999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于PSO算法的GMM改進J-A磁滯模型的參數辨識與驗證

2021-11-01 12:05:34滕峰成王珊珊楊雪璠呂登巖
計量學報 2021年9期
關鍵詞:磁場模型

滕峰成,王珊珊,楊雪璠,呂登巖

(燕山大學 電氣工程學院,河北 秦皇島 066004)

1 引 言

電力設備的安全在線監測在電力系統安全、經濟、穩定的運行中起著至關重要的作用。其中電流檢測技術的精確度和可靠性直接影響繼電保護系統的運行,而傳統的電磁式電流互感器已難以滿足電網發展的需求[1]。光學電流傳感器以其抗電磁干擾能力強、絕緣性能好、耐高溫、耐腐蝕等優點,非常適用于環境復雜的電力系統中[2]。超磁滯伸縮材料(giant magnetostrictive material,GMM)具有頻響速度快、能量轉換率高等優點,廣泛應用于各種驅動和換能領域[3,4];光學材料中的光纖布拉格光柵(fiber bragg grating,FBG)線性響應好、機械強度高、動態范圍寬,可靠實用[5]。GMM-FBG電流傳感器將GMM和FBG結合起來作為傳感單元進行電流測量。然而,GMM作為一種鐵磁性材料,本身固有的磁滯非線性會影響電流傳感器的輸出,降低系統傳感精度。因此,需要建立準確的GMM磁滯模型。

近年來,J-A理論基于材料的物理特性從磁疇機理和能量變化的角度闡述了磁滯特性,被廣泛用于鐵磁材料的磁滯建模中[6~10]:文獻[9]提出了一種動態J-A模型,并以330 kV P級電流互感器為例,搭建了大通流的動態模擬試驗平臺,驗證模型的可靠性;文獻[10]采用了人工魚群與Levenberg-Marqardt混合算法對J-A模型進行了參數辨識,但是實驗只能用于頻率5 Hz以內的情況下。

為減小由磁滯引起的測量誤差,提高GMM-FBG電流傳感器的測量精度,本文基于經典的J-A磁滯模型提出了改進的適用于低頻條件下的J-A模型。采用粒子群(particle swarm optimization,PSO)算法對模型的參數進行辨識及優化,搭建了相應的GMM-FBG電流傳感系統實驗平臺,并對實驗結果與仿真結果進行了對比分析。

2 GMM-FBG電流傳感器模型

GMM-FBG電流傳感器的原理是:當交變電流產生時,驅動線圈感應產生相應的驅動磁場,置于磁場中的超磁致伸縮材料(GMM)被磁化,產生縱向伸縮現象。由于GMM在交變磁場中會產生磁滯損耗,因此磁場與應變之間是滯回非線性的關系。GMM通過膠粘劑與光纖光柵(FBG)相連,使其中心波長發生漂移。GMM-FBG電流傳感器工作時,光纖光柵的波長信號為連續采集量,且波長變化呈現正弦變化規律。同時,光纖光柵波長的周期變化與GMM的磁滯回線的變化為一一對應的關系,因而識別光纖光柵波長的正弦周期變化即可識別GMM磁滯回線的具體變化,進而計算出其線圈電流的瞬時值,實現測量。

電流傳感器的模型是由驅動磁場的產生部分、GMM的形變部分和FBG的波長偏移部分組成,模型見圖1所示。

圖1 GMM-FBG傳感模型Fig.1 GMM-FBG sensing model

(1) 驅動磁場強度

在磁路閉合的情況下,不考慮漏磁,向驅動線圈中通入電流,產生相應的驅動磁場H為:

H=NIsin(2π ft+φ)+Hb

(1)

式中:N為單位長度線圈匝數;I為激勵電流幅值大小;f為驅動頻率;φ為初相角;Hb為偏置磁場強度。

(2)GMM的應變量模型

GMM由驅動磁場作用產生的磁化強度M可以表示為:

(2)

式中:μ0為真空磁導率;B為磁感應強度。

磁致伸縮棒處于磁場中產生的相應的形變量ε為:

(3)

式中:ΔL為棒的伸長量;L為棒的長度;f(M)為與磁化強度相關的函數。

考慮磁滯效應和預應力的影響時,形變量ε與磁化強度M關系為:

(4)

式中:EH為固定磁場強度下的楊氏模量;σ為外加預應力;λs為飽和磁致伸縮系數;Ms為飽和磁化強度。

(3)FBG中心波長偏移量與應變的關系

假設膠粘劑的性能良好,GMM的應變量將完全作用于光纖光柵,當溫度不變時,光柵波長的相對變化量ΔλB與施加的縱向應變ε成比例:

(5)

式中Pe為有效光彈系數。

綜上,可得光柵波長偏移量與輸入電流的關系為:

(6)

由于GMM存在磁滯效應使得輸出波長的偏移量與磁場強度之間出現滯回非線性,測得的波長不能完全反應輸入電流的特征,引起誤差。為消除磁滯效應的影響,需要對GMM進行磁滯建模補償。

3 改進J-A磁滯模型

3.1 經典J-A模型

J-A磁滯模型建立的基礎是鐵磁材料的磁疇運動理論,由于磁疇的結構和受力等因素的不同,使得鐵磁材料在磁化過程中磁疇的移動和旋轉過程不可逆,從而形成磁滯并產生能量損耗[8]。Jiles和Atherton在對磁疇運動研究的基礎上共同提出磁化過程分為可逆磁化階段和不可逆磁化階段,并以微分方程的形式描述了兩個階段的微分磁化率,最終獲得磁化強度與激勵磁場強度之間的滯回非線性關系。

在J-A模型中,將總磁化強度M表示為可逆磁化強度Mrev和不可逆磁化強度Mirr之和:

M=Mrev+Mirr

(7)

根據Boltzman原理,完全可逆的無磁滯磁化強度Man為:

(8)

式中:He為有效外加磁場;a為無磁滯磁化強度的形狀參數。

磁性材料所受的有效外加磁場He:

He=H+αM

(9)

式中:H為外加磁場;α為磁疇相互作用系數;αM為材料內部磁疇間相互作用產生的磁場。

無磁滯磁化強度Man,不可逆磁化強度Mirr和可逆磁化強度Mrev的關系為:

Mrev=c(Man-Mirr)

(10)

式中c為可逆系數。

不可逆磁化強度為Mirr:

(11)

通過聯立式(7)~式(11),可獲得J-A磁滯模型的主方程:

(12)

微分方程(12)表示磁化強度M和磁場強度H之間的關系。Ms、α、a、k、和c這5個參數共同確定了J-A磁滯模型。因此只要確定了GMM勵磁特性的這5個參數,便能得到標準的J-A磁滯模型。

但是經典的J-A磁滯模型沒有考慮材料的磁機耦合特性、渦流損耗等因素,因此只適用于靜態條件下[11]。

3.2 改進J-A磁滯模型

鑒于本文所設計的GMM-FBG電流傳感器應用于工頻條件下檢測交流電流,即準靜態條件下,所以經典J-A磁滯模型無法滿足GMM-FBG對傳感精度的要求,故提出可用于低頻磁化條件下的改進J-A磁滯模型。

根據式(9)可知,有效磁場He是由驅動磁場H和磁疇間相互耦合的平均磁場αM組成。當GMM受到機械應力的作用時,內部的磁化也會受到影響,產生磁機耦合的現象。考慮到材料的磁機耦合特性,對力-磁-熱多場耦合的GMM非線性本構模型[12]進行簡化,忽略溫度的影響,得到:

(13)

式中:χm為磁化曲線初始階段的磁化系數;λs為飽和磁滯伸縮系數;σs為飽和應力。

此處可將有效磁場He修正為:

(14)

根據式(7),可以得到如下微分方程:

(15)

將式(10)代入式(15),化簡可得:

(16)

當H=(Man-Mirr)<0時,J-A模型會產生負的磁化系數,為防止此現象產生,在此引入參數ξ:

ξ=0.5[1+sgn(H=(Man-Mirr))]

(17)

則總的磁化微分方程變為:

(18)

