999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE REPRESENTATION CATEGORIES OF DIAGONAL CROSSED PRODUCTS OF INFINITE-DIMENSIONAL COFROBENIUS HOPF ALGEBRAS

2021-11-24 11:11:46YANGTaoLIUHuili
數學雜志 2021年6期

YANG Tao,LIU Hui-li

(College of Science,Nanjing Agricultural University,Nanjing 210095,China)

Abstract:The categorical interpretations on representations of diagonal crossed products of infinite-dimensional coFrobenius Hopf algebras are studied in this paper.By the tools of multiplier Hopf algebra and homological algebra theories,we get that the unital representation category of a diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra is isomorphic to its generalized Yetter-Drinfeld category,which generalizes the results of Panaite et al.in finitedimensional case.

Keywords:coFrobenius Hopf algebra;diagonal crossed product;Yetter-Drinfel’d module

1 Introduction

A Yetter-Drinfel’d module over a Hopf algebra,firstly introduced by Yetter(crossed bimodule in[1]),is a module and a comodule satisfying a certain compatibility condition.The main feature is that Yetter-Drinfel’d modules form a pre-braided monoidal category.Under favourable conditions(e.g.if the antipode of the Hopf algebra is bijective),the category is even braided(or quasisymmetric).Via a(pre-)braiding structure,the notion of Yetter-Drinfel’d module plays a part in the relations between quantum groups and knot theory.

When a Hopf algebra is finite-dimensional,the generalized(anti)Yetter-Drinfel’d module category was studied in[2].The authors showed thatHYDH(α,β) ~=H???H(α,β)M,where H??? H(α,β)is the diagonal crossed product algebra.Then one main question naturally arises:Does this isomorphism still hold for some infinite-dimensional Hopf algebra?

For this question,we first recall from our paper[3]the diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra,then we consider the representation category of the diagonal crossed product,and show that for a coFrobenius Hopf algebra H with its dual multiplier Hopf algebra^H,the unital^H ?? H(α,β)-module category is isomorphic to(α,β)-Yetter-Drinfeld module category introduced in[2,4],i.e.,HYDH(α,β) ~=^H??H(α,β)M.Moreover,as braided T-categories the representation category Rep(⊕(α,β)∈G^H ?? H(α,β))is isomorphic to YD(H)introduced in[2].

The paper is organized in the following way.In section 2,we recall some notions which will be used in the following,such as multiplier Hopf algebras and(α,β)-quantum double of an infinite dimensional coFrobenius Hopf algebra.

In section 3,we show that for a coFrobenius Hopf algebra H,the unital^H ?? H(α,β)-module category^H??H(α,β)M is isomorphic toHYDH(α,β).And as braided T-categories the representation theory Rep(A)is isomorphic to YD(H)introduced in[2],generalizing the classical result in[2,5].

2 Preliminaries

We begin this section with a short introduction to multiplier Hopf algebras.

Throughout this paper,all spaces we considered are over a fixed field K(such as thefield C of complex numbers).Algebras may or may not have units,but always should be non-degenerate,i.e.,the multiplication maps(viewed as bilinear forms)are non-degenerate.Recalling from the appendix in[6],the multiplier algebra M(A)of an algebra A is defined as the largest algebra with unit in which A is a dense ideal.

2.1 Multiplier Hopf Algebras

Now,we recall the definition of a multiplier Hopf algebra(see[6]for details).A comultiplication on an algebra A is a homomorphism Δ :A ?→ M(A?A)such that Δ(a)(1?b)and(a? 1)Δ(b)belong to A? A for all a,b ∈ A.We require Δ to be coassociative in the sense that

for all a,b,c ∈ A(where ι denotes the identity map).

A pair(A,Δ)of an algebra A with non-degenerate product and a comultiplication Δ on A is called a multiplier Hopf algebra,if the maps T1,T2:A?A?→M(A?A)defined by

have range in A?A and are bijective.

A multiplier Hopf algebra(A,Δ)is called regular if(A,Δcop)is also a multiplier Hopf algebra,where Δcopdenotes the co-opposite comultiplication defined as Δcop= τ?Δ with τ the usual flip map from A?A to itself(and extended to M(A?A)).In this case,Δ(a)(b?1)and(1?a)Δ(b)∈A?A for all a,b∈A.

Multiplier Hopf algebra(A,Δ)is regular if and only if the antipode S is bijective from A to A(see[7],Proposition 2.9).In this situation,the comultiplication is also determined by the bijective maps T3,T4:A?A?→A?A defined as follows

2.2 Diagonal Crossed Product of an Infinite Dimensional coFrobenius Hopf Algebra

3 Representation Category of the Diagonal Crossed Product

主站蜘蛛池模板: 欧美在线观看不卡| 国产成人精品高清不卡在线| 国产欧美网站| 免费99精品国产自在现线| 在线中文字幕网| 熟女成人国产精品视频| 欧美 国产 人人视频| 中文字幕久久波多野结衣| 国产精品内射视频| 亚洲成人精品在线| 亚洲日本韩在线观看| 久草视频精品| 亚洲性视频网站| 污视频日本| 欧美中日韩在线| 国产精品短篇二区| 亚洲五月激情网| 亚洲国产精品成人久久综合影院| 青青热久免费精品视频6| 亚洲swag精品自拍一区| 亚洲精品片911| 欧美人与牲动交a欧美精品| 四虎AV麻豆| 国产精品免费电影| 欧美国产综合色视频| 成人一区专区在线观看| 国产高清色视频免费看的网址| 国产精品福利社| 国产91特黄特色A级毛片| 亚洲国产天堂久久综合| 欧美日韩91| 韩日无码在线不卡| 国产精品3p视频| 国产激情在线视频| 在线国产毛片| 国产免费羞羞视频| 国产av无码日韩av无码网站| 波多野结衣无码视频在线观看| 亚洲av无码片一区二区三区| 国产人人射| 国产一级无码不卡视频| 久久精品波多野结衣| 久久99热66这里只有精品一| v天堂中文在线| 国产精品视频猛进猛出| 中文字幕在线免费看| 国产成人高清精品免费5388| 在线中文字幕日韩| 久久黄色免费电影| 在线日韩一区二区| 手机在线免费不卡一区二| 成人综合久久综合| 日日碰狠狠添天天爽| 人妖无码第一页| 日韩一区二区三免费高清| 欧美黄网站免费观看| 欧美人与牲动交a欧美精品| 99热最新在线| 亚洲成AV人手机在线观看网站| 亚洲熟女中文字幕男人总站| 99国产在线视频| 欧美日韩在线亚洲国产人| a级毛片一区二区免费视频| 国产白浆在线观看| 国产日韩欧美在线播放| 色欲不卡无码一区二区| 亚洲国产午夜精华无码福利| 国产乱人乱偷精品视频a人人澡| 婷婷中文在线| 欧美一级99在线观看国产| 综合人妻久久一区二区精品 | 亚洲欧美另类中文字幕| 欧美一区二区人人喊爽| 国产成人综合日韩精品无码首页| 亚洲天堂免费观看| 精品视频一区二区观看| 一级毛片免费观看久| 91精品国产无线乱码在线| 99热这里只有精品久久免费| 米奇精品一区二区三区| 99精品国产高清一区二区| 亚洲无码37.|