行后續研究。
2. 4 SSP對PCV2感染RAW264.7細胞炎癥相關因子分泌水平的影響
由表6可知,PCV2感染RAW264.7細胞后,其細胞IL-1β、IL-8和MCP-1分泌水平及胞內COX-1活性均極顯著升高。與PCV2模型組相比,100 ?g/mL SSP能顯著降低PCV2感染RAW264.7細胞的IL-1β和MCP-1分泌水平(P<0.05,下同);200 ?g/mL SSP能極顯著降低PCV2感染RAW264.7細胞的MCP-1分泌水平,同時顯著降低細胞IL-1β和IL-8的分泌水平及胞內COX-1活性;400 ?g/mL SSP能極顯著降低PCV2感染RAW264.7細胞的IL-1β、IL-8和MCP-1分泌水平及胞內COX-1活性。表明100~400 ?g/mL的SSP能通過降低PCV2感染RAW264.7細胞的IL-1β、IL-8和MCP-1分泌水平及胞內COX-1活性,以緩解病毒引起的炎癥反應。
3 討論
山豆根化學成分含量豐富,藥用價值高。SSP是山豆根的主要活性成分之一,具有調節免疫、抗炎、抗癌、抗病毒及抗氧化等多種生物活性(Cheng et al.,2013;Ji et al.,2014)。本研究通過測定SSP對RAW264.7細胞增殖活性的影響,以明確SSP對RAW264.7細胞增殖活性及細胞毒性影響的濃度范圍,從而篩選出SSP對PCV2感染RAW264.7細胞增殖活性影響的最適宜濃度,進一步揭示SSP的抗炎作用,結果顯示,在25~400 ?g/mL濃度范圍內SSP對RAW264.7細胞增殖活性無顯著影響,也未表現出細胞毒性作用,但SSP濃度為800~1600 ?g/mL時極顯著抑制RAW264.7細胞增殖活性,與Gan等(2018)的研究結果相似,即1.78~35.60 μmol/L SSP對雞胚肝細胞無細胞毒性,且對黃曲霉毒素誘導的雞胚肝細胞損傷起保護作用。
炎癥是動物機體對各種致炎因素引起損傷產生的防御性反應,而炎癥相關因子在炎癥過程中發揮關鍵作用,如IL-1β、IL-6、IL-8、COX-1和MCP-1等可促進炎癥細胞聚集、活化及炎癥介質釋放(Kandalam and Clark,2010;Yin et al.,2018;Xiao et al.,2020)。IL-1β是一種重要的促炎因子,在細胞免疫中扮演重要角色,能與TNF-α產生相互協同作用,通過激活靶細胞內NF-κB信號通路而參與炎癥反應,在機體免疫調節過程中發揮重要作用(Wulster-Radcliffe et al.,2004;Li et al.,2020);MCP-1是炎癥反應的促發劑,可促進炎癥細胞聚集,且具有多種生物活性,包括促進腫瘤細胞生長、刺激免疫應答及參與炎癥反應等(Ou et al.,2020;Weber et al.,2020);IL-8在免疫應答的全過程中發揮重要作用,能吸引炎癥細胞進入組織部位,激活巨噬細胞及增強其殺傷活性(Mohamed et al.,2020);COX-1與炎癥發生密切相關,受致炎因素刺激后,可分泌前列腺素(PGE2),活化小神經膠質細胞,進而釋放促炎介質IL-1、IL-6、TNF6、NO及PG等參與炎癥反應(Liedtke et al.,2012)。已有研究表明,PCV2感染免疫細胞可導致炎癥相關因子的表達發生改變,尤其是IL-6、IL-8、IL-10、TNF-α和免疫調節因子IFN-γ(Borghetti et al.,2013)。汪偉等(2016)對PCV2體外感染3D4/21細胞的研究發現,PCV2感染對炎癥相關因子IL-1β和IL-8的表達起促進作用。在本研究中,采用103 TCID50的PCV2感染RAW264.7細胞后,其細胞IL-1β、IL-8和MCP-1分泌水平及胞內COX-1活性均極顯著升高,說明PCV2能刺激RAW264.7細胞分泌炎癥相關因子,從而促進炎癥反應的發生,即PCV2感染誘導RAW264.7細胞炎癥模型構建成功。
