999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

重復經顱磁刺激干預中樞神經系統疾病的生物標志物研究進展

2021-07-27 01:01:07楊婭婕趙寧曹玉婷王桂喜
湖南中醫藥大學學報 2021年3期
關鍵詞:帕金森病海馬生物

楊婭婕 趙寧 曹玉婷 王桂喜

〔摘要〕 生物標志物對于醫學的合理發展至關重要,在科學研究與臨床實踐中具有重要意義。本文就近年來重復經顱磁刺激治療中樞神經系統疾病研究中基于生物標志物分析的文獻進行總結,發現治療后中樞神經系統疾病患者的行為學改變與生物標志物的改變呈特定相關性,這些研究的報道可能為經顱磁治療中樞神經系統疾病提供了更客觀的代謝組學證據。

〔關鍵詞〕 重復經顱磁刺激;生物標記物;神經系統;可塑性;神經遞質;氨基酸;炎癥;細胞凋亡

〔中圖分類號〕R493;R28? ? ? ?〔文獻標志碼〕A? ? ? ?〔文章編號〕doi:10.3969/j.issn.1674-070X.2021.03.028

〔Abstract〕 Biomarkers are very important for the rational development of medicine, and have wide significance in scientific research and clinical practice. We summarized the literatures based on biomarker analysis in the study of repetitive transcranial magnetic stimulation in the treatment of central nervous system diseases in recent years, and found that the behavioral changes of patients with central nervous system diseases after treatment were specifically related to the changes of biomarkers. The reports of these studies may provide more objective metabonomics evidence for transcranial magnetic therapy of central nervous system diseases.

〔Keywords〕 repetitive transcranial magnetic stimulation; biomarkers; nervous system; plasticity; neurotransmitters; amino acids; inflammation; cell apoptosis

生物標志物是一種特征,可作為正常生物過程、致病過程和對暴露或干預(包括治療干預)的反應的指標[1-2]。生物標志物檢測在循證醫學中發揮著核心作用,能夠促進臨床結果的改善,減輕經濟負擔[3]。代謝組學是近年出現的具有生命科學整體觀念的研究方法,與經顱磁刺激整體調節的特點相契合[4-6]。代謝組學是一種系統生物學方法,它從整體的角度,通過對特定組織代謝物的定量分析,研究內源性代謝物質的代謝途徑及其所受內在環境因素影響及動態變化規律[7-8]。蛋白組學與代謝組學作為生物標志物的檢測手段,能夠提高對疾病的診斷與預測,因此,被廣泛應用于醫學科學等領域[1]。

重復經顱磁刺激(repetitive transcranial magnetic stimulation, rTMS)作為一項非侵入性的神經電生理刺激技術,具有無痛無創、操作簡便等優點[4],在腦卒中[9-11]、帕金森病[12-15]、情感障礙[16-19]、認知障礙[20-23]及神經科疾病[22,24-25]中廣泛應用。rTMS能夠促進神經發生與修復,提高大腦突觸可塑性[26]。rTMS也可影響神經遞質釋放、蛋白質表達和基因活性的短暫與長久變化,達到治療神經精神疾病的目的[5]。眾所周知,rTMS通過引發長期增強(long-term potentiation, LTP)作用和長期抑制(long-term depression, LTD)作用來影響大腦的神經元可塑性。低頻率rTMS主要刺激低閾值抑制神經元,而高頻率rTMS激發投射神經元[5-6,26]。目前,關于rTMS作用機制的研究,多源于臨床行為學評定,應用腦電、核磁等技術揭示其臨床療效及影像學機制,代謝組學與蛋白組學的機制研究主要集中在某些特定通路、常見代謝產物的改變等方面。目前,利用生物標志物分析的方法研究rTMS治療神經精神疾病方面已有諸多報道,本文對近5年來rTMS治療神經精神疾病研究中基于生物標志物分析的文獻進行總結。

1 rTMS對腦卒中及其生物標志物的影響

rTMS作為一種無創性腦刺激技術,在腦卒中后運動功能障礙、認知/言語/偏側忽略及相關并發癥的臨床康復中發揮著重要的作用。

Boonzaier等[27]在運用rTMS對腦卒中動物模型作用機制研究中發現,rTMS的效應可能與缺血耐受、神經保護、抗凋亡、神經發生、血管生成或神經可塑性相關。Baek等[28]探討rTMS在體外神經元缺血/再灌注(ischemia/reperfution, I/R)損傷模型中的差異效應,用維甲酸誘導小鼠腦神經瘤細胞分化,建立體外缺氧缺糖/復氧(oxygen glucose deprivation/reperfusion, OGD/R)條件下I/R損傷模型,結果發現10 Hz rTMS通過激活細胞外信號調節激酶和蛋白激酶B(protein kinase B, PKB)信號通路促進細胞增殖、抑制OGD/R損傷細胞凋亡。此外,10 Hz rTMS增加Ca2+-CaMKⅡ-CREB信號通路,進一步導致OGD/R損傷細胞腦源性神經營養因子(brain-derived neurotrophic factor, BDNF)表達和突觸可塑性的改變。Luo等[29]用20 Hz rTMS干預大腦中動脈閉塞大鼠,發現高頻rTMS顯著促進了梗死周圍紋狀體的神經發生,并伴隨著BDNF和磷酸化和酪氨酸激酶受體B(tyrosine kinase receptor B, TrkB)蛋白水平的升高。NⅡmi等[30]對腦卒中后上肢偏癱患者行康復加rTMS聯合治療,結果發現聯合治療可使BDNF、基質金屬蛋白酶9(matrix metalloprotein-9, MMP-9)水平升高,而對BDNF的前體無明顯影響,但血清BDNF和MMP-9水平與運動功能改善無關。研究結果發現,BDNF及其前體也極有可能是腦卒中后運動恢復的潛在生物標志物,這些結果提示BDNF/TrkB信號通路與神經功能恢復的相關性。

