陳 晨,何邢益,牛慶合,2,于洪旭,解翔宇
超臨界CO2注入煤層對頂板巖石縱波速度及力學響應特征研究
陳 晨1,何邢益1,牛慶合1,2,于洪旭1,解翔宇1
(1. 石家莊鐵道大學 道路與鐵道工程安全保障省部共建教育部重點實驗室,河北 石家莊 050043;2. 河北省金屬礦山安全高效開采技術創新中心,河北 石家莊 050043)
深部煤層CO2地質封存與CH4強化開采(CO2–ECBM)技術在提高煤層氣采收率的同時可實現碳減排,具有能源和環境雙重效益。超臨界CO2(ScCO2)、水和煤層頂板之間的地球化學反應可改變其物理力學性質,增加CO2泄漏的風險。以沁水盆地胡底煤礦3號煤層頂板巖石為研究對象,開展“ScCO2–水–巖”地球化學反應模擬實驗,探討CO2煤層封存條件下ScCO2–水–頂板巖樣地球化學反應過程及其對巖石縱波速度和力學性質的影響。結果表明:ScCO2–水–巖之間化學溶蝕反應造成巖樣Ca、Mg元素顯著降低,促使巖樣表面形成孤立狀溶蝕孔,并隨著反應時間的持續,進而形成大量的“溶蝕坑”和“溶蝕縫”;增加了巖樣結構不連續性,使得聲波傳播路徑增大、能量損失加劇,導致縱波波速降低;ScCO2–水–巖反應后巖樣的峰值強度和彈性模量降低,泊松比升高,且三者之間的變化率與反應時間之間呈現Logistic函數的變化關系。對于胡底煤礦而言,ScCO2–水–巖反應過程中頂板力學性質的弱化不足以造成蓋層的破裂和CO2泄漏,但在評價煤層CO2封存安全性時,還應考慮煤層吸附膨脹應力對頂板的影響。
CO2地質封存;地球化學反應;縱波速度;力學性質;安全性
習近平主席在第七十五屆聯合國大會上提出CO2排放力爭2030年前達到峰值、努力爭取2060年前實現碳中和。實現碳達峰、碳中和,僅依靠能源效率提高和能源結構轉型遠遠不夠,需尋求新的碳減排途徑作為補充。作為化石能源大規模低碳利用的唯一技術選擇——碳捕集、利用與封存(CCUS)在世界范圍內備受關注[1-3]。CO2地質封存場所有油氣藏、鹽水層、煤層和水合物地層等[4]。深部煤層CO2地質存儲與CH4強化開采技術(CO2–ECBM)在實現碳封存的同時可提高煤層氣的采收率,融合溫室氣體減排與化石能源高效開發于一體,極具發展前景[5]。目前,我國已在沁水盆地進行了一系列CO2–ECBM示范工程,其有效性也得到了證實。
國內外學者在CO2–ECBM方面展開了大量的研究。實驗和分子模擬研究表明,煤對CO2和CH4具有競爭吸附效應,煤對CO2的吸附量約是CH4的4倍,CO2可有效驅替煤層中賦存的CH4[6-9];煤層中注入CO2可誘發基質膨脹效應,膨脹應變對滲透率有一定的控制作用[10-12];CO2注入后,CO2–水–煤發生的地球化學反應會對煤巖孔隙體積、孔徑分布、裂隙開度、裂隙數量產生影響,即影響孔裂隙結構特征[13-14];煤層注入CO2后,CO2對煤層力學性質具有負影響,并揭示了注入CO2煤層力學性能的弱化機理[15-17]。前人對CO2–ECBM機理、CO2注入煤層的應力應變效應、結構演化及力學性質響應等方面研究較為充分。煤層頂板是深部煤層CO2封存的蓋層,其完整性直接影響CO2封存效果和封存時間。學者們在研究CO2封存對煤層頂板的影響時,主要關注CO2–水–巖反應過程中元素溶濾規律、孔隙結構改造和滲透率[18–20]等方面,但較少考慮超臨界CO2(ScCO2)的作用,特別是超臨界CO2(ScCO2)注入后煤層頂板的聲波速度和力學性質動態演化研究較為缺乏。
沁水盆地是我國CO2–ECBM先導性試驗區,選取該盆地胡底煤礦煤層頂板巖樣為研究對象,通過模擬原位地層條件下ScCO2–水–巖地球化學反應,分析CO2煤層封存條件下煤層頂板礦物元素組成、聲波速度和力學性質的變化,探索ScCO2、水、煤層頂板之間的反應過程及對巖石物理力學性質的控制作用,以期為深部不可開采煤層CO2地質封存選址及安全性評價提供指導。