式(14)~(18)考慮了材料的磁機耦合特性,但沒有包含動態磁化時的渦流效應和額外損耗,因此這樣建立的磁滯模型只適用于低頻磁化條件下。

4 基于PSO算法的參數辨識及優化

4.1 PSO算法

PSO算法最早由Kennedy和Eberhart于1995年提出,該算法模仿鳥類覓食行為,將每只鳥抽象為一個粒子,由初始粒子的適應度值確定個體極值和群體極值,在每次迭代過程中,更新粒子速度和位置,算法所尋找的最優解即等同于鳥類尋找的食物[13]。粒子群算法具有群體智能、迭代格式簡單、收斂速度快等優點[14,15],因而廣泛應用于函數優化領域。

4.2 適應度函數

根據最小二乘法,設函數為:

(19)

式中:ym(t)為改進J-A模型中磁化強度的計算值;y(t)為磁化強度的實驗值;t為連續采樣時間。

實際應用中,采用離散時間n代替連續時間t,適應度函數變為:

(20)

將適應度函數E(θ)作為目標函數,求目標函數的最小值。適應度值越小,改進J-A磁滯模型的預測值與實驗值誤差越小,個體越優。

4.3 PSO算法參數影響的分析

在PSO算法中,種群數目m,迭代次數T,慣性權重w1、w2,加速度因子c1、c2對算法精度、運行速度均有影響。因此,要分析各參數對算法的影響。

4.3.1 種群數目m對算法的影響

令T=200,w1=0.8,w2=0.3,c1=c2=2。取不同的m值,每個值對算法運行10次,取預測數據和實驗數據的平均誤差eave,運行結果見表1。由運行結果可知:算法的誤差在種群數目為400時基本不變。因此,選擇m=400作為算法的運行參數。

表1 種群數目m的影響Tab.1 Impact of population number m

4.3.2 迭代次數T對算法的影響

令m=400,w1=0.8,w2=0.3,c1=c2=2。取不同的T值,每個值對算法運行10次,取預測數據和實驗數據的平均誤差eave,運行結果見表2。由運行結果可知:算法的誤差在迭代次數為100時基本不變。綜合考慮,可取T=150作為算法的運行參數。

表2 迭代次數T的影響Tab.2 Impact of the number of iterations T

4.3.3 人慣性權重w1,w2對算法的影響

令m=400,T=150,w2=0.3,c1=c2=2。取不同的w1值,每個值對算法運行10次,取預測數據和實驗數據的平均誤差eave,運行結果見表3。由運行結果可知:算法的誤差在種慣性權重w1為0.7附近時最小。因此,選擇w1=0.7作為算法的運行參數。

表3 慣性權重w1的影響Tab.3 Impact of inertia weight w1

令m=400,T=150,w1=0.7,c1=c2=2。取不同的w2值,每個值對算法運行10次,取預測數據和實驗數據的平均誤差eave,運行結果見表4。由運行結果可知:算法的誤差在種慣性權重w2為0.4附近時最小。因此,選擇w2=0.4作為算法的運行參數。

表4 慣性權重w2的影響Tab.4 Impact of inertia weight w2

4.3.4 加速度因子c對算法的影響

令m=400,T=150,w1=0.7,w2=0.4。設c1=c2=c,取不同的c值,每個c值對算法運行10次,取預測數據和實驗數據的平均誤差eave,運行結果見表5。由運行結果可知:算法的誤差在種加速度因子c為2.5附近時最小。因此,選擇c1=c2=2.5作為算法的運行參數。

表5 加速度因子c的影響Tab.5 Impact of acceleration factor c

綜上所述,選取m=400,T=150,w1=0.7、w2=0.4,c1=c2=2.5為算法的最佳參數組合,得到的參數辨識結果見表6。PSO適應度曲線見圖2。

表6 模型參數辨識結果Tab.6 Model parameter identification result

圖2 PSO算法適應度曲線Fig.2 PSO algorithm fitness curve

應用改進后J-A模型進行預測,模型預測仿真結果見圖3所示,相應的誤差曲線見圖4中藍色線條所示。在工頻的驅動下,改進后模型能較好地預測實際滯回曲線,模型誤差在5.5%以內。

圖3 改進后模型仿真與實驗對比及誤差明顯部分Fig.3 Comparison diagram of Improved model simulation and experimental and obvious part of the error diagram

