999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

番茄細菌性髓部壞死病研究進展

2021-07-19 02:53:33陳鵬甘桂云汪茜羅艷王先裕
中國瓜菜 2021年5期

陳鵬 甘桂云 汪茜 羅艷 王先裕

摘 要:番茄細菌性髓部壞死病是一種危害維管束的新興土傳病害,近年來在我國番茄產區逐漸蔓延流行,并日趨嚴重。根據國內外對番茄細菌性髓部壞死病的研究報道,對番茄細菌性髓部壞死病的發展歷史、病癥、病原菌、致病機制、遺傳多樣性及防治方法等方面的研究進展進行綜述,以期為番茄細菌性髓部壞死病的深入研究和制定科學的防治策備提供參考。闡述番茄細菌性髓部壞死病的研究現狀,以期為該病害的深入研究和制定科學的防治策略提供參考。

關鍵詞:番茄;細菌性髓部壞死病;病原菌檢測;防治措施

中圖分類號:S641.2 文獻標志碼:A 文章編號:1673-2871(2021)05-008-07

Research progress of tomato pith necrosis

CHEN Peng1, GAN Guiyun2, WANG Qian1, LUO Yan1, WANG Xianyu1

(1. College of Agriculture, Guangxi University, Nanning, 530000, Guangxi, China; 2. Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530000, Guangxi, China)

Abstract: Tomato Pith necrosis is a new soil-borne disease that affects plant vascular. In recent years, it has gradually spread and become increasingly serious in tomato producing areas in China. This review summarized the history and main symptoms of tomato pith necrosis caused by Pseudomonas and other bacteria. In this paper, the current situation of the tomato pith necrosis was reviewed, including the advances in the detection,pathogenic mechanism, genetic diversity and prevention of tomato pith necrosis.

Key words: Tomato; Pith necrosis; Pathogen detection; Prevention

番茄因其獨特的風味和豐富的營養成為世界上重要的蔬菜經濟作物。據FAO統計,2019年我國產量高達6 286.95萬t,番茄種植面積達到108.67萬hm2,產量和種植面積位居世界第一。隨著番茄栽培面積的不斷擴大,各種生物脅迫和非生物脅迫因素嚴重制約了番茄產業的發展。番茄細菌性髓部壞死病(tomato pith necrosis,TPN)是由假單胞菌屬(Pseudomonas)以及其他細菌引起的危害維管束系統的細菌性土傳病害,發病率在10%~50%之間,嚴重地塊高達90%[1],可減產60%~90%,造成重大經濟損失[2]。1971年英國學者Scarlett[3]首次發現該病害由皺紋假單胞菌Pseudomonas. corrugata引起。隨后,番茄細菌性髓部壞死病在全球范圍內均有發現[2-8]。在我國,自1998年趙海棠等[9]在田間首次發現番茄細菌性髓部壞死病以來,目前在浙江、山東、山西、陜西、福建、臺灣、湖南、湖北、江蘇、河北、廣東、廣西等地均有報道[9-12],是近年來威脅我國番茄安全生產的一種新興土傳病害,并逐漸由一種不常見病害發展成為嚴重病害。

1 病害癥狀及病原菌的研究

番茄細菌性髓部壞死病是一種維管束系統病害,明顯癥狀多出現在始花期。主要癥狀包括植株萎蔫,頂部葉片邊緣褪色,莖稈和分枝、葉柄、果柄出現黃褐色或黑色病斑,莖髓部出現褪色、空心、褐化、水浸狀或者干縮中空等,維管組織的褪色和壞死,植株的黃化、萎蔫和早衰,有時在莖基部病變部位產生不定根,發病嚴重時莖傷口處有黃褐色菌膿溢出[12-13]。該病的典型特征是莖髓部的壞死、干縮中空[14]。