采集沁水盆地胡底煤礦3號煤層頂板樣品,其巖性為砂質泥巖,埋深約為780 m。依據本文相關實驗要求,制備粉末樣品、塊狀樣品和柱狀巖心作為實驗試樣,粉末巖樣粒度<200目(0.74 μm),塊狀樣品尺寸為1 cm×1 cm×1 cm,柱狀巖心直徑為50 mm、長度為100 mm的標準試件。所選柱狀巖心均一、無明顯裂隙,具有可對比性。
為了模擬原位地層條件下ScCO2–水–巖地球化學反應過程,采用TC-32型氣–液–固高溫高壓反應釜開展CO2-ECBM過程中ScCO2、水和煤層頂板巖石的物理模擬實驗(圖1)。參考地層原位溫/壓條件及CO2超臨界條件,本次實驗設計注氣壓力為10 MPa,溫度為40℃??紤]到實驗效率并參考Zhang Kun等[21]實驗設計,本文實驗時間分別設置為10、20、30、40和50 d。ScCO2–水–巖地球化學反應模擬實驗后,巖樣于60℃下在恒溫箱內干燥24 h,排出樣品內部的水分,降低水分對測試結果的影響,提高測試精度。

圖1 氣–液–固高溫高壓反應釜
利用D8 Advance X射線衍射儀和Quanta 250型掃描電鏡能譜儀(SEM-EDS)進行全巖礦物組成及元素分析,測試ScCO2–水–巖地球化學反應后樣品中元素的變化;采用PDS-SV型縱波速度測試儀,測試ScCO2–水–巖地球化學反應后樣品縱波速度的變化,每個樣品測試3次,并求取平均值,最大程度降低人為因素對實驗結果的影響;采用TFD–2000型巖石三軸試驗機測試ScCO2–水–巖地球化學反應后樣品的力學性質,具體流程如下:
①將巖心試樣安裝于三軸試驗機樣品倉內,以1 MPa/min的速率施加圍壓至10 MPa;
②待圍壓恒定之后,以0.1 mm/min的速率施加軸壓,直至試樣發生破壞;
③緩慢交替以2 kN/min的速率卸載軸壓和圍壓,避免卸載過程對試樣的二次損壞;
④記錄整個實驗過程的應力應變測試數據,獲得受載破壞過程中試樣的應力應變曲線。
ScCO2–水–巖反應過程中,粉末狀巖樣的元素變化應變曲線如圖2所示。根據XRD光譜鑒定結果,原始巖樣內部礦物成分主要包括長英質礦物(石英、鉀長石和斜長石)、碳酸鹽礦物(方解石和白云石)、黏土礦物(蒙脫石、高嶺石、綠泥石和伊利石)和少量黃鐵礦,分別占總礦物含量的53.8%、12.5%、31.9%和1.8%。采用SEM–EDS獲得巖樣元素含量,ScCO2–水–巖反應過程中巖樣中O、C、Si元素質量比增多,其質量比分別由47.08%、13.96%和0.89%增至50.03%、22.64%和4.66%;而Ca、Mg元素質量比減少,分別從36.98%和1.09%降至22.51%和0.16%。

圖2 不同ScCO2–水–巖反應時間下巖樣元素含量變化
此外,ScCO2–水–巖反應后,巖樣的縱波速度和應力應變曲線也發生了改變??v波速度p平均從2 667.67 m/s降低至2 200.67 m/s,且縱波速度和反應時間()之間呈現非線性變化的關系(圖3)。不同ScCO2–水–巖反應時間下,受載破壞過程中巖樣的應力應變曲線形態不同,隨反應時間的增長,應力應變曲線形態“由陡至緩”(圖4),證實了ScCO2–水–巖反應對巖石力學性質的控制作用。

圖3 不同ScCO2–水–巖反應時間下縱波速度變化

圖4 不同ScCO2–水–巖反應時間下巖樣受載破壞過程應力應變曲線
