王恩康 袁建業
摘 要 血清素再攝取轉運體是色胺能系統中的重要分子,主要負責血清素的轉運和再攝取。通過將編碼SERT的基因slc6A4敲除,可構建不同種屬的SERT敲除(SERT KO或slc6A4-/-或SERT-/-)的動物模型用于研究多種相關疾病。本綜述總結了SERT KO動物的病理生理改變及其作為疾病模型在相關研究中的應用。
關鍵詞 血清素再攝取轉運體 血清素 基因敲除 動物模型
中圖分類號:R363.21 文獻標志碼:A 文章編號:1006-1533(2021)11-0052-05
Pathophysiological changes and application of serotonin transporter gene knockout animals*
WANG Enkang**, YUAN Jianye***(Institute of Digestive Diseases; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China)
ABSTRACT Serotonin reuptake transporter (SERT) is an important molecule in the serotonergic system. It is responsible for the transmission and reuptake of serotonin. By knockout (KO) of SERT gene slc6A4, animal models of SERT KO (slc6A-/-or SERT-/-) in different species have been established for the studies of a series of related diseases. This review summarizes the pathophysiological changes of SERT KO animals and the applications of them as disease models in related studies.
KEy WORDS serotonin reuptake transporter; serotonin; gene knockout; animal model
1 血清素和血清素再攝取轉運體
與認知、情緒、攝食等有關的5-羥色胺(5-hydroxytryptamine,5-HT)在中樞和外周都發揮著重要作用。5-HT通過龐大的5-HT受體家族發揮作用。血清素再攝取轉運體(serotonin reuptake transporter,SERT;也稱5-HTT)由溶質載體家族6成員4基因(slc6A4)編碼,是生理狀態下5-HT唯一的高效轉運體,通過將5-HT轉運至細胞內滅活對組織間隙的5-HT進行再攝取[1],從而精細調控細胞外液中5-HT濃度、組織中5-HT受體表達和功能以及中縫核中不同區域5-HT能神經元的放電速率,調節5-HT神經傳遞、局部免疫反應和炎癥,維持5-HT系統的穩態[2]。
2 SERT基因多態性
在人類中,slc6A4基因位于第17號染色體上,其轉錄活性是由插入/刪除44個SERT關聯多態區(serotonintransporter-linked polymorphic region,5-HTTLPR)多態性堿基對來調節的,該多態性區域位于轉錄起始位點的上游。基于5-HTTLPR多態性,slc6A4基因有16個長等位基因和14個短等位基因,其中短等位基因的轉錄活性較低[3]。有研究發現,青少年抑郁和自殺與短-短基因型顯著相關[4]。在成年紅斑狼瘡患者中,擁有短等位基因的人則更容易焦慮/抑郁,且程度和短等位基因的數量呈正相關[5]。人類中這種基因多態性導致的病理生理病理改變可以被嚙齒動物SERT基因缺失所模擬[6]。slc6A4-/-鼠和slc6A4+/-鼠表現出明顯的短等位基因依賴性行為異常,且slc6A4-/-鼠與slc6A4+/-鼠相比有著更明顯的精神行為缺陷[7]。
3 SERT基因敲除后動物的病理生理改變
1992年,Silva等[8]在《Science》上發文宣告SERT敲除(knock out, KO)小鼠的誕生。2006年,Smits團隊[9]引進了N-乙基-N-亞硝基脲(N-ethyl-N-nitrosourea,ENU)驅動靶向選擇誘變技術,首次成功制備出SERT KO大鼠。
雖然說SERT是正常生理條件下唯一的高效5-HT轉運體,但隨著研究的深入,科學家們發現一些低親和力轉運蛋白如神經元外單胺轉運體(extraneuronal monoamine transporter,EMT)和有機陽離子轉運體(organic cation transporter,OCT)在5-HT的轉運和再攝取中也起著重要作用[10-11]。隨著5-HT濃度升高,上述低親和力轉運體對5-HT的清除作用變得越來越重要[12]。進一步研究發現,SERT KO小鼠OCT3 mRNA在海馬區的表達顯著升高。盡管有這些代償機制調節5-HT的濃度,SERT KO小鼠5-HT濃度仍然明顯高于野生鼠5-HT的生理濃度。