番茄細菌性髓部壞死病是由革蘭氏陰性假單胞菌屬致病菌以及其他細菌引起的,目前,世界上已報道的可引起番茄細菌性髓部壞死病的病原菌多達11種,包括假單胞菌屬(Pseudomonas):菊苣假單胞菌(P. cichorii)[15-16]、熒光假單胞菌(P. fluorescens)[17]、綠黃假單胞菌(P. viridiflava)[18]、皺紋假單胞菌(P. corrugata)[8,19]、地中海假單胞菌(P. mediterranea)[6,9,20]、惡臭假單胞菌(P. putida)[21]、邊緣假單胞菌(P. marginalis)[6];果膠桿菌屬(Pectobacterium)的黑腐果膠桿菌(Pe. atrosepticum)[6]、胡蘿卜軟腐果膠桿菌胡蘿卜亞種(Pe. carotovorum subsp. carotovorum)[21],黃單胞菌屬穿孔黃單胞菌(Xanthomonas perforans)[21]及菊迪基氏菌(Dickeya chrysanthemi)[22]。不同的病原菌造成的病癥也略有不同,P. corrugata和P. mediterranea病原菌會導致髓部壞死,造成髓內部干裂;P. marginalis、P. viridiflava以及P. cichorii這些病菌引起的主要癥狀是莖內部變色,但未出現髓部組織腐爛[6]。在中國報道的引起番茄細菌性髓部壞死病原主要是P. cichorii 和P. corrugata。

4 番茄細菌性髓部壞死病致病機制

革蘭氏陰性細菌致病過程主要包括:首先病菌在寄主表面附著,包括群體感應(quorum sensation,QS)系統和胞外多糖的產生等;而后,病菌從寄主的機械傷口、自然孔口進入寄主內部,包括T3SS分泌系統、毒素等;最后進入寄主內部,病菌克服植物免疫反應、破壞寄主細胞結構和生理過程,進而使病菌在寄主體內增殖和系統遷移[35]。毒素在病菌致病中有著重要作用,P. cichorii產生的一種非特異性毒素菊苣素會引起萵苣葉片的細菌性腐爛癥狀[28]。Ⅱ型分泌系統(T2SS)和Ⅲ型分泌系統(T3SS)是病原菌入侵植物的重要系統,Ⅱ型分泌系統能將水解蛋白分泌到植物細胞間[36];Ⅲ型分泌系統位于細菌細胞膜上,可將特定的效應蛋白轉運至真核細胞體內[37],干擾寄主免疫反應和擾亂寄主生理過程,使得病菌能夠定殖和致病[38]。植物病菌的T3SS可分為兩類,一類是hrp/hrc 1,主要分布在Pseudomonas和Erwinia,另一類是hrp/hrc 2,主要存在于Xanthomonas、Ralstonia、Burkholderia和Acidovorax中。這些T3SS存在于基因組或質粒的基因簇上,以多個操縱子形式存在,包括hrp ( hypersensitive response and pathogenicity)和hrc ( hrp conserved)基因[38]。Liu等[39]研究發現,丁香假單胞PstDC3000和PssB728a通過細菌中分泌出的特異性效應蛋白并將其轉移到宿主細胞的細胞質中,抑制宿主細胞防御機制進而引起病害,T3SS是PstDC3000和PssB728a的關鍵致病因素。Ishiga等[40]將缺乏T3SS的hrcN突變體丁香假單胞菌獼猴桃致病變種(Psa3)接種至獼猴桃體內,未發生病害特征,進一步說明T3SS在丁香假單胞菌的毒力致病性中起著重要作用。Robert等[41]研究發現,細胞程序性死亡是丁香假單胞菌(P. syringae)基于過敏反應的免疫力的關鍵組成部分。Kiba等[42]研究發現,與其他細菌性病害不同,P. cichorii不產生破壞植物細胞壁的果膠裂解酶,而是通過類似于過敏反應(HR)的細胞凋亡方式引起細菌性腐爛癥狀。