ScCO2注入煤層后,與煤層及煤層頂底板中水結合形成H2CO3溶液,進而與煤層頂板發生一系列物理化學反應。反應后樣品通過掃描電鏡能譜分析發現,實驗中Ca、Mg元素質量比減少,證實方解石、白云石和斜長石發生了溶解,Ca、Mg元素淋濾進入溶液中(圖2)。O、C、Si元素質量比增加,說明巖樣中有機質和石英等難溶物質未參與ScCO2–水–巖反應,其質量比的增加是可溶礦物溶解引起的。另外,ScCO2–水–巖反應過程中,礦物元素呈現階段性變化,在反應前30 d礦物溶解現象明顯,而在后20 d元素變化趨于穩定,意味著ScCO2–水–巖反應減弱。
礦物的溶蝕引起巖樣表面形貌發生變化(圖5)。ScCO2–水–巖反應10 d后,巖樣表面溶蝕形成大量的小孔隙,但仍可見原始巖樣的表面特征;隨后,溶蝕孔隙連通、擴大,在可溶礦物集中區域形成“溶蝕坑”,使得巖樣表面粗糙不平;反應50 d后,溶蝕現象進一步向巖樣內部發展,形成大量的“溶蝕縫”。另外,ScCO2–水–巖反應也可形成新的礦物,如酸性溶液與長石等可溶性礦物反應,生成高嶺石等次生礦物,進而導致巖樣孔隙表面形貌更為復雜[22]。

圖5 ScCO2–水–巖反應過程中巖樣表面形貌變化
超聲波在巖石中的傳播速度與巖石的物理性質(內部孔隙和裂隙的發育程度、應力狀態等)密切相關。而巖石的孔裂隙發育情況可影響其力學性質,因此,學者們常通過測試巖石的縱波速度來分析巖石的內部結構及力學等特征信息[23]。
ScCO2–水–巖反應過程中巖樣的縱波速度呈現階段性變化,反應時間為10 d內,縱波速度變化較??;反應時間為10~30 d,縱波速度迅速降低,反應時間大于30 d后,縱波速度逐步趨于穩定。
當ScCO2與水接觸煤層頂板之后,由于頂板巖石中含有大量的黏土礦物,堵塞流體運移通道,酸性溶液難以進入巖石內部,故在ScCO2–水–巖反應初期,巖樣的縱波速度基本不變;隨后,ScCO2和水進入巖樣內部,加劇三者之間的化學溶蝕反應,促使巖樣中溶蝕孔隙增多。另外,ScCO2和水注入誘發黏土礦物溶脹,導致層間結合力變弱,黏土礦物層與層之間分開,進一步致使孔隙率增大[24]。與此同時,聲波在多孔巖石結構中傳播的反射和折射次數顯著增加,其傳播路徑增大[25],同時,溶蝕孔隙數量的增大也造成縱波在傳播過程中能量的損失加劇,最終共同促使巖樣的聲波速度隨ScCO2–水–巖反應時間的延長而迅速降低;當可溶礦物被溶蝕完成之后,三者之間的地球化學反應變弱,巖樣縱波速度幾乎不變。
峰值強度()、彈性模量()和泊松比()常用來表征巖石的力學性質?;谑茌d過程中應力應變曲線,可獲得巖樣的上述3種力學性質。其中,ScCO2–水–巖反應過程中巖樣峰值強度從220.47 MPa降至140.20 MPa,彈性模量從3.86 GPa降至2.55 GPa,分別降低36.41%和33.94%;而泊松比從0.305增至0.481,提高57.70%。這一結果證實,ScCO2–水–巖反應造成巖樣力學參數變化,且隨著反應時間的增加,3個主要力學參數呈單調遞增或單調遞減的變化趨勢,如圖6所示。
為建立ScCO2–水–巖反應時間和力學性質之間的關系,預測反應過程中巖樣的力學參數,本文引入峰值強度變化率(Δ)、彈性模量變化率(Δ)和泊松比變化率(Δ)3個表征參數:

圖6 ScCO2–水–巖反應過程中S、E和μ的變化



式中:0、0和0分別為初始巖樣的峰值強度、彈性模量和泊松比。
Δ、Δ和Δ隨反應時間的演化關系如圖7所示,將Δ、Δ和Δ與ScCO2–水–巖反應時間的關系采用Logistic函數擬合。Logistic函數擬合的相關系數均高于0.991,具有較高匹配性,說明Logistic函數可用來預測ScCO2–水–巖反應過程中巖樣的力學參數。與縱波速度變化規律一致,巖樣力學參數變化率也呈現“緩慢–快速–緩慢”的階段性變化趨勢,可見,巖樣的縱波速度和力學參數之間存在較高的相關性[26-27]。