腦卒中后大腦啟動內源性修復,細胞凋亡是其重要途徑之一。Caglayan等[9]研究發現高頻rTMS可以通過誘導腦的內源性修復和恢復機制來促進腦卒中患者的功能恢復。在腦卒中發病后3 d開始應用rTMS,持續28 d,發現實驗動物的DNA碎片減少、梗死體積和腦血流量改善,這與B細胞淋巴瘤/白血病-xL(B cell lymphoma/leukemia-xL, BCL-xL)基因活性增加及B細胞淋巴瘤相關X蛋白(BCL2-associated X, BAX)、天冬氨酸特異性半胱氨酸蛋白酶1(cysteinyl aspartate specific proteinase-1, Caspase-1)和Caspase-3活性降低有關。Zong等[10]探討rTMS對大鼠光血栓性腦卒中模型行為缺陷的影響及其潛在機制,研究表明rTMS能顯著減少梗死周圍皮質區的突觸丟失和神經元變性,梗死周圍區域抗炎細胞因子和線粒體超氧化物歧化酶(superoxide dismutase, SOD)的釋放增加,有效地保護了梗死周圍皮質線粒體膜的完整性,抑制了線粒體Caspase-9/3凋亡途徑。Guo等[31]評估了rTMS對腦卒中后認知障礙的治療效果,并探討了其在大腦中動脈阻塞大鼠模型中的作用機制,結果表明rTMS增加同側海馬神經發生和減少凋亡的機制顯著改善認知功能。Sasso等[32]研究rTMS對局灶性腦損傷模型的遠側退行性變、炎癥及功能恢復的影響,采用rTMS方案治療大鼠半小腦切除術7 d,結果顯示rTMS能顯著降低遠端神經元死亡和膠質細胞活化,促進功能恢復。

上述研究發現,rTMS能夠干預BDNF/TrkB、Ca2+-CaMKⅡ-CREB等神經保護的信號通路以及線粒體Caspase凋亡途徑,因此,rTMS有可能在多通道、多靶點改善了相應代謝物的表達,從而促進腦卒中模型動物神經功能的恢復。

2 rTMS對抑郁癥及其生物標志物的影響

目前,rTMS已經被美國FDA確認為治療抑郁癥安全有效的措施[33]。rTMS能調節氨基酸類與單胺類神經遞質,其中對DA(dopamine, DA)能系統、γ-氨基丁酸(γ-aminobutyric acid, GABA)能系統與谷氨酸(glutamic acid, Glu)能系統的影響更大。GABA能系統和Glu能神經遞質系統是抑郁癥病理生理學的核心,是rTMS的潛在靶點[34]。