5 番茄細菌性髓部壞死病抗性機制研究

5.1 植物抗性基因的研究

為抵御外界環境中病原體對植物生長發育的脅迫,植物發展出一套完整復雜的免疫系統,目前,已探明的植物免疫系統有兩種方式:一種是通過跨膜模式識別受體(PRRs),對進化緩慢的微生物或病原相關的分子模式(MAMPS或PAMPs)作出PTI免疫反應(pattern-triggered immunity)[43]。另一種是ETI免疫反應(effectortriggered immunity),主要在細胞內發揮作用,利用大多數R基因(Resistant gene)編碼的多態核苷酸結合亮氨酸豐富重復蛋白NB-LRR蛋白產物作為免疫傳感器,識別病原體傳遞的效應物[44]。NLRs被認為是植物免疫的關鍵組成部分,植物NLRs能夠快速識別進化的效應因子[45]。根據基因對基因的假說,植物的R基因特異性識別侵染病原菌的無毒基因(Avr基因),通過發生互作反應進而激發下游系列抗病信號傳導,誘導植物對病原菌產生抗性反應。常見的R基因類型有核苷酸結合位點-富亮氨酸重復(NB-LRR,簡稱NLR)、激酶、富亮氨酸重復-激酶類型、胞外富亮氨酸重復類型等,其中NLR約占80%。根據其N-端結構的不同NLR又可分為卷曲螺旋CC-NB-LRR(CNL)類型和果蠅Toll蛋白/白細胞介素受體1-NB-LRR(TNL)類型,以及缺少N端結構域的NB-LRR等亞類[45]。番茄的抗性蛋白Pto是一種絲氨酸-蘇氨酸激酶,通過與來自紫丁香假單胞菌pv.tomato的AvrPto或AvrPtoB特異識別相互作用產生抗性[46]。無毒基因是決定病菌能否具有致病效應的兩性效應因子,植物若含有對應的抗病基因,抗病基因抑制無毒基因的毒性效應,植株表現為抗病;反之無毒基因表現其致病性,使植物感病。目前在番茄中已報道的免疫相關NLRs基因如表2所示。

5.2 抗性材料的篩選

番茄細菌性髓部壞死病是近年來威脅我國番茄產業健康發展的新興土傳細菌性病害之一。目前針對病害的抗性材料篩選和鑒定在國內外均有報道,荊子桓等[12]通過田間抗性鑒定發現野生番茄材料T034和T103對髓部壞死病表現出抗性。孫福在等[60]通過對112個番茄品種進行抗性鑒定,發現高抗品種20個,抗病品種30個。Stockinger等[61]通過研究發現番茄L. hirsutum中的PI 134417對丁香假單胞菌ptll和pt14D46菌株表現抗性。González等[62]以233份番茄品種為材料接種P. solanacearum,其中CATIE 17331、17334、17349、1773917740、Hawaii 7998和UC-82B表現出抗性。

6 防治方法

番茄細菌性髓部壞死病的發生受品種、地區、栽培方式、氣候條件和環境等多種因素的影響。因此,在病害的防治中應根據病害發生的原因,遵循預防為主、綜合防治的原則。

6.1 植物檢疫

種子帶菌是細菌性病害的發生侵染源之一,也是病害異地傳播的最重要途徑。加強檢疫措施能夠有效地阻斷病原菌傳播。雖然該病害在我國已有發生,但各地發生情況不一。引起番茄細菌性髓部壞死病的P. cichorii是多寄主的病原菌,能夠引起多種農作物發生病害,可能嚴重影響當地的農業種植結構[8]。因此,種苗在各區間的調運仍有必要將該病原作為檢疫對象,這將有利于從源頭控制該病害的擴散蔓延[63]。

6.2 抗病品種的選育

在番茄的生產中選用抗病品種是植物病害綜合防治中最安全、簡便、經濟和有效的方式。可通過抗病種質資源篩選,利用常規雜交育種技術結合分子標記輔助品種選育,快速高效地創制抗性種質資源,挖掘抗性基因,結合轉基因以及基因編輯等生物技術手段創制抗病材料。

6.3 農業防治

番茄細菌性髓部壞死病在逆境條件下危害加重,因此合理的田間栽培管理措施對防治細菌性髓部壞死病十分重要。種子消毒能夠有效殺除種子表面所攜帶的病原菌,進而降低病害發生率。病原菌能夠在土壤中長時間存活,通過合理的輪作與套作以避免髓部壞死病的暴發,避免番茄連作,可與非假單胞菌寄主作物進行輪作。一旦發現感染植株,應立即拔除清理。在番茄生長發育過程中,合理均衡施肥,適時配施鋅、鈣、硼等葉面肥,促進植株生長,提高植株的抗病能力。