圖4 改進后模型與分段模型誤差圖Fig.4 Error diagram of Improved model and segmented model

4.4 分段變系數模型的建立及參數優化

觀察改進后J-A模型預測仿真結果圖,可發現圖形中間部分預測值大多小于測量值而兩端部分預測值大多大于測量值,嚴重影響了模型精度,于是提出將模型分段進行參數識別。采取同上文的采樣方式,即1個周期內有40個采樣點,對其按照時間順序分為[1~7]、[8~16]、[17~27]、[28~36]、[37~41]5部分,其中[1~7]、[17~27]、[37~41]為1組,記為①;[8~16]、[28~36]為另1組,記為②;分別進行參數識別,分段形式見圖5。分段辨識結果見表7,分段模型在PSO算法下的適應度曲線見圖6。

圖5 分段形式圖Fig.5 Segmentation diagram

表7 分段模型參數辨識結果Tab.7 Segmented model parameter identification result

圖6 分段模型在PSO算法下的適應度曲線Fig.6 PSO algorithm fitness curve of segmented model

應用分段模型進行預測,預測仿真結果見圖7所示,相應的誤差曲線見圖4中紅色線條所示。圖4為改進后模型與分段模型誤差對比圖,由圖可見:模型分段后預測值與測量值的誤差明顯小于分段前,平均誤差由5.5%減小到2.5%以內,提高了模型的預測精度。分段后模型預測值與測量值之間相符度良好,能更好地預測實際的滯回曲線。

圖7 分段模型仿真與實驗對比圖Fig.7 Improved model simulation and experimental comparison diagram

5 實驗分析

為驗證改進模型的有效性,獲取實驗數據,搭建了交流傳感系統試驗臺,其示意圖見圖8所示。系統主要分為兩大部分,即測量部分和解調部分,兩部分之間通過FC/APC連接器相連。圖中,交流驅動源提供50 Hz下幅值可調節的激磁電流,直流電源產生直流偏置磁場,FBG波長解調儀測量光纖光柵輸出的中心波長的偏移量。

圖8 GMM-FBG交流傳感試驗臺示意圖Fig.8 GMM-FBG AC sensor test bench diagram

實驗中GMM采用的是尺寸為φ5 mm×30 mm的TbDyFe(T-D)棒,其飽和磁致伸縮系數λs為 1 263×10-6。 用環氧樹脂膠將FBG粘貼于T-D棒上,并且對T-D棒施加10 MPa的預應力。該T-D棒在10~60 kA/m的磁場強度范圍內線性度較好,因此應保證施加在GMM上的磁場強度在該線性范圍內。針對溫度對測量結果有交叉影響的問題,采用在T-D棒與勵磁線圈間加隔熱層的方法,同時采用基于2×2和3×3的非平衡馬赫-澤德干涉儀,可以解決溫度與測量交叉敏感的問題[16]。

驅動線圈施加50 Hz下的交流電流,調節調壓器,使電流從0逐次增大到3 A,每次增大0.5 A。通入交流電流對應波長偏移曲線如圖9所示。當給激磁線圈通入3 A的正弦交流電時,數據采集系統同步檢測到的輸入電流信號和波長偏移信號如圖10所示,由從圖可以看出輸入波長信號上寬下窄,這是由于GMM磁滯特性的存在而出現的滯回現象。

圖9 不同交變電流對應的波長偏移曲線Fig.9 Wavelength shift diagram corresponding to different alternating currents

圖10 電流與波長對比圖Fig.10 Current and wavelength contrast diagram

恒溫條件下保持偏置磁場不變,向驅動線圈中通入幅值為3 A的工頻交流電流,獲得傳感器的滯回曲線。分別用經典J-A模型和改進的分段J-A模型對系統的滯回進行模型預測,并得到相應的預測曲線。模型預測曲線與實測曲線對比如圖11所示,模型預測誤差曲線如圖12所示。由圖可以看出,在同樣通入幅值為3 A的工頻交流電流時,改進J-A模型能更好地預測滯回曲線,模型最大預測誤差由經典J-A模型的0.45 nm減小至0.1 nm,具有良好的預測能力。經過實驗驗證,應用改進J-A模型的系統具有良好的輸出特性,系統輸出能夠基本準確地反映被測電流信息,傳感系統電流測量靈敏度為0.067 nm/A,最小可測量的交流電流為0.1 A。