Kim等[35]對慢性不可預測輕度應激(chronic unpredictable mild stress, CUMS)大鼠抑郁模型采用10 Hz rTMS治療后,磁共振波譜顯示其前額葉和海馬GABA水平顯著降低,結果表明rTMS治療可逆轉行為并帶來神經化學改變。Tan等[36]用1 Hz rTMS治療2周有效地緩解了年輕成年大鼠的抑郁樣行為,表明rTMS可通過調節突觸GABA的傳遞,促進興奮性和抑制性(excitability/inhibition, E/I)活性之間的平衡的恢復。Levitt等[19]用10 Hz rTMS治療難治性抑郁癥患者,使用磁共振波譜來評估左前額葉背外側皮質(dorsolateral prefrontal cortex, DLPFC)GABA水平的變化,結果表明rTMS治療與左側DLPFC刺激部位GABA水平升高有關,GABA變化程度與臨床改善有關,同時接受GABA激動劑治療的受試者對rTMS的反應較小。抑郁癥的病理生理涉及重要的邊緣結構(如腦島),Guo等[31]研究rTMS誘導的E/I傳遞改變是否與額葉邊緣連接改變有關,通過前額葉rTMS間歇性θ刺激模式對健康對照組的島葉進行神經調節,結果發現間歇性θ刺激模式能顯著抑制了兩種體素的前島連接和GABA/Glu。Dubin等[34]用磁共振波譜評價了10 Hz rTMS對抑郁癥患者左側DLPFC內側前額葉皮質GABA和Glu聯合共振的影響,發現抑郁癥患者內側前額葉皮質中GABA增加13.8%,rTMS對Glu無明顯影響,GABA和Glu在重度抑郁癥患者在基線水平中呈正相關,與中度抑郁癥患者無相關性,在rTMS后也無顯著性差異。Erbay等[18]評估rTMS對抑郁癥患者的臨床療效,并研究了rTMS對N-乙酰天冬氨酸(N acetyl aspartate, NAA)、膽堿(choline, Cho)、肌酸(creatine, Cr)、乳酸(lactate, Lac)、肌醇(myo-inositol, mIns)、Glu、谷胱甘肽(glutathione, GSH)的影響,結果發現rTMS前后漢密爾頓抑郁量表評分差異有統計學意義,發現rTMS后NAA/Cr、GSH/Cr和Glu/Cr的峰值代謝率明顯高于rTMS前。Leblhuber等[16]研究了老年抑郁癥患者在前額葉皮層刺激后神經遞質前體氨基酸利用率的變化,結果發現血清苯丙氨酸顯著下降,表明rTMS對抑郁評分有顯著影響,還表明其對苯丙氨酸羥化酶(phenylalanine hydroxylase, PAH)可能有影響,PAH在老年抑郁癥相關神經遞質前體的生物合成中起著關鍵作用。Zheng等[37]用磁共振波譜觀察了對年輕抑郁癥患者15 Hz rTMS前后前扣帶回皮質的代謝,發現與健康對照組相比,干預前患者左前扣帶回皮質中NAA和Cho含量顯著降低,治療后受試者左側前扣帶回皮質的NAA水平顯著升高。有研究嘗試通過體液的代謝組分分析來檢測新生物標志物。Alesha等[38]發現α-氨基-正丁酸和3-甲基組氨酸可作為生物標記物,客觀監測rTMS治療抑郁癥的療效,用中等強度rTMS和鹽酸氟西汀治療嗅球切除小鼠模型,目前的研究結果表明高強度rTMS標準化了血漿α-氨基-正丁酸和3-甲基組氨酸的濃度,顯示嗅球切除小鼠模型和中高等強度的rTMS治療后,谷氨酰胺和谷氨酸信號傳導發生了顯著變化。還有研究發現,rTMS可以逆轉海馬神經元的凋亡,恢復下丘腦-垂體-腎上腺(hypothalamic-pituitary-adrenal, HPA)軸在治療抑郁癥中的平衡。Zhao等[39]對CUMS模型大鼠進行連續15 d的rTMS,CUMS組大鼠腦內BAX、促腎上腺皮質激素(adrenocorticotropic hormone, ACTH)和皮質醇(corticosteroid, CORT)水平升高,海馬神經元形態異常、數量減少。rTMS逆轉了這些變化,改善了抑郁樣行為。Khodaie等[40]研究rTMS對海馬和皮層擴散性抑郁的影響,發現長期應用rTMS能顯著減少大鼠暗神經元的產生,增加正常神經元的平均體積,減少皮質區凋亡神經元的數量,提示rTMS對皮層擴散性抑郁所致大鼠大腦皮層和海馬區損傷具有明顯的預防和保護作用。

rTMS對血清中BDNF的影響存在爭議。Lu等[41]研究發現雙側低頻rTMS減輕廣泛性焦慮癥可能與腦內BDNF水平升高和5-羥色胺(5-hydroxytryptamine, 5-HT)釋放有關,分析顯示血清5-HT水平的升高與血清BDNF水平的升高呈正相關,焦慮評分的變化與血清BDNF、5-HT水平的變化呈負相關。與此同時,Jiang等[24]進行了一項薈萃分析,推測BDNF介導rTMS的治療效果,但與以往的結果是矛盾的。rTMS治療效應或許存在,但并不能提高血清BDNF水平。

上述研究提示rTMS干預抑郁,可能是與調控GABA水平、逆轉海馬神經元的凋亡、恢復HPA軸在治療抑郁癥中的平衡有關,但是與腦卒中的代謝組學機制不一樣的是,與BDNF的相關性尚不明確。

3 rTMS對帕金森病及其生物標志物的影響

帕金森病是一種神經退行性疾病,其病理生理基礎是紋狀體DA的嚴重缺乏。

Dong等[42]探討低頻rTMS對帕金森病模型小鼠的神經保護作用,結果顯示低頻rTMS能顯著改善黑質DA能神經元的變性和酪氨酸羥化酶的表達;低頻rTMS還可促進BDNF和膠質細胞源性神經營養因子的表達。紋狀體DA水平的波動和酪氨酸磷酸化的上調與左旋多巴誘導的帕金森病運動障礙有關。Ba等[43]制備左旋多巴誘發異動癥大鼠模型,評估rTMS對異常非自愿運動的影響,結果表明rTMS能減少黑質DA能神經元的丟失和紋狀體DA水平的波動,同時,rTMS可顯著增加膠質細胞源性神經營養因子的表達,從而恢復DA能神經元的損傷。此外,rTMS還降低了左旋多巴誘發異動癥大鼠模型紋狀體損傷后酪氨酸磷酸化水平及其與酪氨酸激酶的相互作用。而在延遲折扣中,內側前額葉皮質和紋狀體DA神經傳遞均起重要作用。Cho等[44]用rTMS短暫激活前額葉皮質,測量其對紋狀體DA的影響,發現前額葉皮質興奮性的調節干擾紋狀體的突觸DA水平。

