999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SHARP ERROR ESTIMATE OF BDF2 SCHEME WITH VARIABLE TIME STEPS FOR LINEAR REACTION-DIFFUSION EQUATIONS

2021-11-24 11:11:36ZHANGJiweiZHAOChengchao
數學雜志 2021年6期

ZHANG Ji-wei,ZHAO Cheng-chao

(1.School of Mathematics and Statistics,and Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan 430072,China)

(2.Beijing Computational Science Research Center,Beijing 100193,China)

Abstract:While the variable time-steps two-step backward differentiation formula(BDF2)is valuable and widely used to capture the multi-scale dynamics of model solutions,the stability and convergence of BDF2 with variable time steps still remain incomplete.In this work,we revisit BDF2 scheme for linear diffusion-reaction problem.By using the technique of the discrete orthogonal convolution(DOC)kernels developed in[11],and introducing the concept of the discrete complementary convolution(DCC)kernels,we present that BDF2 scheme is unconditionally stable under a adjacent time-step ratio condition:0

Keywords:BDF2;DOC;DCC;variable time steps;sharp error estimate

1 Introduction

In this paper,we revisit two-step backward differentiation formula(BDF2)with variable time steps for solving the linear reaction-diffusion equation:

where the reaction coefficient κ ∈ R,and Ω is a bounded domain.

Set the generally nonuniform time levels 0=t0

Here rmaxis the positive real solution of x3=(2x+1)2,see the details in Lemma 2.1.

For the sharp and robust convergence,we further express the local truncated error by an error convolution structure(ECS)with the BDF2 kernel,see more details in Lemma 3.9.Using the definition of DOC kernels,the ECS can significantly circumvent the complex calculation of BDF2 and DOC kernels.Thus,we have the sharp and robust second-order convergence under the ratio condition A1(i.e.0

The organization of the paper is given as follows.In Section 2,we present the semipositive definition of BDF2 kernels under condition A1,and the properties of DOC and DCC kernels.The stability analysis and second-order convergence of the BDF2 scheme(1.3)are given in Section 3.Numerical examples are provided to demonstrate our theoretical analysis.

2 The Properties of BDF2,DOC and DCC Kernels

In this section,we first consider the positive semi-definiteness of BDF2 convolution kernels and the properties of DOC and DCC kernels,which are useful for the analysis of stability and convergence of BDF2 scheme in section 3.

2.1 Positive Semi-Definiteness of BDF2 Convolution Kernels

2.2 The Relationship Between DOC and DCC Kernels

2.3 Properties of DOC and DCC Kernels

3 Stability and Convergence Analysis for BDF2 Scheme

3.1 Energy Stability

It is known that problem(1.1)with κ≤0 has the property of energy dissipation.We now present the corresponding energy stability for BDF2 scheme(1.4).To the end,we define a(modified)discrete energy Ekby

The proof is complete.

3.2 Stability Analysis of the Discrete Scheme

3.3 Convergence Analysis of the Discrete Scheme

Table 1 Numerical accuracy on random time mesh for κ=0

Table 2 Numerical accuracy on random time mesh for κ=4

4 Numerical Experiment

From the current data and more tests not listed here,we see that the BDF2 scheme is robustly stable and convergent in the second order,which is consistent with our theoretical analysis.Due to the time step is randomly chosen without any constrain condition,one can see the first-step BDF1 does not bring the loss of accuracy,which again implies the effectiveness of our analysis.

5 Conclusion

With the applications of DCC and DOC kernels,we present the stability and convergence analysis of BDF2 scheme with variable time-steps under condition A1.We extend the adjacent time step to a new ratio rk:= τk/τk?1≤ rmax=4.8645,and obtain the robust and sharp second-order convergence without the extra constrained condition on ratios in[11].Our convergence results shows that the BDF1 scheme for first step is enough to have the globally optimal second-order convergence.This conclusion removes the doubt of the choice of the first level solution with first-order accuracy.Numerical results are provided to demonstrate the theoretical analysis.

The technique developed in this work can be extended to a family of multi-step schemes with variable time-steps for the stability and convergence analysis.The main challenge is how to explore the useful properties of DOC and DCC kernels,and multi-step schemes’s kernels.

Acknowledgements

The authors would like to thank professor Tao Tang,professor Zhimin Zhang and Dr.Honglin Liao for their valuable discussions on this topic.

主站蜘蛛池模板: 亚洲无码视频图片| 红杏AV在线无码| 爆乳熟妇一区二区三区| 91精品国产91欠久久久久| 美女扒开下面流白浆在线试听 | 国产一区二区三区日韩精品| 欧美午夜在线视频| 国模私拍一区二区三区| 老熟妇喷水一区二区三区| 国产精品漂亮美女在线观看| 日本手机在线视频| 亚洲欧美日韩另类| 国产 日韩 欧美 第二页| 精品久久久久久中文字幕女| 夜精品a一区二区三区| 嫩草在线视频| 欧美在线天堂| 久久精品国产国语对白| 国产毛片片精品天天看视频| 在线国产欧美| 久久伊人色| 亚洲综合专区| 色综合天天操| 亚洲一区国色天香| 欧美亚洲一区二区三区在线| 婷婷五月在线视频| 老汉色老汉首页a亚洲| 99久久无色码中文字幕| 国产簧片免费在线播放| 无码电影在线观看| 一区二区三区四区在线| 中文字幕在线欧美| 日韩欧美成人高清在线观看| 国产主播一区二区三区| 巨熟乳波霸若妻中文观看免费| 99re在线视频观看| 成人亚洲天堂| 2022精品国偷自产免费观看| 无码高清专区| 亚洲AV无码一二区三区在线播放| 欧美色香蕉| 国内精品视频在线| 日本精品一在线观看视频| 日韩第一页在线| 欧美人在线一区二区三区| yjizz视频最新网站在线| 午夜精品久久久久久久无码软件| 日韩av电影一区二区三区四区 | 欧美激情一区二区三区成人| 久久综合伊人 六十路| 精品五夜婷香蕉国产线看观看| 91久久夜色精品国产网站| 亚洲欧洲日韩综合色天使| 五月激情婷婷综合| 国产无码精品在线播放| 久久黄色影院| 99热国产这里只有精品9九| 国产成人1024精品| 一级毛片免费不卡在线视频| 99热亚洲精品6码| 日日拍夜夜操| 强奷白丝美女在线观看| 国产毛片高清一级国语| 欧美综合激情| 日韩精品成人在线| 国产成人精品在线1区| 国产福利拍拍拍| 久久这里只有精品国产99| 国产精品丝袜在线| 亚洲无码高清一区二区| 91精品小视频| 久久免费看片| 亚洲成人黄色在线观看| 亚洲国产日韩欧美在线| 97在线碰| 国产黄色视频综合| 国产在线视频二区| 欧美黄网在线| 精品人妻无码中字系列| 久久精品欧美一区二区| 性欧美在线| 日韩黄色大片免费看|