近年來,有關中藥活性多糖對免疫細胞炎癥相關因子分泌的調節作用研究逐漸增多。李勝亮等(2006)研究發現,經10 mg/L LPS刺激后肺血管內巨噬細胞釋放TNF-α、IL-6和IL-8增多;仲芳等(2009)研究表明,姜黃素可下調LPS誘導人類腎小管近端上皮細胞MCP-1和IL-8的分泌;陳瀟等(2012)在研究靈芝多糖對動脈粥樣硬化預防與治療作用機理時發現,其高劑量組的血清TNF-α分泌水平較模型組顯著降低,表明靈芝多糖可有效抑制炎癥相關因子的分泌;王松等(2012)研究顯示,復方甘草酸苷可明顯降低LPS誘發RAW264.7細胞生成促炎因子NO、TNF-α、IL-1β和IL-6,并促進抗炎因子IL-10表達;Liu等(2015)研究發現,酸棗多糖對四氯化碳(CCl4)誘導的小鼠肝毒性損傷有顯著治療作用;Xue等(2015)研究表明,黃芪多糖可通過抑制氧化應激和阻斷NF-κB途徑來抑制PCV2復制。本研究結果顯示,PCV2感染RAW264.7細胞后極顯著提高其IL-1β、IL-8和MCP-1分泌水平及胞內COX-1活性,而100~400 ?g/mL SSP能顯著或極顯著降低PCV2感染RAW264.7細胞IL-1β、IL-8、MCP-1分泌水平及胞內COX-1活性,與Sun等(2020)的研究結果相似。可見,SSP是通過調節PCV2感染免疫細胞的炎癥相關因子水平而發揮抗炎作用。
4 結論
SSP對RAW264.7細胞增殖活性無顯著影響,也未表現出細胞毒性作用,且100~400 μg/mL SSP能顯著提高PCV2感染RAW264.7細胞增殖活性,并通過調節PCV2感染免疫細胞的炎癥相關因子水平而發揮抗炎作用。
參考文獻:
陳瀟,王爽,孟國梁,常珊珊,陳惠,鄭惠華,徐濟良. 2012. 靈芝多糖對動脈粥樣硬化大鼠炎癥因子表達的影響[J]. 中藥新藥與臨床藥理,23(3):251-254. doi:10.3969/j.issn.1003-9783.2012.03.004. [Chen X,Wang S,Meng G L,Chang S S,Chen H,Zheng H H,Xu J L. 2012. Effects of Ganoderma lucidum polysaccharids on expression of inflammatory factors in atherosclerosis rats[J]. Traditional Chinese Drug Research and Clinical Pharmacology,23(3):251-254.]
陳云,曾玲,熊文,張玲,張清,王德云,劉家國. 2014. 山豆根多糖及其硫酸酯體外抗DHV-1感染細胞作用的比較[J]. 南京農業大學學報,37(4):117-122. doi:10.7685/j.issn.1000-2030.2014.04.017. [Chen Y,Zeng L,Xiong W,Zhang L,Zhang Q,Wang D Y,Liu J G. 2014. Comparison of bush sophora root polysaccharide and its sulfate against DHV-1 infecting cell in vitro[J]. Journal of Nanjing Agricultural University,37(4):117-122.]
崔貝貝. 2017. IL-10在PCV2感染與復制中的調控作用[D]. 楊凌:西北農林科技大學. [Cui B B. 2017. The regulation of IL-10 in the PCV2 infection and replication[D]. Yangling:Northwest A & F University.]
鄧文芳,宋文博,胡星星,賈雙,陳翔鴻,喻紅艷,湯細彪. 2020. 2017~2018年華中地區豬圓環病毒2型分子流行病學分析[J]. 中國動物傳染病學報,28(2):32-38. [Deng W F,Song W B,Hu X X,Jia S,Chen X H,Yu H Y,Tang X B. 2020. Molecular epidemiological analysis of porcine circovirus virus type 2 in central China during 2017-2018[J]. Chinese Journal of Animal Infectious Di-seases,28(2):32-38.]
方博. 2019. 豬圓環病毒2型及其綜合防控[J]. 廣東飼料,28(7):50-51. [Fang B. 2019. Prevention and control of porcine circovirus type 2[J]. Guangdong Feed,28(7):50-51.]