泛素-蛋白酶體系統功能異常是帕金森病的又一重要發病機制。Ba等[45]探討rTMS對泛素-蛋白酶體系統損傷所致帕金森病大鼠模型是否具有神經保護作用,采用蛋白酶體抑制劑、乳酸菌素誘發帕金森病大鼠模型,結果顯示rTMS能明顯減輕乳酸菌素損傷的黑質酪氨酸羥化酶陽性DA能神經元的丟失,防止紋狀體DA水平的丟失。此外,rTMS還降低了受損黑質中凋亡蛋白Caspase-3、炎癥因子環氧化酶-2(cyclooxygenase-2, COX-2)和腫瘤壞死因子α的水平,提示rTMS可保護黑質DA能神經元免受泛素-蛋白酶體系統損傷所致的凋亡和抗炎分子機制的影響。

rTMS治療可以對神經元基質產生長期的影響。Etiévant等[46]發現應用于覺醒小鼠額葉皮層的rTMS誘導了DA受體依賴的周期素依賴性蛋白激酶5和突觸后致密蛋白95蛋白水平的持續變化,特別是在受刺激的腦區。重要的是,這些修飾與這些基因啟動子組蛋白乙酰化的變化相關,并且通過給藥組蛋白去乙酰化酶抑制劑來預防。rTMS還顯示出調節局部腦活動的潛力。Pettorruso等[47]在左DLPFC區rTMS治療兩周后,發現紋狀體區域的DA轉運體有效性降低。Malik等[48]用1 Hz rTMS以島葉皮層為靶點,可顯著降低黑質、感覺運動紋狀體和聯合紋狀體中的DA水平。還有研究者對帕金森病治療的氨基酸代謝途徑做了相關研究。Flamez等[12]研究1 Hz rTMS對晚期帕金森病患者腦代謝產物的影響,磁共振波譜檢測體內代謝物,發現晚期帕金森病患者在SMA前右室低強度rTMS不改變NAA/Cr,但影響tCho/tCr比值,尤其是病程較短的患者。而多種炎癥因子對rTMS有調節作用,Aftanas等[15]探討了rTMS對帕金森病患者神經炎癥相關細胞因子水平的可能作用機制,平行安慰劑對照研究觀察了運動皮層(雙側)和左DLPFC的雙靶點rTMS對血細胞自發合成促抗炎細胞因子和促有絲分裂原的治療作用,結果顯示rTMS組促炎細胞因子干擾素-γ和白介素-17(Interleukin-17, IL-17)的自發產生顯著下降,rTMS對血清BDNF無顯著影響。

綜上,rTMS治療帕金森病,機制可能與糾正紋狀體DA的嚴重缺乏、調節泛素-蛋白酶體系統功能異常有關,rTMS治療還可以對神經元基質產生長期的影響。

4 中醫對中樞神經系統疾病及相關生物標志物的影響

中醫治療中樞神經系統疾病已有諸多報道。近年來,受到各學科交叉滲透趨勢的影響,越來越多的學者將中醫學研究與生物標記物的研究相結合。

Luo等[49]探討針刺對慢性不可預測輕度應激大鼠抑郁行為的影響,發現增強海馬和前額葉皮層中的膠質谷氨酸轉運體是針刺抗抑郁作用的機制之一。Kim等[50]觀察針刺對慢性束縛應激(chronic restraint stress, CIS)所致抑郁小鼠的抗抑郁作用,結果顯示針刺可增加海馬和杏仁核BDNF的表達,并改善小鼠的抑郁行為。Han等[51]發現電針可通過恢復海馬CA1突觸可塑性改善抑郁樣行為,其機制主要是通過下調5-HT受體水平來實現的。Li等[52]用艾灸治療脂多糖誘導的抑郁樣行為大鼠,發現艾灸對色氨酸(tryptophan, Trp)轉運和5-HT生成有明顯的促進作用,長期治療可促進腦內Trp的攝取,使Trp代謝向5-HT轉化,從而有利于抗抑郁作用的發揮。傅錦華等[53]研究發現舒肝解郁膠囊能增強抑郁模型大鼠中樞5-HT和DA系統的功能,改善抑郁癥狀。

He等[54]用電針治療缺血再灌注大鼠海馬和前額葉皮層,發現可能通過提高NAA和cho的含量而改善學習記憶能力。Huang等[55]電針治療腦缺血再灌注損傷小鼠后,星形膠質細胞和小膠質細胞/巨噬細胞P2嘌呤受體介導的梗死周圍海馬CA1區和感覺運動皮層神經炎癥和增生減弱,運動和記憶行為改善。Jittiwat[56]發現激光針刺治療能顯著提高海馬CA1和CA3的記憶和神經元密度,結果顯示海馬神經功能評分改善,GSH-Px、SOD活性提高,IL-6與肌動蛋白密度比值降低,提示激光針刺通過抗氧化和抗炎作用減輕局灶性腦缺血大鼠的認知功能障礙和運動功能障礙。Zhang等[57]發現電針對腦缺血再灌注后大鼠的認知修復有一定的作用,其作用機制可能是通過抑制Glu神經毒性和下調Glu受體的蛋白表達而減少Ca2+內流。Liu等[58]針刺大腦中動脈閉塞大鼠,發現針刺可有效降低缺血所致Glu的過度釋放,維持GABA的內源性抑制活性。這種現象在針灸治療的整個過程中都會出現,在針灸治療結束后還會持續一段時間。