ScCO2注入煤層后,ScCO2和地層水溶蝕頂板巖石,弱化其力學性能[28]。本文采用Mohr–Coulomb準則來判斷巖石是否發生破裂,巖石發生剪切破壞的判據[29]為:

式中:σ1和σ3分別為最大主應力和最小主應力;φ為巖石的內摩擦角;σc為巖石的抗壓強度。當F=0時,巖石達到剪切破壞的臨界條件。
依據Meng Zhaoping等[30]研究結果,研究區3號煤層頂板的最大、最小主應力分別為21.0、14.8 MPa;依據Liang Yunpei等[31]、Zhang Jiangong等[32]研究結果,研究區域3號煤層頂板巖石內摩擦角在15o~22o。經計算,為21.1~32.4 MPa,遠大于零,故未達到巖石破壞條件。因此,雖然ScCO2–水–巖反應促使頂板力學參數顯著降低,但并不會引起巖層破裂。
本次研究選取的煤層頂板巖石含有一定量的黏土礦物,黏土礦物吸水后會發生膨脹。研究發現,砂質泥巖吸水膨脹量可達8%~12%[33],可一定程度上阻礙ScCO2和地層水的滲流,弱化ScCO2–水–巖地球化學反應對頂板力學性質的影響。另外,該研究區域地質構造簡單,頂板巖層完整性好,因此,該區域煤層頂板具有較好的封蓋性,CO2封存過程中頂板巖層發生破裂、CO2泄漏的風險較小。
然而,煤吸附CO2之后會發生基質膨脹,特別是深部煤層具有較高的地應力[34],在受限條件下,煤層吸附CO2可產生較大的膨脹應力(可達20 MPa)[35],在膨脹應力作用下可能導致頂板發生局部破裂。因此,在評價深部煤層CO2封存安全性時,還應關注煤層膨脹應力對頂板的影響。
a. ScCO2、水注入煤層后,導致頂板巖石發生地球化學反應,反應后巖樣中Ca、Mg元素明顯降低,證實ScCO2–水–巖之間發生了強烈的化學溶蝕作用。化學溶蝕反應改變了巖樣的表面形貌,隨著ScCO2–水–巖反應時間的增加,樣品表面先形成孤立狀溶蝕孔,隨后溶蝕孔逐步連通、擴大,形成“溶蝕坑”,最后,ScCO2和水滲入巖樣內部,形成大量的“溶蝕縫”。
b. ScCO2–水–巖反應過程中樣品的縱波速度呈現階段性變化,隨著反應時間的增加,先緩慢減小,再快速減小,最后趨于穩定。三者反應導致巖樣中溶蝕孔隙增多,巖樣內部結構不連續性增強,使得聲波傳播路徑增大、能量損失加劇,縱波波速降低;隨著巖樣中可溶礦物的逐漸減少,縱波速度逐漸穩定。
c. ScCO2–水–巖反應后,巖樣的峰值強度和彈性模量降低,泊松比升高。峰值強度、彈性模量及泊松比變化率隨反應時間呈現Logistic函數的變化關系。研究區內煤層頂板完整性好,ScCO2–水–巖反應過程中頂板力學性質的弱化不足以造成蓋層的破裂和CO2泄漏,但在評價煤層CO2封存安全性時,還應考慮煤層吸附膨脹應力對頂板造成的影響。
[1] JIANG Kai,ASHWORTH P. The development of carbon capture utilization and storage(CCUS) research in China:A bibliometric perspective[J]. Renewable and Sustainable Energy Reviews, 2020:110521.
[2] 秦積舜,李永亮,吳德彬,等. CCUS全球進展與中國對策建議[J]. 油氣地質與采收率,2020,27(1):20–28.
QIN Jishun,LI Yongliang,WU Debin,et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency,2020,27(1):20–28.
[3] 梁衛國,吳迪,趙陽升. CO2驅替煤層CH4試驗研究[J]. 巖石力學與工程學報,2010,29(4):665–673.