增強的5-HT信號會影響機體的生理功能,比如會出現腸道神經可塑性增強、腸絨毛升高、隱窩變深、腸細胞增殖增加等[13-14]。相關行為學實驗證實SERT KO大鼠表現出焦慮、抑郁樣行為[15]。這些情緒變化與性別相關,雌性SERT KO鼠表現出比雄性鼠更明顯的抑郁和/或焦慮樣改變[16]。同樣與性別相關的變化還有內臟敏感性,雌性SERT-/-大鼠相較于雄性SERT-/-大鼠有著更高的內臟敏感性,即更低的疼痛閾值[17]。中樞SERT和5-HT水平的改變影響了大鼠的射精活動,slc6A4-/-鼠表現出比野生型(wild type,WT)鼠更少的射精次數,更長的射精潛伏期,而slc6A4+/-鼠與WT鼠無差異[18]。另有研究發現,增強的5-HT信號可以促進SERT-/-小鼠全段腸黏膜的吸收和小腸段黏膜的生長,且遠端小腸黏膜的生長能力最為顯著[19];SERT-/-大鼠腸道動力的改變主要在結腸段,伴隨結腸組織中毒蕈堿型3受體(muscarinic type 3 receptor,M3)表達的增加[20]。
較高的5-HT濃度還會導致相關受體對5-HT的超敏和脫敏[21]。前者可能與水樣腹瀉有關,而后者可能與短暫性的便秘有關[22]。SERT-/-小鼠突觸前后5-HT1A受體都脫敏,而SERT+/-小鼠僅突觸前5-HT1A脫敏[21]。SERT缺失以后,大鼠對于急性不可避免壓力(inescapable stress,IS)更容易產生應激反應,但是在之后的反復IS的處理中,SERT-/-大鼠表現出了恐懼消退的表現,這可能與5-HT1A受體的脫敏有關[23-24]。SERT-/-大鼠對積極環境比較敏感,研究證實一直暴露在積極環境中的大鼠,恐懼表現可以恢復至正常水平[25]。另外有藥理學研究證實,SERT-/-大鼠對提高性功能的5-HT1A受體激動劑藥效不敏感是由于5-HT1A受體的脫敏引起的[26]。
SERT KO還可引起色胺能信號以外的改變,例如在內分泌系統中,發現SERT-/-小鼠胰島增大和B細胞增生[27];SERT基因受損大鼠杏仁核中c-FOS表達降低[28]。進一步研究發現,雄性大鼠的c-FOS表達和SERT基因型相關,SERT-/-鼠的c-FOS表達最低,SERT+/-鼠的其次,野生型則最高;而雌性則與生理周期更為密切,雌激素大于基因型對其的影響[29]。
4 SERT KO動物在相關疾病研究中的應用
4.1 SERT KO動物在中樞類疾病研究中的應用
4.1.1 抑郁癥
抑郁癥是最常見的中樞系統疑難雜癥之一。大約12%的男性和21%的女性面臨終生抑郁癥的風險[30]。包括氟西汀、西酞普蘭和帕羅西汀在內的選擇性5-羥色胺再攝取抑制劑(SSRIs)通過限制細胞外5-HT的清除,提高大腦5-HT水平和作用時間來抗抑郁癥。SSRIs緩解這類疾病癥狀的效應可以維持數天至數周[31]。雖然SSRIs在世界范圍內得到了廣泛的應用,但他們也存在一些不可忽視的問題,據報道,SSRIs起效時間較長,一般2~4周見效,而且僅對60%的患者有著不錯的療效[32]。SERT KO小鼠可以作為觀察應用SSRIs等藥物后情況的有效工具[33]。利用SERT KO模型研究發現氟西汀誘導的神經可塑性修復可以改善抑郁,但并不是依賴于色胺能通路,而可能是原肌球蛋白相關受體激酶B(tropomyosin-related receptor kinase B,TrkB)信號通路直接被激活,這對現有SSRIs耐受現象研究提供了一個啟示[34]。
4.1.2 自閉癥譜系障礙
孤獨癥譜系障礙(autistic spectrum disorder,ASD)是一種神經發育障礙性疾病,主要包括兩個主要癥狀:①語言和非語言的社會交流和互惠的社會互動障礙;②行為、興趣和活動受限、重復。ASD在一般人群中的發病率超過1%,并有研究證實5-HT相關的基因與其關系密切[35]。在ASD患者人群中,無論是否伴有智力障礙,有30%人群全血和血小板中5-HT含量升高,這與SERT的功能降低顯著相關[36]。動物研究中,雄性SERT-/-小鼠表現出相較于野生型小鼠更弱的社交能力[37]。另一項對雌性小鼠的研究發現,SERT-/-小鼠的行為學發生了較為復雜的改變,除了焦慮和血清素綜合癥外,活動性明顯減少[38]。SERT-/-大鼠在總的社交時間上減少,但是跟隨同窩動物的時間增加,這也表明大鼠在SERT KO以后,出現了典型的ASD樣癥狀,可以作為ASD的動物模型[39]。應用SERT-/-動物模型,發現了一些可能治療ASD的方法。在SERT+/-和SERT-/-小鼠的ASD相關行為缺陷可以通過2周的無色氨酸飲食降低紋狀體細胞外5-HT水平來糾正,并能恢復5-HT相關基因AU015836的表達[40]。在SERT-/-小鼠孕期補充二十二碳六烯酸(docosahexaenoic acid,DHA),其后代的紋狀體多巴胺而不是5-HT含量顯著下降,并減少了ASD樣行為[41]。