上述研究結果表明,中醫學方法治療抑郁癥主要通過調節5-HT水平來實現,而治療腦卒中的機制則與氨基酸類和單胺類神經遞質有關。而且針刺同樣具有與rTMS相似的長期作用。

5 小結

迄今為止,已經有眾多研究者試探性地提出了一些rTMS治療疾病的生物機制,盡管尚未很好地描述詳細的機制,但是已經提出了幾種可能。rTMS治療腦卒中、抑郁癥、帕金森等與神經遞質、炎癥因子、神經發生、細胞凋亡等改變呈相關性[4-6,59-63]。嚙齒動物的實驗證據表明,rTMS產生復雜的神經生化作用。這些分子作用可能會改變神經元的電生理特性,并重新編程神經遞質及其同源受體的表達,從而導致與突觸可塑性相關的持久變化,例如長期增強和抑制[5]。臨床上與病人相關的實驗數據則更多側重于代謝標志物的發現[38],人們更傾向于找到一種標志物來指導臨床治療。同時也有代謝途徑的探究,例如GABA能系統、Glu能系統[34]、BDNF/CREB通路[25]等。而在未來的研究中,生物標志物將不僅限于血液、尿液、腦脊液,腦-腸軸[64-66]及腸道微生物組學的發展,將與rTMS治療神經精神系統疾病的發展密切關聯。

參考文獻

[1] CALIFF R M. Biomarker definitions and their applications[J]. Experimental Biology and Medicine (Maywood, N J), 2018, 243(3): 213-221.

[2] PITK?NEN A, EKOLLE NDODE-EKANE X, LAPINLAMPI N, et al. Epilepsy biomarkers toward etiology and pathology specificity[J]. Neurobiology of Disease, 2019, 123: 42-58.

[3] ZHANG Z L, LI R, YANG F Y, et al. Natriuretic peptide family as diagnostic/prognostic biomarker and treatment modality in management of adult and geriatric patients with heart failure: Remaining issues and challenges[J]. Journal of Geriatric Cardiology, 2018, 15(8): 540-546.

[4] DUAN X Q, YAO G, LIU Z L, et al. Mechanisms of transcranial magnetic stimulation treating on post-stroke depression[J]. Frontiers in Human Neuroscience, 2018, 12: 215.

[5] CIRILLO G, DI PINO G, CAPONE F, et al. Neurobiological after-effects of non-invasive brain stimulation[J]. Brain Stimulation, 2017, 10(1): 1-18.

[6] SOUNDARA RAJAN T, GHILARDI M F M, WANG H Y, et al. Mechanism of action for rTMS: A working hypothesis based on animal studies[J]. Frontiers in Physiology, 2017, 8: 457.

[7] SHAH N J, SURESHKUMAR S, SHEWADE D G. Metabolomics: A tool ahead for understanding molecular mechanisms of drugs and diseases[J]. Indian Journal of Clinical Biochemistry: IJCB, 2015, 30(3): 247-254.

[8] FATHI F, EKTEFA F, HAGH-AZALI M, et al. Metabonomics exposes metabolic biomarkers of Crohns disease by (1)HNMR[J]. Gastroenterology and Hepatology from Bed to Bench, 2013, 6(Suppl 1): S19-S22.

[9] CAGLAYAN A B, BEKER M C, CAGLAYAN B, et al. Acute and post-acute neuromodulation induces stroke recovery by promoting survival signaling, neurogenesis, and pyramidal tract plasticity[J]. Frontiers in Cellular Neuroscience, 2019, 13: 144.

[10] ZONG X M, DONG Y, LI Y Y, et al. Beneficial effects of Theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity[J]. Translational Stroke Research, 2020, 11(3): 450-467.

[11] ALAM M A, SUBRAMANYAM RALLABANDI V P, ROY P K. Systems biology of immunomodulation for post-stroke neuroplasticity:

Multimodal implications of pharmacotherapy and neurorehabili?tation[J]. Frontiers in Neurology, 2016, 7: 94.

[12] FLAMEZ A, WIELS W, VAN SCHUERBEEK P, et al. The influence of one session of low frequency rTMS on pre-supplementary motor area metabolites in late stage Parkinsons disease[J]. Clinical Neurophysiology, 2019, 130(8): 1292-1298.

[13] WANG H J, TAN G, ZHU L N, et al. The efficacy of repetitive transcranial magnetic stimulation for Parkinson disease patients with depression[J]. The International Journal of Neuroscience, 2020, 130(1): 19-27.

[14] QIN B, CHEN H, GAO W, et al. Effectiveness of high-frequency repetitive transcranial magnetic stimulation in patients with depression and Parkinsons disease: A meta-analysis of randomized, controlled clinical trials[J]. Neuropsychiatric Disease and Treatment, 2018, 14: 273-284.