LIANG Weiguo,WU Di,ZHAO Yangsheng. Experimental study of coalbeds methane replacement by carbon dioxide[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(4):665–673.
[4] 任韶然,李德祥,張亮,等. 地質封存過程中CO2泄漏途徑及風險分析[J]. 石油學報,2014,35(3):591–601.
REN Shaoran,LI Dexiang,ZHANG Liang,et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica,2014,35(3):591–601.
[5] 桑樹勛. 二氧化碳地質存儲與煤層氣強化開發有效性研究述評[J]. 煤田地質與勘探,2018,46(5):1–9.
SANG Shuxun. Research review on technical effectiveness of CO2geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1–9.
[6] 張子戌,劉高峰,張小東,等. CH4/CO2不同濃度混合氣體的吸附–解吸實驗[J]. 煤炭學報,2009,34(4):551–555.
ZHANG Zixu,LIU Gaofeng,ZHANG Xiaodong,et al. Adsorption-desorption experiments of CH4and CO2with different consistency[J]. Journal of China Coal Society,2009,34(4):551–555.
[7] 唐書恒,湯達禎,楊起. 二元氣體等溫吸附實驗及其對煤層甲烷開發的意義[J]. 地球科學,2004,29(2):219–223.
TANG Shuheng,TANG Dazhen,YANG Qi. Binary-component gas adsorption isotherm experiments and their significance to exploitation of coalbed methane[J]. Earth Science,2004,29(2):219–223.
[8] 涂乙,謝傳禮,李武廣,等. 煤層對CO2、CH4和N2吸附/解吸規律研究[J]. 煤炭科學技術,2012,40(2):70–72.
TU Yi,XIE Chuanli,LI Wuguang,et al. Study on CO2,CH4and N2adsorption and desorption law of seam[J]. Coal Science and Technology,2012,40(2):70–72.
[9] GENSTERBLUM Y,BUSCH A,KROOSS B M. Molecular concept and experimental evidence of competitive adsorption of H2O,CO2and CH4on organic material[J]. Fuel,2014,115:581–588.
[10] 賀偉. 不同煤階煤體吸附儲存CO2膨脹變形特性試驗研究[D]. 太原:太原理工大學,2018.
HE Wei. Experimental study on swelling characteristics of CO2adsorption and storage in different coal rank[D]. Taiyuan:Taiyuan University of Technology,2018.
[11] 牛慶合,曹麗文,周效志. CO2注入對煤儲層應力應變與滲透率影響的實驗研究[J]. 煤田地質與勘探,2018,46(5):43–48.
NIU Qinghe,CAO Liwen,ZHOU Xiaozhi. Experimental study of the influences of CO2injection on stress-strain and permeability of coal reservoir[J]. Coal Geology & Exploration,2018,46(5):43–48.
[12] HEWAGE S,PERERA S,PATHEGAMA R. Modelling of fully-coupled CO2diffusion and adsorption-induced coal matrix swelling[J]. Fuel,2019,262:116486.
[13] 劉長江,桑樹勛,RUDOLPH V. 模擬CO2埋藏不同煤級煤孔隙結構變化實驗研究[J]. 中國礦業大學學報,2010,39(4):496–503.
LIU Changjiang,SANG Shuxun,RUDOLPH V. Simulation experiment on the changes of pore structure in different ranks coals during the CO2geosequestration[J]. Journal of China University of Mining & Technology,2010,39(4):496–503.
[14] PIRZADA M A,ZOORABADI M,LAMEI RAMANDI H,et al. CO2sorption induced damage in coals in unconfined and confined stress states:A micrometer to core scale investigation[J]. International Journal of Coal Geology,2018,198:167–176.
[15] 陳德飛. 氣體吸附對煤巖滲流及力學性質的影響[D]. 成都:西南石油大學,2014.
CHEN Defei. Influence of gas adsorption on seepage and mechanical properties of coal-rock[D]. Chengdu:Southwest Petroleum University,2014.
[16] MASOUDIAN M S,AIREY D W,EL-Zein A. Experimental investigations on the effect of CO2on mechanics of coal[J]. International Journal of Coal Geology,2014,128/129:12–23.
[17] NIU Qinghe,CAO Liwen,SANG Shuxun,et al. Experimental study on the softening effect and mechanism of anthracite with CO2injection[J]. International Journal of Rock Mechanics and Mining Sciences,2021,138:104614.
