999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE REPRESENTATION CATEGORIES OF DIAGONAL CROSSED PRODUCTS OF INFINITE-DIMENSIONAL COFROBENIUS HOPF ALGEBRAS

2021-11-24 11:11:46YANGTaoLIUHuili
數學雜志 2021年6期

YANG Tao,LIU Hui-li

(College of Science,Nanjing Agricultural University,Nanjing 210095,China)

Abstract:The categorical interpretations on representations of diagonal crossed products of infinite-dimensional coFrobenius Hopf algebras are studied in this paper.By the tools of multiplier Hopf algebra and homological algebra theories,we get that the unital representation category of a diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra is isomorphic to its generalized Yetter-Drinfeld category,which generalizes the results of Panaite et al.in finitedimensional case.

Keywords:coFrobenius Hopf algebra;diagonal crossed product;Yetter-Drinfel’d module

1 Introduction

A Yetter-Drinfel’d module over a Hopf algebra,firstly introduced by Yetter(crossed bimodule in[1]),is a module and a comodule satisfying a certain compatibility condition.The main feature is that Yetter-Drinfel’d modules form a pre-braided monoidal category.Under favourable conditions(e.g.if the antipode of the Hopf algebra is bijective),the category is even braided(or quasisymmetric).Via a(pre-)braiding structure,the notion of Yetter-Drinfel’d module plays a part in the relations between quantum groups and knot theory.

When a Hopf algebra is finite-dimensional,the generalized(anti)Yetter-Drinfel’d module category was studied in[2].The authors showed thatHYDH(α,β) ~=H???H(α,β)M,where H??? H(α,β)is the diagonal crossed product algebra.Then one main question naturally arises:Does this isomorphism still hold for some infinite-dimensional Hopf algebra?

For this question,we first recall from our paper[3]the diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra,then we consider the representation category of the diagonal crossed product,and show that for a coFrobenius Hopf algebra H with its dual multiplier Hopf algebra^H,the unital^H ?? H(α,β)-module category is isomorphic to(α,β)-Yetter-Drinfeld module category introduced in[2,4],i.e.,HYDH(α,β) ~=^H??H(α,β)M.Moreover,as braided T-categories the representation category Rep(⊕(α,β)∈G^H ?? H(α,β))is isomorphic to YD(H)introduced in[2].

The paper is organized in the following way.In section 2,we recall some notions which will be used in the following,such as multiplier Hopf algebras and(α,β)-quantum double of an infinite dimensional coFrobenius Hopf algebra.

In section 3,we show that for a coFrobenius Hopf algebra H,the unital^H ?? H(α,β)-module category^H??H(α,β)M is isomorphic toHYDH(α,β).And as braided T-categories the representation theory Rep(A)is isomorphic to YD(H)introduced in[2],generalizing the classical result in[2,5].

2 Preliminaries

We begin this section with a short introduction to multiplier Hopf algebras.

Throughout this paper,all spaces we considered are over a fixed field K(such as thefield C of complex numbers).Algebras may or may not have units,but always should be non-degenerate,i.e.,the multiplication maps(viewed as bilinear forms)are non-degenerate.Recalling from the appendix in[6],the multiplier algebra M(A)of an algebra A is defined as the largest algebra with unit in which A is a dense ideal.

2.1 Multiplier Hopf Algebras

Now,we recall the definition of a multiplier Hopf algebra(see[6]for details).A comultiplication on an algebra A is a homomorphism Δ :A ?→ M(A?A)such that Δ(a)(1?b)and(a? 1)Δ(b)belong to A? A for all a,b ∈ A.We require Δ to be coassociative in the sense that

for all a,b,c ∈ A(where ι denotes the identity map).

A pair(A,Δ)of an algebra A with non-degenerate product and a comultiplication Δ on A is called a multiplier Hopf algebra,if the maps T1,T2:A?A?→M(A?A)defined by

have range in A?A and are bijective.

A multiplier Hopf algebra(A,Δ)is called regular if(A,Δcop)is also a multiplier Hopf algebra,where Δcopdenotes the co-opposite comultiplication defined as Δcop= τ?Δ with τ the usual flip map from A?A to itself(and extended to M(A?A)).In this case,Δ(a)(b?1)and(1?a)Δ(b)∈A?A for all a,b∈A.

Multiplier Hopf algebra(A,Δ)is regular if and only if the antipode S is bijective from A to A(see[7],Proposition 2.9).In this situation,the comultiplication is also determined by the bijective maps T3,T4:A?A?→A?A defined as follows

2.2 Diagonal Crossed Product of an Infinite Dimensional coFrobenius Hopf Algebra

3 Representation Category of the Diagonal Crossed Product

主站蜘蛛池模板: 国产精品丝袜视频| 国产情精品嫩草影院88av| 91视频青青草| 91最新精品视频发布页| 欧美视频在线播放观看免费福利资源 | 国产在线观看高清不卡| 久久精品无码一区二区国产区| 久草视频中文| 亚洲欧美另类久久久精品播放的| 亚洲欧美日韩动漫| 亚洲欧美日韩综合二区三区| 亚洲品质国产精品无码| 中国黄色一级视频| 国产在线精彩视频论坛| 国产精品.com| 久久久久亚洲AV成人人电影软件| 亚洲AV无码久久精品色欲 | 国产伦片中文免费观看| 老司机精品99在线播放| 国产青榴视频| 国产精品香蕉| 国产成人精品在线| 欧美精品v欧洲精品| 日韩精品高清自在线| 伊人久热这里只有精品视频99| 国产在线一二三区| 黄片一区二区三区| 国产高清在线丝袜精品一区| 亚洲国产成熟视频在线多多| 精品欧美视频| 91无码人妻精品一区二区蜜桃| 亚洲高清资源| 重口调教一区二区视频| 久久久久国色AV免费观看性色| www.91在线播放| 欧美日韩中文国产| 色婷婷电影网| 曰AV在线无码| 国产清纯在线一区二区WWW| 热思思久久免费视频| 伊人久久大香线蕉aⅴ色| 国产性生交xxxxx免费| 国产欧美视频综合二区| 亚洲av日韩综合一区尤物| 欧美成人国产| lhav亚洲精品| 91成人在线观看视频| 国产乱子伦视频三区| 亚洲人成人无码www| 国产成人精品一区二区| 色久综合在线| 国内熟女少妇一线天| 视频一区视频二区日韩专区| 91福利在线看| 国产肉感大码AV无码| 大香网伊人久久综合网2020| 亚洲综合香蕉| 成人国产一区二区三区| 国产精品人成在线播放| 无码AV动漫| 一级在线毛片| 中文字幕日韩视频欧美一区| 亚洲国产成熟视频在线多多| 91视频区| 婷婷开心中文字幕| 国产成人8x视频一区二区| 91丨九色丨首页在线播放| av在线人妻熟妇| 精品国产乱码久久久久久一区二区| 99中文字幕亚洲一区二区| 亚洲国产第一区二区香蕉| a欧美在线| 在线va视频| 最新国产网站| 欧美日韩一区二区三区在线视频| 国产午夜无码片在线观看网站| 精品一区二区三区水蜜桃| 国产成人永久免费视频| 亚洲AⅤ综合在线欧美一区| 欧美日本激情| 91精品日韩人妻无码久久| 精品国产自在现线看久久|