4.2 SERT KO動物在外周疾病研究中的應用
4.2.1 腸易激綜合征
腸易激綜合征(irritable bowel syndrome,IBS)是一種常見的功能性胃腸病,以胃腸動力和內臟感覺功能紊亂為主要表現,并伴有明顯的性別差異,女性患者約為男性的兩倍[42]。相比于野生型大鼠,SERT-/-大鼠表現出對結腸球囊擴張痛覺更敏感,即更高的內臟敏感性,且雌鼠比雄鼠更為敏感[43]。除內臟感覺外,SERT KO大鼠還存在胃腸運動的改變[44]。我們的前期研究也發現SERT-/-大鼠的結腸運動比野生型大鼠更快[20]。SERT KO以后,大鼠出現了和IBS患者相似的癥狀,這些證據說明SERT KO大鼠可作為研究IBS的動物模型。應用SERT KO大鼠,研究者們發現這種內臟敏感性的升高與脊柱背側5-HT3受體信號的增加有關[45]。
4.2.2 其他疾病
5-HT水平的升高進而調節血管張力和血管平滑肌細胞增殖一直被認為是肺動脈高壓(pulmonary arterial hypertension,PAH)發生發展的重要因素[46]。Michiel等[47]的研究發現SERT-/-大鼠也能出現PAH,證明了色胺能通路的完整性并不是PAH發生發展的必要條件。
人類研究發現代謝綜合征和肥胖患者的中樞與外周SERT表達降低[48]。動物研究發現,SERT-/-小鼠也表現出糖耐量下降,胰島素抵抗,白色脂肪組織增加等變化,并且雌性小鼠比雄性更為嚴重,這可以通過補充雌激素來改善[49,50]。提示,SERT-/-小鼠也可以作為研究肥胖和糖耐量異常的動物模型。
5 總結和展望
以5-HT為核心的色胺能系統在中樞和外周都扮演著重要的角色,SERT作為生理狀態下唯一的5-HT高效轉運體在維持色胺能穩態中發揮著重要作用。當SERT基因受損或缺失后,SERT-/-機體發生了不同程度的改變以及相應的一些代償。這些變化的存在也讓SERT-/-動物成為了研究相關疾病的生物工具。目前應用SERT-/-動物開展的研究主要還集中在中樞系統,外周的研究相對較少,今后還可以通過研究發現SERT-/-動物更多的病理生理學改變,從而作為各種相關疾病模型用于開發新藥等研究。
參考文獻
[1] Murphy DL, Lerner A, Rudnick G, et al. Serotonin transporter: gene, genetic disorders, and pharmacogenetics[J]. Mol Interv, 2004, 4(2): 109-123.
[2] Kristensen AS, Andersen J, Jorgensen TN, et al. SLC6 neurotransmitter transporters: structure, function, and regulation[J]. Pharmacol Rev, 2011, 63(3): 585-640.
[3] Gorwood P, Batel P, Ades J, et al. Serotonin transporter gene polymorphisms, alcoholism, and suicidal behavior[J]. Biol Psychiatry, 2000, 48(4): 259-264.
[4] Sarmiento-Hernandez EI, Ulloa-Flores RE, CamarenaMedellin B, et al. Association between 5-HTTLPR polymorphism, suicide attempt and comorbidity in Mexican adolescents with major depressive disorder[J]. Actas Esp Psiquiatr, 2019, 47(1): 1-6.
[5] Saul A, Taylor B, Simpson S Jr, et al. Polymorphism in the serotonin transporter gene polymorphisms (5-HTTLPR) modifies the association between significant life events and depression in people with multiple sclerosis[J]. Mult Scler, 2019, 25(6): 848-855.