6.4 化學防治

目前國內外尚沒有開發出防治番茄細菌性髓部壞死病的特效藥。發病初期可噴施新植霉素、噻唑鋅、甲霜惡霉靈等藥物防治;如發病嚴重,可采用注射法防治,可選用四環霉素、氧氟沙星、鏈霉素,但該方法僅適用于小范圍防治。根據前人的研究可知,P. corrugata和P. cichorii對銅制劑有較高的耐受性,因此在化學防治中應避免選用銅制劑[17]。

7 展 望

番茄是世界范圍內廣泛種植的蔬菜作物,對番茄細菌性髓部壞死病癥、傳播途徑、鑒定方法、致病機制、抗病機制以及防治方法進行歸納總結,具有重要的理論意義和實踐價值。

目前,我國已有多地發生細菌性髓部壞死病的報道,并呈現出日益嚴重的趨勢,但目前我國針對該病害的研究極少。因此,今后應加強以下幾個方面的研究:(1)檢測技術。開展番茄產區的病害調查,利用代謝組學技術探索開發感染細菌性髓部壞死病的代謝標志物,結合形態學和分子生物學技術進行鑒定;開發簡便、快捷的田間檢測方法。(2)抗病機制。明確病原菌的致病機制和變異機制、遺傳多樣性,根據“基因對基因”假說,明確寄主的無毒基因和病菌的致病基因,采用蛋白互作的方法和基因定位技術獲得抗性基因,為分子標記輔助育種和克隆抗性基因奠定基礎。(3)綜合防治。廣泛收集國內外番茄種質資源,并進行抗病性鑒定,挖掘抗性資源,利用傳統育種方法、轉基因和基因編輯技術創制抗病品種,加快培育高抗的商業化品種。開展病害的綜合防治研究,開發和篩選防治番茄細菌性髓部壞死病的新型藥劑和誘抗劑。

參考文獻

[1] BELLA P,CATARA V.Occurrence of tomato pith necrosis caused by Pseudomonas marginalis in Italy[J].Plant Pathology,2010,59(2):402.

[2] 蔡佳欣,安寶貞,呂昀陞,等.Pseudomonas mediterranea引起之番茄髓壞疽病[J].臺灣農業研究,2018,67(1):16-27.

[3] SCARLETT C M,FLETCHER J T,ROBERTS P,et al.Tomato pith necrosis caused by Pseudomonas corrugata n.sp.[J].Annals of Applied Biology,1978,88(1):105-114.

[4] TRANTS E A,SARRIS P F,MPALANTINAKI E E,et al.A new genomovar of Pseudomonas cichorii,a causal agent of tomato pith necrosis[J].European Journal of Plant Pathology,2013,137(3):477-493.

[5] KUDELA V,KREJZAR V,PNAKOVA I.Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in rockwool slab hydroponic culture[J].Plant Protection Science,2010,46(1):1-11.

[6] AIELLO D,SCUDERI G,VITALE A,et al.A pith necrosis caused by Xanthomonas perforans on tomato plants[J].European Journal of Plant Pathology,2013,137(1):29-41.

[7] POPVIC T,IVANOVIC Z,IGNIJATOV M.First report of Pseudomonas viridiflava causing pith necrosis of tomato (Solanum lycopersicum) in Serbia[J].Plant Disease,2015,99(7):1033.

[8] TRANTAS E A,SARRIS P F,PENTARI M G,et al.Diversity among Pseudomonas corrugata and Pseudomonas mediterranea isolated from tomato and pepper showing symptoms of pith necrosis in Greece[J].Plant Pathology,2015,64(2):307-318.

[9] 趙海棠,安學君,胡芝蓮,番茄細菌性髓部壞死病及防治方法[J].長江蔬菜,2000(8):17-18.

[10] RUAN H,SHI N,DU Y,et al.First report of Pseudomonas cichorii causing tomato pith necrosis in Fujian province China[J].Plant Disease,2019,103(1):145.

[11] 佘小漫,湯亞飛,何自福,等.番茄細菌性髓部壞死病病原的鑒定[J].植物病理學報,2017,47(2):180-186.

[12] 荊子桓,王先裕,龍安四,等.廣西番茄砧木多抗材料篩選[J].中國蔬菜,2016(10):28-32.

[13] CATARA V,SUTRA L,MORINEAU A,et al.Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp.nov[J].International Journal of Systematic and Evolutionary Microbiology,2002,52(5):1749-1758.

