999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE REPRESENTATION CATEGORIES OF DIAGONAL CROSSED PRODUCTS OF INFINITE-DIMENSIONAL COFROBENIUS HOPF ALGEBRAS

2021-11-24 11:11:46YANGTaoLIUHuili
數學雜志 2021年6期

YANG Tao,LIU Hui-li

(College of Science,Nanjing Agricultural University,Nanjing 210095,China)

Abstract:The categorical interpretations on representations of diagonal crossed products of infinite-dimensional coFrobenius Hopf algebras are studied in this paper.By the tools of multiplier Hopf algebra and homological algebra theories,we get that the unital representation category of a diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra is isomorphic to its generalized Yetter-Drinfeld category,which generalizes the results of Panaite et al.in finitedimensional case.

Keywords:coFrobenius Hopf algebra;diagonal crossed product;Yetter-Drinfel’d module

1 Introduction

A Yetter-Drinfel’d module over a Hopf algebra,firstly introduced by Yetter(crossed bimodule in[1]),is a module and a comodule satisfying a certain compatibility condition.The main feature is that Yetter-Drinfel’d modules form a pre-braided monoidal category.Under favourable conditions(e.g.if the antipode of the Hopf algebra is bijective),the category is even braided(or quasisymmetric).Via a(pre-)braiding structure,the notion of Yetter-Drinfel’d module plays a part in the relations between quantum groups and knot theory.

When a Hopf algebra is finite-dimensional,the generalized(anti)Yetter-Drinfel’d module category was studied in[2].The authors showed thatHYDH(α,β) ~=H???H(α,β)M,where H??? H(α,β)is the diagonal crossed product algebra.Then one main question naturally arises:Does this isomorphism still hold for some infinite-dimensional Hopf algebra?

For this question,we first recall from our paper[3]the diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra,then we consider the representation category of the diagonal crossed product,and show that for a coFrobenius Hopf algebra H with its dual multiplier Hopf algebra^H,the unital^H ?? H(α,β)-module category is isomorphic to(α,β)-Yetter-Drinfeld module category introduced in[2,4],i.e.,HYDH(α,β) ~=^H??H(α,β)M.Moreover,as braided T-categories the representation category Rep(⊕(α,β)∈G^H ?? H(α,β))is isomorphic to YD(H)introduced in[2].

The paper is organized in the following way.In section 2,we recall some notions which will be used in the following,such as multiplier Hopf algebras and(α,β)-quantum double of an infinite dimensional coFrobenius Hopf algebra.

In section 3,we show that for a coFrobenius Hopf algebra H,the unital^H ?? H(α,β)-module category^H??H(α,β)M is isomorphic toHYDH(α,β).And as braided T-categories the representation theory Rep(A)is isomorphic to YD(H)introduced in[2],generalizing the classical result in[2,5].

2 Preliminaries

We begin this section with a short introduction to multiplier Hopf algebras.

Throughout this paper,all spaces we considered are over a fixed field K(such as thefield C of complex numbers).Algebras may or may not have units,but always should be non-degenerate,i.e.,the multiplication maps(viewed as bilinear forms)are non-degenerate.Recalling from the appendix in[6],the multiplier algebra M(A)of an algebra A is defined as the largest algebra with unit in which A is a dense ideal.

2.1 Multiplier Hopf Algebras

Now,we recall the definition of a multiplier Hopf algebra(see[6]for details).A comultiplication on an algebra A is a homomorphism Δ :A ?→ M(A?A)such that Δ(a)(1?b)and(a? 1)Δ(b)belong to A? A for all a,b ∈ A.We require Δ to be coassociative in the sense that

for all a,b,c ∈ A(where ι denotes the identity map).

A pair(A,Δ)of an algebra A with non-degenerate product and a comultiplication Δ on A is called a multiplier Hopf algebra,if the maps T1,T2:A?A?→M(A?A)defined by

have range in A?A and are bijective.

A multiplier Hopf algebra(A,Δ)is called regular if(A,Δcop)is also a multiplier Hopf algebra,where Δcopdenotes the co-opposite comultiplication defined as Δcop= τ?Δ with τ the usual flip map from A?A to itself(and extended to M(A?A)).In this case,Δ(a)(b?1)and(1?a)Δ(b)∈A?A for all a,b∈A.

Multiplier Hopf algebra(A,Δ)is regular if and only if the antipode S is bijective from A to A(see[7],Proposition 2.9).In this situation,the comultiplication is also determined by the bijective maps T3,T4:A?A?→A?A defined as follows

2.2 Diagonal Crossed Product of an Infinite Dimensional coFrobenius Hopf Algebra

3 Representation Category of the Diagonal Crossed Product

主站蜘蛛池模板: 2024av在线无码中文最新| 人妻丰满熟妇AV无码区| 一级成人a毛片免费播放| a色毛片免费视频| 欧美怡红院视频一区二区三区| 精品国产成人三级在线观看| 中文字幕久久波多野结衣| 国产jizzjizz视频| 毛片基地美国正在播放亚洲| 啪啪永久免费av| 国产精品久久久久无码网站| 久久这里只精品热免费99| 91精品国产91久无码网站| 久久激情影院| 91福利在线看| 亚洲第一香蕉视频| 五月婷婷亚洲综合| 就去色综合| 久久中文字幕不卡一二区| 亚洲成人黄色网址| 99免费在线观看视频| 真人免费一级毛片一区二区| 91黄视频在线观看| 精品少妇人妻无码久久| 国内丰满少妇猛烈精品播 | 91国内视频在线观看| 青青草一区| 67194亚洲无码| a天堂视频| 欧洲一区二区三区无码| 国产精品无码在线看| 国产成人综合日韩精品无码不卡| 91久久天天躁狠狠躁夜夜| 久久精品丝袜| 久草性视频| 亚洲AV无码乱码在线观看代蜜桃| 亚洲一区网站| 中文字幕66页| 久久久久久高潮白浆| 国产成人一区在线播放| 思思热精品在线8| 白浆免费视频国产精品视频| 亚洲欧美一区二区三区麻豆| 亚洲精品福利视频| 国产香蕉一区二区在线网站| 亚国产欧美在线人成| 国产高清在线观看| 久久国产精品麻豆系列| 日韩无码黄色| 国产精品片在线观看手机版| 久草视频中文| 亚洲性日韩精品一区二区| 丁香六月激情婷婷| 国产理论精品| 亚洲女同欧美在线| 亚洲一级毛片在线观播放| 免费一极毛片| 丰满的熟女一区二区三区l| 日韩无码视频网站| a级毛片一区二区免费视频| 国产成人免费手机在线观看视频 | 一本大道视频精品人妻| 五月婷婷亚洲综合| 亚洲一区二区三区国产精品| 国产亚洲精品资源在线26u| 四虎在线观看视频高清无码| 欧美一级高清片欧美国产欧美| 亚洲综合久久成人AV| 麻豆AV网站免费进入| 91青青草视频在线观看的| 福利视频一区| 欧美啪啪网| 国产一区亚洲一区| 久久精品人人做人人综合试看| 在线观看国产精品第一区免费 | 思思热在线视频精品| 国产后式a一视频| 免费人欧美成又黄又爽的视频| 亚洲第一香蕉视频| 黄色免费在线网址| 中文字幕亚洲精品2页| 乱系列中文字幕在线视频|