[6] Caspi A, Hariri AR, Holmes A, et al. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits[J]. Am J Psychiatry, 2010, 167(5): 509-527.
[7] Krakenberg V, von Kortzfleisch VT, Kaiser S, et al. Differential effects of serotonin transporter genotype on anxiety-like behavior and cognitive judgment bias in mice[J/ OL]. Front Behav Neurosci, 2019, 13: 263. doi: 10.3389/ fnbeh.2019.00263
[8] Silva AJ, Paylor R, Wehner JM, et al. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice[J]. Science, 1992, 257(5067): 206-211.
[9] Smits BM, Mudde JB, van de Belt J, et al. Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis[J]. Pharmacogenet Genomics, 2006, 16(3): 159-169.
[10] Baganz NL, Horton RE, Calderon AS, et al. Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice[J]. Proc Natl Acad Sci U S A, 2008, 105(48): 18976-18981.
[11] Hassell JE Jr, Collins VE, Li H, et al. Local inhibition of uptake2 transporters augments stress-induced increases in serotonin in the rat central amygdala[J]. Neurosci Lett, 2019, 701: 119-124.
[12] Hagan CE, Schenk JO, Neumaier JF. The contribution of low-affinity transport mechanisms to serotonin clearance in synaptosomes[J]. Synapse, 2011, 65(10): 1015-1023.
[13] Greig CJ, Gandotra N, Tackett JJ, et al. Enhanced serotonin signaling increases intestinal neuroplasticity[J]. J Surg Res, 2016, 206(1): 151-158.
[14] Tackett JJ, Gandotra N, Bamdad MC, et al. Enhanced serotonin signaling stimulates ordered intestinal mucosal growth[J]. J Surg Res, 2017, 208: 198-203.
[15] Olivier JD, Van Der Hart MG, Van Swelm RP, et al. A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders[J]. Neuroscience, 2008, 152(3): 573-584.
[16] Kim DK, Tolliver TJ, Huang SJ, et al. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter[J]. Neuropharmacology, 2005, 49(6): 798-810.
[17] Galligan JJ, Patel BA, Schneider SP, et al. Visceral hypersensitivity in female but not in male serotonin transporter knockout rats[J]. Neurogastroenterol Motil, 2013, 25(6): e373-e381.
[18] Geng H, Peng D, Huang Y, et al. Changes in sexual performance and biochemical characterisation of functional neural regions: a study in serotonin transporter knockout male rats[J]. Andrologia, 2019, 51(7): e13291.
[19] Greig CJ, Zhang L, Cowles RA. Potentiated serotonin signaling in serotonin re-uptake transporter knockout mice increases enterocyte mass and small intestinal absorptive function[J]. Physiol Rep, 2019, 7(21): e14278.
[20] Wang Y, Dong Y, Wang E, et al. Shugan decoction alleviates colonic dysmotility in female sert-knockout rats by decreasing M3 receptor expression[J]. Front Pharmacol, 2020, 11: 01082.
[21] Gobbi G, Murphy DL, Lesch K, et al. Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study[J]. J Pharmacol Exp Ther, 2001, 296(3): 987-995.
[22] Chen JJ, Li Z, Pan H, et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the highaffinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters[J]. J Neurosci, 2001, 21(16): 6348-6361.
[23] Schipper P, Henckens M, Borghans B, et al. Prior fear conditioning does not impede enhanced active avoidance in serotonin transporter knockout rats[J]. Behav Brain Res, 2017, 326: 77-86.
[24] Schipper P, Henckens M, Lopresto D, et al. Acute inescapable stress alleviates fear extinction recall deficits caused by serotonin transporter abolishment[J]. Behav Brain Res, 2018, 346: 16-20.
[25] Sbrini G, Brivio P, Bosch K, et al. Enrichment environment positively influences depression- and anxiety-like behavior in serotonin transporter knockout rats through the modulation of neuroplasticity, spine, and GABAergic markers[J]. Genes(Basel), 2020, 11(11): 1248.
[26] Esquivel-Franco DC, de Boer SF, Waldinger M, et al. Pharmacological studies on the role of 5-HT1A receptors in male sexual behavior of wildtype and serotonin transporter knockout rats[J]. Front Behav Neurosci, 2020, 14: 40.
[27] Chen X, Margolis KJ, Gershon MD, et al. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake[J/OL]. PLoS One, 2012, 7(3): e32511. doi: 10.1371/journal.pone.0032511.