[14] 李秀芹,姜京宇,張麗.河北省番茄細菌性髓部壞死病的發生與防治[J].中國蔬菜,2013(7):25-26.

[15] JUNIOR T A F S,GIORIA R,MARINGONI A C,et al.Gama de hospedeiros e rea??o de genótipos de tomateiro a Pseudomonas cichorii[J].Summa Phytopathol,2009,35(2):127-131.

[16] TIMILSINA S,ADKISON H,TESTEN A L,et al.A novel phylogroup of Pseudomonas cichorii identified following an unusual disease outbreak on tomato[J].Phytopathology,2017,107(11):1298-1304.

[17] ALIPPI A M,BO D E,RONCO L B,et al.Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse[J].Plant Pathology,2003,52(3):287-302.

[18] SARRIS P F,TRANTAS E A,MPALANTINAKI E,et al.Pseudomonas viridiflava,a multi host plant pathogen with significant genetic variation at the molecular level[J].PLoS One,2018,7(4):e36090.

[19] PEKHTEREVA E S,IGNATOV A N,SCHAAD N W,et al.Pith necrosis of tomato in Russia[J].Acta Horticulturae,2009(808):251-253.

[20] CATARA V,ARNOLD D,CIRVILLERI G,et al.Specific oligonucleotide primers for the rapid identification and detection of the agent of tomato pith necrosis,Pseudomonas corrugata,by PCR amplification:Evidence for two distinct genomic groups[J].European Journal of Plant Pathology,2000,106(8):753-762.

[21] AIELLO D,VITALE A,RUOTA A D L,et al.Synergistic interactions between Pseudomonas spp.and Xanthomonas perforans in enhancing tomato pith necrosis symptoms[J].Journal of Plant Pathology,2017,99(3):731-740.

[22] ALIVIZATOS A S.Bacterial wilt of tomato in Greece caused by Erwinia chrysanthemi[J].Plant Pathology,1985,34(4):638-639.

[23] LAMICHHANE J R,VENTURI V.Synergisms between microbial pathogens in plant disease complexes:a growing trend[J].Front in Plant Science,2015,6:1-12.

[24] IBRAHIM Y E,KOMY M H E,BALABEL N M,et al.Saline and alkaline soil stress results in enhanced susceptibility to and severity in tomato pith necrosis when inoculated with either Pseudomonas corrugata and/or P.fluorescens[J].Journal of Plant Pathology,2020 102(3):849-856.

[25] PETRICCIONE M,ZAMPELLA L,MASTROBUONI F,et al.Occurrence of copper-resistant Pseudomonas syringae pv.syringae strains isolated from rain and kiwifruit orchards also infected by P.s.pv.actinidiae[J].European Journal of Plant Pathology,2017,149(4):953-968.

[26] YAMAMOTO S,KASAI H,ARNOID D L,et al.Phylogeny of the genus Pseudomonas:Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes[J].Microbiology,2000,146(10):2385-2394.

[27] TAYEB L A,AGERON E,GRIMONT F,et al.Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates[J].Research in Microbiology,2005,156(5/6):763-773.

[28] COTTYN B,BAEYEN S,PAUWELYN E,et al.Development of a real-time PCR assay for Pseudomonas cichorii,the causal agent of midrib rot in greenhouse-grown lettuce,and its detection in irrigating water[J].Plant Pathology,2011,60(3):453-461.

[29] MIRIK M,AYSAN Y,SAHIN F.Characterization of Pseudomonas cichorii isolated from different hosts in Turkey[J].International Journal of Agriculture and Biology,2011,13(2):203-209.

[30] SARRIS P,ABDELHALIM M,KITNER M,et al.Molecular polymorphisms between populations of Pseudoperonospora cubensis from greece and the czech republic and the phytopathological and phylogenetic implications[J].Plant Pathology,2009,58(5):933-943.

[31] STAGER C E,P DAVIS J R.Automated systems for identification of microorganisms[J].Clinical Microbiology Reviews,1992,5(3):302-327.

[32] RAJENDRAN D K,PARK E,NAGENDRAN R,et al.Visual analysis for detection and quantification of Pseudomonas cichorii disease severity in tomato plants[J].Plant Pathology Journal,2016,32(4):300-310.