[15] AFTANAS L I, GEVORGYAN M M, ZHANAEVA S Y, et al. Therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on neuroinflammation and neuroplasticity in patients with Parkinsons disease: A placebo-controlled study[J]. Bulletin of Experimental Biology and Medicine, 2018, 165(2): 195-199.

[16] LEBLHUBER F, STEINER K, FUCHS D. Treatment of patients with geriatric depression with repetitive transcranial magnetic stimulation[J]. Journal of Neural Transmission, 2019, 126(8): 1105-1110.

[17] YANG J J, WANG L, WANG F Q, et al. Low-frequency pulsed magnetic field improves depression-like behaviors and cognitive impairments in depressive rats mainly via modulating synaptic function[J]. Frontiers in Neuroscience, 2019, 13: 820.

[18] ERBAY M F, ZAYMAN E P, ERBAY L G, et al. Evaluation of transcranial magnetic stimulation efficiency in major depressive

disorder patients: A magnetic resonance spectroscopy study[J]. Psychiatry Investigation, 2019, 16(10): 745-750.

[19] LEVITT J G, KALENDER G, ONEILL J, et al. Dorsolateral prefrontal γ-aminobutyric acid in patients with treatment-resistant depression after transcranial magnetic stimulation measured with magnetic resonance spectroscopy[J]. Journal of Psychiatry & Neuroscience: JPN, 2019, 44(6): 386-394.

[20] XIANG S T, ZHOU Y, FU J X, et al. rTMS pre-treatment effectively protects against cognitive and synaptic plasticity impairments induced by simulated microgravity in mice[J]. Behavioural Brain Research, 2019, 359: 639-647.

[21] SHANG Y C, WANG X, LI F J, et al. rTMS ameliorates prenatal stress-induced cognitive deficits in male-offspring rats associated with BDNF/TrkB signaling pathway[J]. Neurorehabilitation and Neural Repair, 2019, 33(4): 271-283.

[22] ZHAI B H, FU J X, XIANG S T, et al. Repetitive transcranial magnetic stimulation ameliorates recognition memory impairment induced by hindlimb unloading in mice associated with BDNF/TrkB signaling[J]. Neuroscience Research, 2020, 153: 40-47.

[23] MA Q Y, GENG Y, WANG H L, et al. High frequency repetitive transcranial magnetic stimulation alleviates cognitive impairment and modulates hippocampal synaptic structural plasticity in aged mice[J]. Frontiers in Aging Neuroscience, 2019, 11: 235.

[24] JIANG B H, HE D M. Repetitive transcranial magnetic stimulation (rTMS) fails to increase serum brain-derived neurotrophic factor (BDNF)[J]. Clinical Neurophysiology, 2019, 49(4): 295-300.

[25] BAEK A, PARK E J, KIM S Y, et al. High-frequency repetitive magnetic stimulation enhances the expression of brain-derived neurotrophic factor through activation of Ca2+-calmodulin-dependent protein kinase Ⅱ-cAMP-response element-binding protein pathway[J]. Frontiers in Neurology, 2018, 9: 285.

[26] PENG S Y, LI W Q, LV L, et al. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression[J]. Discovery Medicine, 2018, 26(143): 127-136.

[27] BOONZAIER J, VAN TILBORG G A F, NEGGERS S F W, et al. Noninvasive brain stimulation to enhance functional recovery after stroke: Studies in animal models[J]. Neurorehabilitation and Neural Repair, 2018, 32(11): 927-940.

[28] BAEK A, KIM J H, PYO S, et al. The differential effects of repetitive magnetic stimulation in an in vitro neuronal model of ischemia/reperfusion injury[J]. Frontiers in Neurology, 2018, 9: 50.

[29] LUO J, ZHENG H Q, ZHANG L Y, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats[J]. International Journal of Molecular Sciences, 2017, 18(2): E455.

[30] NIIMI M, HASHIMOTO K, KAKUDA W, et al. Role of brain-derived neurotrophic factor in beneficial effects of repetitive transcranial magnetic stimulation for upper limb hemiparesis after stroke[J]. PLoS One, 2016, 11(3): e0152241.

[31] GUO F, LOU J C, HAN X H, et al. Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the Hippocampus in rats with ischemic stroke[J]. Frontiers in Physiology, 2017, 8: 559.

[32] SASSO V, BISICCHIA E, LATINI L, et al. Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury[J]. Journal of Neuroinflammation, 2016, 13(1): 150.

[33] PHILLIPS A L, BURR R L, DUNNER D L. rTMS effects in patients with co-morbid somatic pain and depressive mood disorders[J]. Journal of Affective Disorders, 2018, 241: 411-416.

[34] DUBIN M J, MAO X L, BANERJEE S, et al. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy[J]. Journal of Psychiatry & Neuroscience: JPN, 2016, 41(3): E37-E45.

[35] KIM S Y, LEE D W, KIM H, et al. Chronic repetitive transcranial magnetic stimulation enhances GABAergic and cholinergic metabolism in chronic unpredictable mild stress rat model: 1H-NMR spectroscopy study at 11.7T[J]. Neuroscience Letters, 2014, 572: 32-37.