何淼,張寶康,粟靈琳,杜紅旭,明珂,白景英,劉家國,王德云,武毅. 2020. 磷酸化修飾對山豆根多糖抗Ⅰ型鴨肝炎病毒效果的影響[J/OL]. 南京農業大學學報. doi:10. 7685/jnau.202003030. [He M,Zhang B K,Su L L,Du H X,Ming K,Bai J Y,Liu J G,Wang D Y,Wu Y. 2020. Effect of phosphorylation on resisting duck hepatitis virus I effect of Bush Sophora Root polysaccharide[J/OL]. Journal of Nanjing Agricultural University. doi:10.7685/jnau. 202003030.]
賀會利,李軍,潘艷,胡帥,馮世文,彭昊,李常挺,陳澤祥,楊威. 2017. 廣西首例豬圓環病毒3型的發現及其衣殼蛋白序列分析[J]. 南方農業學報,48(8):1499-1503. doi:10.3969/j.issn.2095-1191.2017.08.27. [He H L,Li J,Pan Y,Hu S,Feng S W,Peng H,Li C T,Chen Z X,Yang W. 2017. The first report of porcine circovirus type 3 infection in Guangxi and sequence analysis of its capsid protein[J]. Journal of Southern Agriculture,48(8):1499-1503.]
李海花,張蕾,楊春蕾,趙向華,喬家運,王文杰. 2016. PCV2通過NF-κB/NLRP3信號通路調控體外培養PAMs分泌IL-1β[J]. 中國畜牧獸醫,43(9):2366-2372. doi:10.16431/j.cnki.1671-7236.2016.09.022. [Li H H,Zhang L,Yang C L,Zhao X H,Qiao J Y,Wang W J. 2016. PCV2 regulates PAMs secreting IL-1β through the NF-κB/NLRP3 signalling pathway in vitro[J]. China Animal Husbandry & Veterinary Medicine,43(9):2366-2372.]
李勝亮,張淑琴,秦翠平,陳彬,陳正堂,金敬順,伍偉玲. 2006. 脂多糖致肺血管內巨噬細胞釋放炎癥因子變化的研究[J]. 中國危重病急救醫學,18(3):136-138. doi:10.3760/j.issn:1003-0603.2006.03.003. [Li S L,Zhang S Q,Qin C P,Chen B,Chen Z T,Jin J S,Wu W L. 2006. Changes in inflammatory cytokines released by pulmonary intravascular macrophages after stimulation with lipopolysaccharide[J]. Chinese Critical Care Medicine,18(3):136-138.]
劉國陽,唐波,常晨,華濤,侯繼波,張道華. 2019. 豬圓環病毒2型與豬細小病毒混合感染對仔豬致病性的研究[J]. 江西農業學報,31(9):79-85. doi:10.19386/j.cnki.jxnyxb. 2019.09.14. [Liu G Y,Tang B,Chang C,Hua T,Hou J B,Zhang D H. 2019. Athogenicity of porcine circovirus type 2 and porcine parvovirus co-infection in piglets[J]. Acta Agriculturae Jiangxi,31(9):79-85.]
路海濱,高洋,禹珊珊,趙倩倩,宋玉明. 2018. 山豆根多糖對Lewis肺癌小鼠抑瘤作用及免疫功能影響的實驗研究[J]. 中藥材,41(6):1459-1462. doi:10.13863/j.issn.1001-4454.2018.06.043. [Lu H B,Gao Y,Yu S S,Zhao Q Q,Song Y M. 2018. Experimental study of the effect of the Sophorae tonkinensis polysaccharide on the tumor inhibition and immune function in lewis lung cancer bearing mice[J]. Journal of Chinese Medicinal Materials,41(6):1459-1462.]
彭湘君,李銀保,李青松. 2012. 山豆根多糖的研究進展[J]. 湖北農業科學,51(24):5559-5561. [Peng X J,Li Y B,Li Q S. 2012. The pesearch progress of polysaccharide from radix Sophorae tonkinensis[J]. Hubei Agricultural Sciences,51(24):5559-5561.]
沈順新,和玉丹. 2020. 豬圓環病毒病的危害及其防控[J]. 今日畜牧獸醫,36(4):27-28. [Shen S X,He Y D. 2020. The harm of porcine circovirus disease and its prevention and control[J]. Today Animal Husbandry and Veterinary Medicine,36(4):27-28.]