圖11 模型預測與實測對比圖Fig.11 Model prediction and measured contrast diagram

圖12 模型預測誤差曲線圖Fig.12 Model Prediction Error diagram

6 結 論

為解決GMM-FBG交流電流傳感器的磁滯非線性問題,提出了一種改進的J-A磁滯模型。采用PSO算法進行參數的辨識及優化,結合模型的具體情況,提出了分段變系數的方法對模型進行分段辨識。搭建了相應的GMM-FBG交流傳感系統實驗平臺,并運用改進后的J-A模型進行了仿真預測,驗證了模型的可靠性。實驗及仿真結果表明:改進后模型的誤差小于2.5%,電流的測量靈敏度為0.067 nm/A,最小可測量的交流電流為0.1 A。

猜你喜歡
磁場模型
一半模型
西安的“磁場”
當代陜西(2022年6期)2022-04-19 12:11:54
為什么地球有磁場呢
重要模型『一線三等角』
文脈清江浦 非遺“磁場圈”
華人時刊(2020年13期)2020-09-25 08:21:42
重尾非線性自回歸模型自加權M-估計的漸近分布
《磁場》易錯易混知識剖析
磁場的性質和描述檢測題
3D打印中的模型分割與打包
2016年春季性感磁場
Coco薇(2016年1期)2016-01-11 16:53:24
主站蜘蛛池模板: 国产小视频网站| 尤物午夜福利视频| 2021无码专区人妻系列日韩| 丝袜亚洲综合| 四虎影视国产精品| 人妻一本久道久久综合久久鬼色| 精品国产免费人成在线观看| 日本一区二区不卡视频| 免费一级无码在线网站| 国产高清在线精品一区二区三区 | 青草精品视频| 996免费视频国产在线播放| 2020亚洲精品无码| 国产成人免费| 亚洲欧美日韩高清综合678| 欧美伦理一区| 国产熟睡乱子伦视频网站| 性视频久久| 青青青视频免费一区二区| 无码一区中文字幕| 国产精品一区在线麻豆| 美女国内精品自产拍在线播放| 欧美日韩一区二区在线播放| 国产69精品久久| 国产精鲁鲁网在线视频| 久青草国产高清在线视频| 天堂在线www网亚洲| 亚洲aⅴ天堂| 国产精品亚洲一区二区三区z| 香蕉久久国产超碰青草| 18禁高潮出水呻吟娇喘蜜芽| 一本二本三本不卡无码| 色哟哟国产精品| 污网站免费在线观看| 在线色国产| 国产日韩av在线播放| 免费一级无码在线网站| 国产成人综合亚洲网址| 亚洲Aⅴ无码专区在线观看q| 欧美人人干| 亚洲人成成无码网WWW| 久久一本日韩精品中文字幕屁孩| 欧美中文字幕无线码视频| 成人国产小视频| 婷婷六月在线| 成人国产小视频| 高潮毛片免费观看| 欧美天天干| 农村乱人伦一区二区| 欧美亚洲中文精品三区| 国产三区二区| 亚洲欧美成aⅴ人在线观看| 国产黑丝视频在线观看| 国产女人综合久久精品视| 亚洲热线99精品视频| 久久a毛片| 精品综合久久久久久97超人该| AⅤ色综合久久天堂AV色综合| 日本欧美视频在线观看| 成人亚洲视频| 国产91av在线| 老司机午夜精品视频你懂的| 日韩午夜福利在线观看| 色综合a怡红院怡红院首页| 人人澡人人爽欧美一区| 亚洲精品综合一二三区在线| 久久窝窝国产精品午夜看片| 亚洲日韩高清在线亚洲专区| 伊在人亚洲香蕉精品播放 | 大陆国产精品视频| 91福利在线看| 伊人久久久久久久久久| 精品无码一区二区三区在线视频| 国产va视频| 久久久久青草线综合超碰| 国产拍揄自揄精品视频网站| 亚洲欧美人成电影在线观看| 青青草国产一区二区三区| 亚洲第一天堂无码专区| 日韩精品欧美国产在线| 欧美黄色网站在线看| 日韩av无码精品专区|