[36] TAN T, WANG W, XU H T, et al. Low-frequency rTMS ameliorates autistic-like behaviors in rats induced by neonatal isolation through regulating the synaptic GABA transmission[J]. Frontiers in Cellular Neuroscience, 2018, 12: 46.

[37] ZHENG H R, JIA F J, GUO G Q, et al. Abnormal anterior cingulate N-acetylaspartate and executive functioning in treatment-resistant depression after rTMS therapy[J]. The International Journal of Neuropsychopharmacology, 2015, 18(11): pyv059.

[38] HEATH A, LINDBERG D R, MAKOWIECKI K, et al. Medium- and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms[J]. Translational Psychiatry, 2018, 8: 126.

[39] ZHAO L, REN H C, GU S N, et al. rTMS ameliorated depressive-like behaviors by restoring HPA axis balance and prohibiting hippocampal neuron apoptosis in a rat model of depression[J]. Psychiatry Research, 2018, 269: 126-133.

[40] KHODAIE B, SABA V. The neuroprotective effects of long-term repetitive transcranial magnetic stimulation on the cortical spreading depression-induced damages in rat's brain[J]. Basic and Clinical Neuroscience, 2018, 9(2): 87-100.

[41] LU R L, ZHANG C L, LIU Y Y, et al. The effect of bilateral low-frequency rTMS over dorsolateral prefrontal cortex on serum brain-derived neurotropic factor and serotonin in patients with generalized anxiety disorder[J]. Neuroscience Letters, 2018, 684: 67-71.

[42] DONG Q Y, WANG Y Y, GU P, et al. The neuroprotective mechanism of low-frequency rTMS on nigral dopaminergic neurons of Parkinson's disease model mice[J]. Parkinson's Disease, 2015, 2015: 564095.

[43] BA M W, KONG M, GUAN L N, et al. Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa-induced dyskinetic rats model[J]. Oncotarget, 2016, 7(37): 58802-58812.

[44] CHO S S, KOSHIMORI Y, AMINIAN K, et al. Investing in the future: Stimulation of the medial prefrontal cortex reduces discounting of delayed rewards[J]. Neuropsychopharmacology, 2015, 40(3): 546-553.

[45] BA M W, MA G Z, REN C, et al. Repetitive transcranial magnetic stimulation for treatment of lactacystin-induced Parkinsonian rat model[J]. Oncotarget, 2017, 8(31): 50921-50929.

[46] ETIéVANT A, MANTA S, LATAPY C, et al. Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation[J]. Scientific Reports, 2015, 5: 16873.

[47] PETTORRUSO M, DI GIUDA D, MARTINOTTI G, et al. Dopaminergic and clinical correlates of high-frequency repetitive transcranial magnetic stimulation in gambling addiction: A SPECT case study[J]. Addictive Behaviors, 2019, 93: 246-249.

[48] MALIK S, JACOBS M, CHO S S, et al. Deep TMS of the Insula using the H-coil modulates dopamine release: A crossover [11C] PHNO-PET pilot trial in healthy humans[J]. Brain Imaging and Behavior, 2018, 12(5): 1306-1317.

[49] LUO D, MA R, WU Y N, et al. Mechanism underlying acupuncture-ameliorated depressive behaviors by enhancing glial glutamate transporter in chronic unpredictable mild stress (CUMS) rats[J]. Medical Science Monitor, 2017, 23: 3080-3087.

[50] KIM Y, LEE H Y, CHO S H. Antidepressant effects of pharmacopuncture on behavior and brain-derived neurotrophic factor (BDNF) expression in chronic stress model of mice[J]. Journal of Acupuncture and Meridian Studies, 2017, 10(6): 402-408.

[51] HAN X K, WU H G, YIN P, et al. Electroacupuncture restores hippocampal synaptic plasticity via modulation of 5-HT receptors in a rat model of depression[J]. Brain Research Bulletin, 2018, 139: 256-262.

[52] LI H, SANG L, XIA X, et al. Therapeutic duration and extent affect the effect of moxibustion on depression-like behaviour in rats via regulating the brain tryptophan transport and metabolism[J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2019, 2019: 7592124.

[53] 傅錦華,劉? 勇.舒肝解郁膠囊對抑郁模型大鼠腦內5-HT、DA及其代謝產物水平的影響[J].湖南中醫藥大學學報,2016,36(6):47-51.

[54] HE J, ZHAO C K, LIU W L, et al. Neurochemical changes in the Hippocampus and prefrontal cortex associated with electroacupuncture for learning and memory impairment[J]. International Journal of Molecular Medicine, 2018, 41(2): 709-716.

[55] HUANG J, YOU X F, LIU W L, et al. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia[J]. BMC Complementary and Alternative Medicine, 2017, 17(1): 1-13.

[56] JITTIWAT J. Baihui point laser acupuncture ameliorates cognitive impairment, motor deficit, and neuronal loss partly via antioxidant and anti-inflammatory effects in an animal model of focal ischemic stroke[J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2019, 2019: 1204709.

[57] ZHANG Y, MAO X, LIN R H, et al. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury[J]. Acupuncture in Medicine, 2018, 36(6): 401-407.