[33] HIKICHI Y,WALI U M,OHNISHI K,et al.Mechanism of disease development caused by a multihost plant bacterium,Pseudomonas cichorii,and its virulence diversity[J].Journal of General Plant Pathology,2013,79(6):379-389.

[34] BELIMOV A A,DODD I C,SAFRONOVA V I,et al.Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato[J].Journal of Experimental Botany,2007,58(6):1485-1495.

[35] PENA R T,BLASCOL L,AMBROA A,et al.Relationship between quorum sensing and secretion systems[J].Frontiers in Microbiology,2019,10(7):doi:10.3389/fmicb.2009.01100.

[36] PFEILMEIER S,CALY D L,MALONE J G.Bacterial pathogenesis of plants:future challenges from a microbial perspective:Challenges in bacterial molecular plant pathology[J].Molecular Plant Pathology,2016,17(8):1298-1313.

[37] BUTTNER D,HE S Y.Type III protein secretion in plant pathogenic bacteria[J].Plant Physiology,2009,150(4):1656-1664.

[38] TAMPAKAKI A P,SKANDALIS N,GAZI A D,et al.Playing the ‘harp:evolution of our understanding of hrp/hrc genes[J].Annual Review of Phytopathology,2010,48:347-370.

[39] LIU J,YU M,CHATNAPARAT T,et al.Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae[J].BMC Genomics,2020,21(1):1-18.

[40] ISHIGA T,SAKATA N,NGUYEN V T,et al.Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit[J].Journal of General Plant Pathology,2020,86(4):257-265.

[41] ABRAMOVITCH R B,KIM Y J,CHEN S,et al.Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death[J].EMBO Journal,2003,22(1):60-69.

[42] KIBA A,SANGAWA Y,OHNISHI K,et al.Induction of apoptotic cell death leads to the development of bacterial rot caused by Pseudomonas cichorii[J].Molecular Plant-Microbe Interactions,2006,19(2):112-122.

[43] KAPOS P,DEVEDRAKUMAR K T,LI X.Plant NLRs:from discovery to application[J].Plant Science,2019,279:3-18.

[44] JONES J D G,DANGL J L.The plant immune system[J].Nature,2006,444(7117):323-329.

[45] 邢苗苗,劉星,孔樅樅,等.甘藍NLR家族全基因組鑒定、進化分析及在不同病害脅迫下的表達分析[J].園藝學報,2019,46(4):723-737.

[46] XIAO F,HE P,ABRAMOVITCH R B,et al.The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants[J].Plant Journal,2007,52(4):595-614.

[47] HOUTERMAN P M,MA L,OOIJEN G V,et al.The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly[J].Plant Journal,2009,58(6):970-978.

[48] CASTEEL C L,WALLING L L,PAINE T D.Behavior and biology of the tomato psyllid,Bactericerca cockerelli,in response to the Mi-1.2 gene[J].Entomologia Experimentalis et Applicata,2006,121(1):67-72.

[49] MA L,HOUTERMAN P M,GAWEHNS F,et al.The AVR2-SIX5 gene pair is required to activate I-2-mediated immunity in tomato[J].New Phytologist,2015,208(2):507-518.

[50] NOMBELA G,WILLAMSON V M,MUNIZ M.The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci[J].Molecular Plant-Microbe Interactions,2003,16(7):645-649.

[51] NTOUKAKIS V,BALMUTH A L,MUCYN T S,et al.The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation[j].PLoS Pathogens,2013,9(1):1-14.

[52] RATHJEN J P,CHANG J H,STASKAWICZ B J,et al.Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto[J].EMBO Journal,1999,18(12):3232-3240.

[53] BROMMONSCHENKEL S H,FRARY A,FRARY A,et al.The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi[J].Molecular Plant-Microbe Interactions,2000,13(10):1130-1138.

[54] SCHORNACK S,BALLVORA A,GURLEBECK D,et al.The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3[J].Plant Journal,2004,37(1):46-60.

[55] PEIRO A,CANIZARES M C,RUBIO L,et al.The movement protein (NSm) of tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance[J].Molecular Plant Pathology,2014,15(8):802-813.