石坤,魏建超,邱亞峰,張克龍,李宗瑞,劉茜倩,李蓓蓓,劉珂,邵東華,陳立志,馬志永. 2016. PCV2與PRRSV體外共感染對肺泡巨噬細胞系炎癥反應的影響[J]. 中國動物傳染病學報,24(3):16-20. [Shi K,Wei J C,Qiu Y F,Zhang K L,Li Z R,Liu X Q,Li B B,Liu K,Shao D H,Chen L Z,Ma Z Y. 2016. Inflammatory response of a pulmonary alveolar macrophage in vitro response to porcine circovirus tyre 2 and porcine reproductive and respiratory syndrome virus co-infection[J]. Chinese Journal of Animal Infectious Diseases,24(3):16-20.]
帥學宏,蘇子杰,胡庭俊,曾蕓,韋英益,李躍華. 2010. 山豆根多糖對雞脾臟淋巴細胞信號轉導相關分子水平的影響[J]. 動物醫學進展,31(1):36-41. doi:10.16437/j.cnki. 1007-5038.2010.01.009. [Shuai X H,Su Z J,Hu T J,Zeng Y,Wei Y Y,Li Y H. 2010. Effects of Sophora subprostrate polysaccharide on signal transduction related molecules in chicken splenic lymphocytes[J]. Progress in Veterinary Medicine,31(1):36-41.]
蘇芮,王東亮,陳指龍,范秀軍,鄧治邦,楊青. 2020. PCV2 ORF1~ORF4基因所編碼蛋白功能的研究進展[J]. 經濟動物學報,24(1):46-51. doi:10.13326/j.jea.2018.1357. [Su R,Wang D L,Chen Z L,Fan X J,Deng Z B,Yang Q. 2020. Research progress on major function proteins encoded by PCV2 ORF1-ORF4 gene[J]. Journal of Economic Animal,24(1):46-51.]
譚紅連,楊劍,尹丹,郝祝兵,韋英益,胡庭俊. 2017. 馬尾藻多糖對PCV-2體外感染3D4/2細胞活性及炎癥相關因子的影響[J]. 江蘇農業科學,45(23):166-168. doi:10.15889/j.issn.1002-1302.2017.23.046. [Tan H L,Yang J,Yin D,Hao Z B,Wei Y Y,Hu T J. 2017. Effects of Sargassum sargassum polysaccharides on cell activity and inflammatory related factors of 3D4/2 cells infected with PCV-2 in vitro[J]. Jiangsu Agricultural Science,45(23):166-168.]
汪偉,王小敏,何孔旺,溫立斌,倪艷秀. 2016. 豬圓環病毒2型體外刺激3D4/21豬肺泡巨噬細胞的炎癥相關細胞因子mRNA轉錄分析[J]. 西南農業學報,29(5):1225-1228. doi:10.16213/j.cnki.scjas.2016.05.042. [Wang W,Wang X M,He K W,Wen L B,Ni Y X. 2016. Inflammation-associated cytokines mRNA transcriptional profiles of porcine alveolar macrophages cell lines 3D4/21 stimulated by porcine circovirus type 2[J]. Southwest China Journal of Agricultural Sciences,29(5):1225-1228.]
王松,王微,羅猛,趙修華,祖元剛,趙艷麗. 2012. 復方甘草酸苷制劑對脂多糖誘導小鼠RAW264.7細胞分泌炎癥因子的調節作用[J]. 藥學進展,36(10):465-470. doi:10.3969/ j.issn.1001-5094.2012.10.005. [Wang S,Wang W,Luo M,Zhao X H,Zu Y G,Zhao Y L. 2012. Regulating effect of gompound glycyrrhizin on LPS-induced inflammatory factor release from murine RAW264.7 cells[J]. Progress in Pharmaceutical Sciences,36(10):465-470.]
張蕾,代松寶,張麗琳,時培殿,王家順,任婕,黃金海. 2018. PCV2逃逸宿主天然免疫的分子機制研究[J]. 華北農學報,33(2):149-156. doi:10.7668/hbnxb.2018.02.021. [Zhang L,Dai S B,Zhang L L,Shi P D,Wang J S,Ren J,Huang J H. 2018. Molecular mechanisms of PCV2 escape from innate immunity[J]. Acta Agriculturae Boreali-Sinica,33(2):149-156.]
張柱青,呂其壯,卓嚴玲,鄧啟霞. 2019. 豬圓環病毒2型Cap蛋白體外表達技術研究進展[J]. 河南農業學報,48(9):1-6. doi:10.15933/j.cnki.1004-3268.2019.09.001. [Zhang Z Q,Lü Q Z,Zhuo Y L,Deng Q X. 2019. Research pro-gress on the expression technology of the Cap protein of porcine circovirus type 2 in vitro[J]. Journal of Henan Agricultural Sciences,48(9):1-6.]