[58] LIU J, WU Y Y, YU X L, et al. Temporal effect of acupuncture on amino acid neurotransmitters in rats with acute cerebral ischaemia[J]. Acupuncture in Medicine, 2019, 37(4): 252-258.

[59] KOCH G, MARTORANA A, CALTAGIRONE C. Transcranial

magnetic stimulation: Emerging biomarkers and novel therapeutics in Alzheimer's disease[J]. Neuroscience Letters, 2020, 719: 134355.

[60] DOMENICI E, WILLé D R, TOZZI F, et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections[J]. PLoS One, 2010, 5(2): e9166.

[61] MIKELL C B, SINHA S, SHETH S A. Neurosurgery for schizophrenia: An update on pathophysiology and a novel therapeutic target[J]. Journal of Neurosurgery, 2016, 124(4): 917-928.

[62] VAL-LAILLET D, AARTS E, WEBER B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity[J]. NeuroImage Clinical, 2015, 8: 1-31.

[63] LI C T, HUANG Y Z, BAI Y M, et al. Critical role of glutamatergic and GABAergic neurotransmission in the central mechanisms of Theta-burst stimulation[J]. Human Brain Mapping, 2019, 40(6): 2001-2009.

[64] CHU C, MURDOCK M H, JING D Q, et al. The microbiota regulate neuronal function and fear extinction learning[J]. Nature, 2019, 574(7779): 543-548.

[65] WANG YF, ZHENG LJ, LIU Y, et al. The gut microbiota-inflammation-brain axis in end-stage renal disease: perspectives from default mode network[J]. Theranostics, 2019,9(26): 8171-8181.

[66] DURGAN DJ, LEE J, MCCULLOUGH LD, et al. Examining the Role of the Microbiota-Gut-Brain Axis in Stroke[J]. Stroke, 2019,50(8): 2270-2277.

猜你喜歡
帕金森病海馬生物
生物多樣性
天天愛科學(2022年9期)2022-09-15 01:12:54
手抖一定是帕金森病嗎
保健醫苑(2022年6期)2022-07-08 01:25:28
生物多樣性
天天愛科學(2022年4期)2022-05-23 12:41:48
海馬
上上生物
當代水產(2022年3期)2022-04-26 14:26:56
第12話 完美生物
航空世界(2020年10期)2020-01-19 14:36:20
海馬
帕金森病科普十問
活力(2019年22期)2019-03-16 12:47:04
“海馬”自述
帕金森病的治療
主站蜘蛛池模板: 午夜色综合| 亚洲 日韩 激情 无码 中出| 成人在线不卡视频| 夜夜操天天摸| 久无码久无码av无码| 日韩天堂视频| 久久精品人人做人人爽电影蜜月| 人妻一本久道久久综合久久鬼色| 青草视频在线观看国产| 欧美成人精品在线| 免费三A级毛片视频| 国产网友愉拍精品| www精品久久| 中文天堂在线视频| 中文字幕在线永久在线视频2020| 国产在线视频福利资源站| 国产久操视频| 国产日韩精品欧美一区灰| 国产日韩欧美黄色片免费观看| 亚洲人成日本在线观看| 国产成人精品在线1区| 国产精品开放后亚洲| 亚洲第一在线播放| 老熟妇喷水一区二区三区| 欧美日韩一区二区三区四区在线观看| 午夜激情婷婷| 国产女主播一区| 五月天久久综合| 久久五月天综合| 日韩AV无码免费一二三区| 亚洲精品动漫| 国产人在线成免费视频| 欧美成人免费| 精品福利国产| 日韩无码视频专区| 日韩人妻无码制服丝袜视频| 国产欧美高清| 亚欧美国产综合| 日韩精品少妇无码受不了| 国产麻豆va精品视频| 久久国产精品麻豆系列| 亚洲高清在线天堂精品| 国产成人AV男人的天堂| 激情网址在线观看| 国产欧美视频一区二区三区| 国产精品蜜臀| 成人午夜天| 中文成人在线视频| 成人午夜天| AV片亚洲国产男人的天堂| 国产精品女熟高潮视频| AV片亚洲国产男人的天堂| 一级毛片不卡片免费观看| 福利在线一区| 亚洲伊人久久精品影院| 日韩大乳视频中文字幕| 亚洲无码视频一区二区三区 | 久久一日本道色综合久久| 日本在线国产| 亚洲精品色AV无码看| 亚洲男女天堂| 女人18一级毛片免费观看| 国产香蕉97碰碰视频VA碰碰看| 制服丝袜一区| 国产又爽又黄无遮挡免费观看| 青青草国产一区二区三区| 久久久久亚洲AV成人网站软件| 精品无码视频在线观看| 国产综合日韩另类一区二区| 青青草91视频| 国产系列在线| 欧美久久网| 色婷婷亚洲综合五月| 19国产精品麻豆免费观看| 日韩av手机在线| 国产精品免费久久久久影院无码| 在线国产91| 免费高清自慰一区二区三区| 精品无码专区亚洲| 亚洲天堂色色人体| 中文字幕久久波多野结衣| 国产粉嫩粉嫩的18在线播放91|