[56] WEBER H,PFITZNER A J P.Tm-22 resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus[J].Molecular Plant-Microbe Interactions,1998,11(6):498-503.

[57] POCH C H L,LOPEZ R H M,KANYUKA K.Functionality of resistance gene Hero,which controls plant root-infecting potato cyst nematodes,in leaves of tomato[J].Plant,Cell and Environment,2006,29(7):1372-1378.

[58] ERNST K,KUMAR A,KRISELEIT D,et al.The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region[J].Plant Journal,2002,31(2):127-136.

[59] BALLVORA A,PIERRE M,ACKERVEKEN G V D,et al.Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv.vesicatoria AvrBs4 protein[J].Molecular Plant-Microbe Interactions,2001,14(5):629-638.

[60] 孫福在,趙廷昌,劉永.山東魚臺縣發生番茄細菌性髓部壞死病[J].植物保護,2003(6):56-57.

[61] STOCKINGER E J,WALLING L L.Pto3 and Pto4: novel genes from Lycopersicon hirsutum var. glabratum that confer resistance to Pseudomonas syringae pv. tomato [J].Theoretical & Applied Genetics,1994,89(7/8):879-884.

[62] GONZALEZ W G,SUMMERS W L.Host-plant resistance to Pseudomonas solanacearum in tomato germplasm[J].Genetic Resources and Crop Evolution,1996,43(6):569-574.

[63] 羅來鑫,趙廷昌,李健強,等.番茄細菌性潰瘍病研究進展[J].中國農業科學,2004,37(8):1144-1150.

主站蜘蛛池模板: www精品久久| 国产主播喷水| 制服丝袜 91视频| 欧美自慰一级看片免费| 四虎免费视频网站| 国产精欧美一区二区三区| 欧美97色| 91亚洲视频下载| 日韩欧美国产另类| m男亚洲一区中文字幕| 亚洲美女一级毛片| 免费在线看黄网址| 国产午夜无码片在线观看网站| 国产精品19p| 亚洲精品无码在线播放网站| 婷婷亚洲视频| 91久久精品国产| 91年精品国产福利线观看久久| 欧美中文字幕在线二区| 国产青青草视频| 亚洲日韩精品综合在线一区二区| 国产欧美综合在线观看第七页| 国产视频一二三区| 成人av专区精品无码国产 | 欧美97欧美综合色伦图| 国产区福利小视频在线观看尤物| 欧美色香蕉| 精品国产电影久久九九| 久久女人网| 国产尤物jk自慰制服喷水| 噜噜噜久久| 国产美女久久久久不卡| 一边摸一边做爽的视频17国产| 国产亚洲精品91| 最近最新中文字幕免费的一页| 中文字幕在线一区二区在线| 国产精品福利一区二区久久| 久久青草视频| 亚洲最猛黑人xxxx黑人猛交| 综合社区亚洲熟妇p| 拍国产真实乱人偷精品| 日本中文字幕久久网站| 91精品啪在线观看国产91九色| 午夜国产理论| 人人爽人人爽人人片| 夜夜操天天摸| 91综合色区亚洲熟妇p| 亚洲侵犯无码网址在线观看| 欧美午夜网站| 欧美日韩国产精品综合| 国产麻豆91网在线看| 亚洲精品无码成人片在线观看| 亚洲一区二区三区香蕉| 亚洲日韩高清无码| 欧美成人午夜视频免看| 亚洲va精品中文字幕| 亚洲AV色香蕉一区二区| 久久人妻xunleige无码| 久久久精品国产亚洲AV日韩| 九九这里只有精品视频| 日韩乱码免费一区二区三区| 久久久久久午夜精品| 亚洲成AV人手机在线观看网站| 真实国产乱子伦视频| 亚洲人成在线精品| 免费激情网站| 国内精品视频在线| 一级高清毛片免费a级高清毛片| 亚州AV秘 一区二区三区| 久久公开视频| 国产激情影院| 国产黑丝一区| 亚洲区第一页| 亚洲天堂网在线观看视频| 亚洲精品无码抽插日韩| 在线国产你懂的| 久久a毛片| 亚洲第一区欧美国产综合| 亚洲永久色| 午夜激情婷婷| 国产成人永久免费视频| 欧美第一页在线|