[18] 王開然. 煤層系統CO2–水–煤(巖)地球化學作用及其對蓋層封閉性演化的影響[D]. 長春:吉林大學,2016.
WANG Kairan. CO2-H2O-coal(rock) geochemical interaction in coal seam and its effects on the evolution of caprock sealing ability[D]. Changchun:Jilin University,2016.
[19] JAYASEKARA D W,RANJITH P G,WANNIARACHCHI W A M,et al. Effect of salinity on supercritical CO2permeability of caprock in deep saline aquifers:An experimental study[J]. Energy,2020,191:116486.
[20] WANG Kairan,XU Tianfu,WANG Fugang,et al. Experimental study of CO2-brine-rock interaction during CO2sequestration in deep coal seams[J]. International Journal of Coal Geology,2016,154/155:265–274.
[21] ZHANG Kun,SANG Shuxun,ZHOU Xiaozhi,et al. Influence of supercritical CO2-H2O-caprock interactions on the sealing capability of deep coal seam caprocks related to CO2geological storage:A case study of the silty mudstone caprock of coal seam No.3 in the Qinshui Basin,China[J]. International Journal of Greenhouse Gas Control,2021,106:103282.
[22] 朱世良,邵麗偉,周效志,等. 煤基CO2地質封存對頂板裂縫導流能力影響實驗研究[J]. 煤田地質與勘探,2021,49(3):128–132.
ZHU Shiliang,SHAO Liwei,ZHOU Xiaozhi,et al. Experimental study on influence of coal-based CO2geological storage on roof fracture conductivity[J]. Coal Geology & Exploration,2021,49(3):128–132.
[23] 熊健,黃林林,劉向君,等. 高溫影響下頁巖巖石的聲學特性實驗研究[J]. 西南石油大學學報(自然科學版),2019,41(6):35–43.
XIONG Jian,HUANG Linlin,LIU Xiangjun,et al. An experiment study on the effect of high temperature on the acoustic properties of the shale[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2019,41(6):35–43.
[24] 邵明申,李黎,李最雄. 龍游石窟砂巖在不同含水狀態下的彈性波速與力學性能[J]. 巖石力學與工程學報,2010,29(增刊2):3514–3518.
SHAO Mingshen,LI Li,LI Zuixiong. Elastic wave velocity and mechanical properties of sandstone under different water contents at Longyou Grottoes[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(Sup.2):3514–3518.
[25] 董振國,趙偉,任璽寧,等. 聲波測井在煤巖彈性力學分析中的應用[J]. 煤田地質與勘探,2019,47(增刊1):104–112.
DONG Zhenguo,ZHAO Wei,REN Xining,et al. Application of acoustic logging in elastic mechanics analysis of coal and rock[J]. Coal Geology & Exploration,2019,47(Sup.1):104–112.
[26] 孟召平,張吉昌,TIEDEMANN J,等. 煤系巖石物理力學參數與聲波速度之間的關系[J]. 地球物理學報,2006,49(5):1505–1510.
MENG Zhaoping,ZHANG Jichang,TIEDEMANN J,et al. Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks[J]. Chinese Journal of Geophysics,2006,49(5):1505–1510.
[27] ZHU Zhennan,GAMAGE R P,TIAN Hong,et al. Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating and water cooling treatments[J]. Renewable Energy,2021,168:375–392.
[28] 劉明澤,白冰,李小春,等. CO2–水兩相條件下砂巖致裂特征與有效應力模型的試驗研究[J]. 巖石力學與工程學報,2016,35(2):250–259.
LIU Mingze,BAI Bing,LI Xiaochun,et al. Experimental study of fracturing characteristics of sandstone under CO2-water two-phase condition and effective stress model[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):250–259.
[29] 朱立. CO2地下封存煤/蓋層變形和破裂演化特征研究[D]. 徐州:中國礦業大學,2014.
ZHU Li. Deformation and fractures evolution characteristics of coal and caprock during CO2sequestration[D]. Xuzhou:China University of Mining and Technology,2014.
[30] MENG Zhaoping,ZHANG Jincai,WANG Rui. In-situ stress,pore pressure and stress-dependent permeability in the southern Qinshui Basin[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(1):122–131.