仲芳,陳慧,韓琳,靳遠萌,王偉銘,陳楠. 2009. 姜黃素對脂多糖刺激的腎小管近端上皮細胞分泌的相關炎癥因子的影響[J]. 腎臟病與透析腎移植雜志,18(3):236-241. doi:10.3969/j.issn.1006-298X.2009.03.007. [Zhong F,Chen H,Han L,Jin Y M,Wang W M,Chen N. 2009. Curcumin inhibits expression of pro-inflammation factors in renal tubular epithelial cells induced by lipopolysaccharide[J]. Chinese Journal of Nephrology,Dialysis & Transplantation,18(3):236-241.]
Borghetti P,Morganti M,Saleri R,Ferrari L,de Angelis E,Cavalli V,Cacchioli A,Corradi A,Martelli P. 2013. Innate pro-inflammatory and adaptive immune cytokines in PBMC of vaccinated and unvaccinated pigs naturally exposed to porcine circovirus type 2(pcv2) infection vary with the occurrence of the disease and the viral burden[J]. Veterinary Microbiology,163(1-2):42-53. doi:10. 1016/j.vetmic.2012.12.007.
Chen Y,Xiong W,Zeng L,Wang D Y,Liu J G,Wu Y,Hu Y L. 2014. Comparison of Bush Sophora Root polysaccharide and its sulfate?s anti-duck hepatitis A virus activity and mechanism[J]. Carbohydrate Polymers,102:333-340. doi:10.1016/j.carbpol.2013.11.065.
Chen Y,Yang Y H,Yuan W J,Wang Z H,Ming K,Zeng L,Liu J G. 2018. Effects of Bush Sophora Root polysaccharide and its sulfate on DHAV-1 replication[J]. Carbohydrate Polymers,19:508-514. doi:10.1016/j.carbpol.2018. 06.039.
Cheng H R,Feng S L,Shen S A,Zhang L,Yang R W,Zhou Y H,Ding C B. 2013. Extraction,antioxidant and antimicrobial activities of Epimedium acuminatum Franch. polysaccharide[J]. Carbohydrate Polymers,96(1):101-108. doi:10.1016/j.carbpol.2013.03.072.
Gan F,Yang Y L,Chen Y,Che C P,Pan C L,Huang K H. 2018. Bush Sophora Root polysaccharide could help prevent aflatoxin B1-induced hepatotoxicity in the primary chicken hepatocytes[J]. Toxicon,150:180-187. doi:10. 1016/j.toxicon.2018.05.019.
Ho D R,Chang P J,Lin W Y,Huang Y C,Chen C S,Lin J H,Huang K T,Chan W N,Chen C S. 2020. Beneficial effects of inflammatory cytokine-targeting aptamers in an animal model of chronic prostatitis[J]. International Journal of Molecular Sciences,21(11):3953. doi:10.3390/ijms21113953.
Ji P,Wei Y M,Xue W X,Hua Y L,Zhang M,Sun H G,Song Z X,Zhang L,Li J X,Zhang W Q. 2014. Characterization and antioxidative activities of polysaccharide in Chinese angelica and its processed products[J]. International Journal of Biological Macromolecules,67:195-200. doi:10.1016/j.ijbiomac.2014.03.025.
Kandalam U,Clark M A. 2010. Angiotensin II activates JAK2/STAT3 pathway and induces interleukin-6 production in cultured rat brainstem astrocytes[J]. Regulatory Peptides,159(1-3):110-116. doi:10.1016/j.regpep.2009. 09.001.
Li Y F,Huang B,Ye T T,Wang Y,Xia D J,Qian J. 2020. Physiological concentrations of bilirubin control infla-mmatory response by inhibiting NF-κB and inflammasome activation[J]. International Immunopharmacology,84: 106520. doi:10.1016/j.intimp.2020.106520.
Liedtke A J,Crews B C,Daniel C M,Blobaum A L,Kingsley P J,Ghebreselasie K,Marnett L J. 2012. Cyclooxygenase-1-selective inhibitors based on the (E)-2'-des-methyl-sulindac sulfide scaffold[J]. Journal of Medicinal Chemistry,55(5):2287-2300. doi:10.1021/jm201528b.