[28] Shan L, Guo HY, van den Heuvel C, et al. Impaired fear extinction in serotonin transporter knockout rats is associated with increased 5-hydroxymethylcytosine in the amygdala[J]. CNS Neurosci Ther, 2018, 24(9): 810-819.
[29] Kolter JF, Hildenbrand MF, Popp S, et al. Serotonin transporter genotype modulates resting state and predator stress-induced amygdala perfusion in mice in a sex-dependent manner[J/OL]. PLoS One, 2021, 16(2): e0247311. doi: 10.1371/journal.pone.0247311.
[30] Remick RA. Diagnosis and management of depression in primary care: a clinical update and review[J]. CMAJ, 2002, 167(11): 1253-1260.
[31] Neubauer HA, Hansen CG, Wiborg O. Dissection of an allosteric mechanism on the serotonin transporter: a crossspecies study[J]. Mol Pharmacol, 2006, 69(4): 1242-1250.
[32] Kulikov AV, Gainetdinov RR, Ponimaskin E, et al. Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy[J]. Expert Opin Ther Targets, 2018, 22(4): 319-330.
[33] Fakhoury M. Revisiting the serotonin hypothesis: implications for major depressive disorders[J]. Mol Neurobiol, 2016, 53(5): 2778-2786.
[34] Levy MJF, Boulle F, Emerit MB, et al. 5-HTT independent effects of fluoxetine on neuroplasticity[J]. Sci Rep, 2019,9(1): 6311.
[35] Gilman SR, Iossifov I, Levy D, et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses[J]. Neuron, 2011, 70(5): 898-907.
[36] Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and metaanalysis[J]. Eur Neuropsychopharmacol, 2014, 24(6): 919-929.
[37] Moy SS, Nadler JJ, Young NB, et al. Social approach in genetically engineered mouse lines relevant to autism[J]. Genes Brain Behav, 2009, 8(2): 129-142.
[38] Kalueff AV, Fox MA, Gallagher PS, et al. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice[J]. Genes Brain Behav, 2007, 6(4): 389-400.
[39] Golebiowska J, Holuj M, Potasiewicz A, et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats[J]. Sci Rep, 2019, 9(1): 20283.
[40] Tanaka M, Sato A, Kasai S, et al. Brain hyperserotonemia causes autism-relevant social deficits in mice[J/OL]. Mol Autism, 2018, 9: 60. doi: 10.1186/s13229-018-0243-3.
[41] Matsui F, Hecht P, Yoshimoto K, et al. DHA mitigates autistic behaviors accompanied by dopaminergic change in a gene/ prenatal stress mouse model[J]. Neuroscience, 2018, 371: 407-419.
[42] Irvine AJ, Chey WD, Ford AC. Screening for celiac disease in irritable bowel syndrome: an updated systematic review and meta-analysis[J]. Am J Gastroenterol, 2017, 112(1): 65-76.
[43] Icenhour A, Labrenz F, Roderigo T, et al. Are there sex differences in visceral sensitivity in young healthy men and women?[J]. Neurogastroenterol Motil, 2019: e13664.
[44] Homberg JR, Lesch KP. Looking on the bright side of serotonin transporter gene variation[J]. Biol Psychiatry, 2011, 69(6): 513-519.
[45] El-Ayache N, Galligan JJ. 5-HT3 receptor signaling in serotonin transporter-knockout rats: a female sex-specific animal model of visceral hypersensitivity[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(1): G132-G143.
[46] Thomas M, Ciuclan L, Hussey M, et al. Targeting the serotonin pathway for the treatment of pulmonary arterial hypertension[J]. Pharmacol ther, 2013, 138(3): 409-417.
[47] de Raaf MA, Kroeze Y, Middelman A, et al. Serotonin transporter is not required for the development of severe pulmonary hypertension in the Sugen hypoxia rat model[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(10): L1164-L1173.
[48] Nam SB, Kim K, Kim BS, et al. The effect of obesity on the availabilities of dopamine and serotonin transporters[J]. Sci Rep, 2018, 8(1): 4924.
[49] Zha W, Ho HTB, Hu T, et al. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance[J]. Sci Rep, 2017, 7(1): 1137.
[50] Zha W, Hu T, Hebert MF, et al. Effect of pregnancy on paroxetine-induced adiposity and glucose intolerance in mice[J]. J Pharmacol Exp Ther, 2019, 371(1): 113-120.