999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SHARP ERROR ESTIMATE OF BDF2 SCHEME WITH VARIABLE TIME STEPS FOR LINEAR REACTION-DIFFUSION EQUATIONS

2021-11-24 11:11:36ZHANGJiweiZHAOChengchao
數學雜志 2021年6期

ZHANG Ji-wei,ZHAO Cheng-chao

(1.School of Mathematics and Statistics,and Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan 430072,China)

(2.Beijing Computational Science Research Center,Beijing 100193,China)

Abstract:While the variable time-steps two-step backward differentiation formula(BDF2)is valuable and widely used to capture the multi-scale dynamics of model solutions,the stability and convergence of BDF2 with variable time steps still remain incomplete.In this work,we revisit BDF2 scheme for linear diffusion-reaction problem.By using the technique of the discrete orthogonal convolution(DOC)kernels developed in[11],and introducing the concept of the discrete complementary convolution(DCC)kernels,we present that BDF2 scheme is unconditionally stable under a adjacent time-step ratio condition:0

Keywords:BDF2;DOC;DCC;variable time steps;sharp error estimate

1 Introduction

In this paper,we revisit two-step backward differentiation formula(BDF2)with variable time steps for solving the linear reaction-diffusion equation:

where the reaction coefficient κ ∈ R,and Ω is a bounded domain.

Set the generally nonuniform time levels 0=t0

Here rmaxis the positive real solution of x3=(2x+1)2,see the details in Lemma 2.1.

For the sharp and robust convergence,we further express the local truncated error by an error convolution structure(ECS)with the BDF2 kernel,see more details in Lemma 3.9.Using the definition of DOC kernels,the ECS can significantly circumvent the complex calculation of BDF2 and DOC kernels.Thus,we have the sharp and robust second-order convergence under the ratio condition A1(i.e.0

The organization of the paper is given as follows.In Section 2,we present the semipositive definition of BDF2 kernels under condition A1,and the properties of DOC and DCC kernels.The stability analysis and second-order convergence of the BDF2 scheme(1.3)are given in Section 3.Numerical examples are provided to demonstrate our theoretical analysis.

2 The Properties of BDF2,DOC and DCC Kernels

In this section,we first consider the positive semi-definiteness of BDF2 convolution kernels and the properties of DOC and DCC kernels,which are useful for the analysis of stability and convergence of BDF2 scheme in section 3.

2.1 Positive Semi-Definiteness of BDF2 Convolution Kernels

2.2 The Relationship Between DOC and DCC Kernels

2.3 Properties of DOC and DCC Kernels

3 Stability and Convergence Analysis for BDF2 Scheme

3.1 Energy Stability

It is known that problem(1.1)with κ≤0 has the property of energy dissipation.We now present the corresponding energy stability for BDF2 scheme(1.4).To the end,we define a(modified)discrete energy Ekby

The proof is complete.

3.2 Stability Analysis of the Discrete Scheme

3.3 Convergence Analysis of the Discrete Scheme

Table 1 Numerical accuracy on random time mesh for κ=0

Table 2 Numerical accuracy on random time mesh for κ=4

4 Numerical Experiment

From the current data and more tests not listed here,we see that the BDF2 scheme is robustly stable and convergent in the second order,which is consistent with our theoretical analysis.Due to the time step is randomly chosen without any constrain condition,one can see the first-step BDF1 does not bring the loss of accuracy,which again implies the effectiveness of our analysis.

5 Conclusion

With the applications of DCC and DOC kernels,we present the stability and convergence analysis of BDF2 scheme with variable time-steps under condition A1.We extend the adjacent time step to a new ratio rk:= τk/τk?1≤ rmax=4.8645,and obtain the robust and sharp second-order convergence without the extra constrained condition on ratios in[11].Our convergence results shows that the BDF1 scheme for first step is enough to have the globally optimal second-order convergence.This conclusion removes the doubt of the choice of the first level solution with first-order accuracy.Numerical results are provided to demonstrate the theoretical analysis.

The technique developed in this work can be extended to a family of multi-step schemes with variable time-steps for the stability and convergence analysis.The main challenge is how to explore the useful properties of DOC and DCC kernels,and multi-step schemes’s kernels.

Acknowledgements

The authors would like to thank professor Tao Tang,professor Zhimin Zhang and Dr.Honglin Liao for their valuable discussions on this topic.

主站蜘蛛池模板: 亚卅精品无码久久毛片乌克兰 | 国产精品粉嫩| 国产99在线观看| 国产黄色片在线看| 亚洲日本韩在线观看| 亚洲欧美精品日韩欧美| 久久综合九九亚洲一区 | 日韩毛片免费视频| 一级毛片免费观看不卡视频| 久久香蕉国产线看观看精品蕉| 99视频只有精品| 久久网综合| 在线日韩日本国产亚洲| 欧美中文字幕一区| 精品一区二区久久久久网站| 亚洲黄色成人| 在线不卡免费视频| 国产福利小视频在线播放观看| 国产农村精品一级毛片视频| 无码高潮喷水在线观看| 中文字幕一区二区视频| 乱人伦中文视频在线观看免费| 亚洲高清资源| 伊人天堂网| 亚洲精品制服丝袜二区| 亚洲天堂网在线视频| www.亚洲色图.com| 最新亚洲人成网站在线观看| 亚洲国产天堂久久综合| а∨天堂一区中文字幕| 国产剧情国内精品原创| 亚洲午夜天堂| 亚洲黄色高清| 波多野结衣亚洲一区| 先锋资源久久| 亚洲毛片一级带毛片基地| 国产福利一区二区在线观看| 欧美亚洲国产精品第一页| AV老司机AV天堂| 久久精品中文无码资源站| 欧美一区二区人人喊爽| 小说 亚洲 无码 精品| 国产精品视频猛进猛出| 久久国产香蕉| 国产色网站| 亚洲AV电影不卡在线观看| 国产精品伦视频观看免费| 国产精品55夜色66夜色| 中国国产A一级毛片| 亚洲,国产,日韩,综合一区| 黄色污网站在线观看| 精品国产91爱| 亚洲日本中文字幕乱码中文| 日韩成人免费网站| 亚洲日韩久久综合中文字幕| 欧美自慰一级看片免费| 欧美国产视频| 亚洲免费播放| 视频在线观看一区二区| 亚洲成在线观看| 久久不卡国产精品无码| 亚洲国产成熟视频在线多多| 国产一区二区三区精品久久呦| 欧美a级完整在线观看| 午夜啪啪福利| 国产91成人| 日韩二区三区无| 亚洲精品自拍区在线观看| 一级成人a做片免费| 日本在线欧美在线| 中文字幕久久波多野结衣| 在线播放真实国产乱子伦| 五月激情综合网| 99视频精品在线观看| 国产视频自拍一区| 国产成人精品一区二区不卡| 四虎成人免费毛片| 狼友视频国产精品首页| 亚洲不卡影院| 国产午夜福利在线小视频| 亚洲成人精品久久| 国产91导航|