Liu G P,Liu X Q,Zhang Y C,Zhang F,Wei T,Yang M,Wang K M,Wang Y J,Liu N,Zhao Z X. 2015. Hepatoprotective effects of polysaccharides extracted from Zizyphus jujube cv. Huanghetanzao[J]. International Journal of Biological Macromolecules,76:169-175. doi:10.1016/j.ijbiomac.2015.01.061.
Mohamed H T,El-Ghonaimy E A,El-Shinawi M,Hosney M,G?tte M,Woodward W A,El-Mamlouk T,Mohamed M M. 2020. IL-8 and MCP-1/CCL2 regulate proteolytic activity in triple negative inflammatory breast cancer a mechanism that might be modulated by Src and Erk1/2[J]. Toxicology and Applied Pharmacology,401:115092. doi:10.1016/j.taap.2020.115092.
Ou X C,Ying J W,Bai X D,Ruan D K. 2020. Activation of SIRT1 promotes cartilage differentiation and reduces apoptosis of nucleus pulposus mesenchymal stem cells via the MCP1/CCR2 axis in subjects with intervertebral disc degeneration[J] International Journal of Molecular Medicine,46(3):1074-1084. doi:10.3892/ijmm.2020.4668.
Su Z J,Wei Y Y,Yin D,Shuai X H,Zeng Y,Hu T J. 2013. Effect of Sophora subprosrate polysaccharide on oxidative stress induced by PCV2 infection in RAW264.7 cells[J]. International Journal of Biological Macromolecules,62:457-464. doi:10.1016/j.ijbiomac.2013.09.026.
Sun N,Zhang H,Sun P P,Khan A,Guo J H,Zheng X Z,Sun Y G,Fan K H,Yin W,Li H Q. 2020. Matrine exhibits antiviral activity in a PRRSV/PCV2 co-infected mouse model[J]. Phytomedicine,77:153289. doi:10.1016/j.phymed.2020.153289.
Voronov E,Carmi Y,Apte R N. 2014. The role IL-1 in tumor-mediated angiogenesis[J]. Frontiers in Physiology,5:114. doi:10.3389/fphys.2014.00114.
Weber R,Riester Z,Hüser L,Sticht C,Siebenmorgen A,Groth C,Hu X Y,Altevogt P,Utikal J S,Umansky V. 2020. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma[J]. Journal for Immunotherapy of Cancer,8(2):e000949. doi:10. 1136/jitc-2020-000949.
Wulster-Radcliffe M C,Ajuwon K M,Wang J Z,Christian J A,Spurlock M E. 2004. Adiponectin differentially regulates cytokines in porcine macrophages[J]. Biochemical and Biophysical Research Communications,316(3):924-929. doi:10.1016/j.bbrc.2004.02.130.
Xiao W D,Fu L,Gu C W,Wang R,Zhao M D,Wang J,Jia X B,Chen S Y,Lai S J. 2020. β-Glucan augments IL-1β production by activating the JAK2/STAT3 pathway in cultured rabbit keratinocytes[J]. Microbial Pathogenesis,144:104175. doi:10.1016/j.micpath.2020.104175.
Xue H X,Gan F,Zhang Z Q,Hu J F,Chen X X,Huang K H. 2015. Astragalus polysaccharides inhibits pcv2 replication by inhibiting oxidative stress and blocking NF-κB pathway[J]. International Journal of Biological Macromolecules,81:22-30. doi:10.1016/j.ijbiomac.2015.07.050.
Yang J,Cao M X,Hu W Y,Wei Y Y,Hu T J. 2020. Sophora subprosrate polysaccharide suppress the inflammatory reaction of RAW264.7 cells infected with PCV2 via regulation NF-κB/MAPKs/c-Jun signal pathway and histone acetylation modification[J]. International Journal of Biological Macromolecules,159:957-965. doi:10.1016/j.ijbiomac.2020.05.128.
Yao Y,Zhu Y Y,Ren G X. 2016. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean[J]. International Journal of Biological Macromolecules,84:289-294. doi:10.1016/j.ijbiomac. 2015.12.045.
Yin L F,Dai Q J,Jiang P P,Zhu L,Dai H F,Yao Z G,Liu H,Ma X P,Qu L X,Jiang J K. 2018. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death[J]. Neurotoxicology,64:195-203. doi:10.1016/j.neuro.2017.04.001.
(責任編輯 蘭宗寶)