[31] LIANG Yunpei,DAI Jiahui,ZOU Quanle,et al. Ignition mechanism of gas in goaf induced by the caving and friction of sandstone roof containing pyrite[J]. Process Safety and Environmental Protection,2019,124:84–96.
[32] ZHANG Jiangong,MIAO Xiexing,HUANG Yanli,et al. Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application[J]. International Journal of Mining Science and Technology,2014(3):349–352.
[33] ZHANG C L,WIECZOREK K,XIE M L. Swelling experiments on mudstones[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(1):44–51.
[34] ZHANG Yihuai,ZHANG Zike,SARMADIVALEH M,et al. Micro-scale fracturing mechanisms in coal induced by adsorption of supercritical CO2[J]. International Journal of Coal Geology,2017,175:40–50.
[35] 刑俊旺. 超臨界CO2與CH4吸附解吸引起煤體變形特性的對比研究[D]. 太原:太原理工大學,2018.
XING Junwang. Comparative study on adsorption and desorption-induced coal deformation characteristics of supercritical CO2,and CH4[D]. Taiyuan:Taiyuan University of Technology,2018.
Study on P-wave velocity and mechanical response characteristic of rock in coal seam roof with supercritical CO2injection
CHEN Chen1, HE Xingyi1, NIU Qinghe1,2, YU Hongxu1, XIE Xiangyu1
(1. Key Laboratory of Roads and Railway Engineering Safety Control, Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang 050043, China; 2. Hebei Province Technical Innovation Center of Safe and Effective Mining of Metal Mines, Shijiazhuang 050043, China)
Deep coal seam CO2geological sequestration and enhanced CH4recovery(CO2-ECBM) can both increase CBM recovery and achieve carbon emission reduction, possessing dual benefits of energy and environment. The geochemical reactions between supercritical CO2(ScCO2), water and coal seam roof can change its physical-mechanical properties and increase the risk of CO2leakage. In this paper, taking the roof rock of No.3 coal seam in Hudi Mine from Qinshui Basin as the research area, the ScCO2-water-rock geochemical reaction simulation experiment was carried out to explore the geochemical reaction process of ScCO2-water-roof under the condition of CO2coal seam storage and its influence on P-wave velocity and mechanical properties of rock. Results show that the chemical dissolution reaction between ScCO2, water and rock results in the significant decrease of Ca and Mg elements in the rock samples, which promotes the formation of isolated dissolution pores. And extensive “corrosion pits” and “corrosion fractures” are developed as the reaction time goes on. ScCO2-water-rock reaction raises the discontinuity of internal structure of rock samples, increases the propagation path and energy loss of acoustic wave, and reduces the P-wave velocity. After ScCO2-water-rock reaction, the peak strength and elastic modulus of rock samples decrease, while the Poisson’s ratio increases. There is a logistic function relationship between peak strength change rate, elastic modulus change rate and Poisson’s ratio change rate with reaction time. For this study area, the change of roof mechanical properties in the process of ScCO2-water-rock reaction is not enough to cause cap rock fractures and CO2leakage, while the influence of adsorption swelling stress should also be emphasized when evaluating the security of CO2geological storage in a coal seam.
CO2geological storage; geochemical reaction; P-wave velocity; mechanical property; security

移動閱讀
語音講解
P618.11
A
1001-1986(2021)05-0098-07
2021-05-28;
2021-08-06
國家自然科學基金項目(U1967208);河北省高等學校科學技術研究項目(QN2021129);石家莊鐵道大學大學生創新創業訓練計劃項目(S202010107082)
陳晨,2000年生,女,山西臨汾人,從事CO2地質封存過程中的巖石力學特征研究. E-mail:1458066397@qq.com
牛慶合,1990年生,男,河南洛陽人,博士,講師,從事CO2地質封存方面的研究工作. E-mail:qinghniu@163.com
陳晨,何邢益,牛慶合,等. 超臨界CO2注入煤層對頂板巖石縱波速度及力學響應特征研究[J]. 煤田地質與勘探,2021,49(5):98–104. doi: 10.3969/j.issn.1001-1986.2021.05.011
CHEN Chen,HE Xingyi,NIU Qinghe,et al.Study on P-wave velocity and mechanical response characteristic of rock in coal seam roof with supercritical CO2injection[J].Coal Geology & Exploration,2021,49(5):98–104. doi: 10.3969/j.issn.1001-1986.2021.05.011
(責任編輯 范章群)