999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE REPRESENTATION CATEGORIES OF DIAGONAL CROSSED PRODUCTS OF INFINITE-DIMENSIONAL COFROBENIUS HOPF ALGEBRAS

2021-11-24 11:11:46YANGTaoLIUHuili
數學雜志 2021年6期

YANG Tao,LIU Hui-li

(College of Science,Nanjing Agricultural University,Nanjing 210095,China)

Abstract:The categorical interpretations on representations of diagonal crossed products of infinite-dimensional coFrobenius Hopf algebras are studied in this paper.By the tools of multiplier Hopf algebra and homological algebra theories,we get that the unital representation category of a diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra is isomorphic to its generalized Yetter-Drinfeld category,which generalizes the results of Panaite et al.in finitedimensional case.

Keywords:coFrobenius Hopf algebra;diagonal crossed product;Yetter-Drinfel’d module

1 Introduction

A Yetter-Drinfel’d module over a Hopf algebra,firstly introduced by Yetter(crossed bimodule in[1]),is a module and a comodule satisfying a certain compatibility condition.The main feature is that Yetter-Drinfel’d modules form a pre-braided monoidal category.Under favourable conditions(e.g.if the antipode of the Hopf algebra is bijective),the category is even braided(or quasisymmetric).Via a(pre-)braiding structure,the notion of Yetter-Drinfel’d module plays a part in the relations between quantum groups and knot theory.

When a Hopf algebra is finite-dimensional,the generalized(anti)Yetter-Drinfel’d module category was studied in[2].The authors showed thatHYDH(α,β) ~=H???H(α,β)M,where H??? H(α,β)is the diagonal crossed product algebra.Then one main question naturally arises:Does this isomorphism still hold for some infinite-dimensional Hopf algebra?

For this question,we first recall from our paper[3]the diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra,then we consider the representation category of the diagonal crossed product,and show that for a coFrobenius Hopf algebra H with its dual multiplier Hopf algebra^H,the unital^H ?? H(α,β)-module category is isomorphic to(α,β)-Yetter-Drinfeld module category introduced in[2,4],i.e.,HYDH(α,β) ~=^H??H(α,β)M.Moreover,as braided T-categories the representation category Rep(⊕(α,β)∈G^H ?? H(α,β))is isomorphic to YD(H)introduced in[2].

The paper is organized in the following way.In section 2,we recall some notions which will be used in the following,such as multiplier Hopf algebras and(α,β)-quantum double of an infinite dimensional coFrobenius Hopf algebra.

In section 3,we show that for a coFrobenius Hopf algebra H,the unital^H ?? H(α,β)-module category^H??H(α,β)M is isomorphic toHYDH(α,β).And as braided T-categories the representation theory Rep(A)is isomorphic to YD(H)introduced in[2],generalizing the classical result in[2,5].

2 Preliminaries

We begin this section with a short introduction to multiplier Hopf algebras.

Throughout this paper,all spaces we considered are over a fixed field K(such as thefield C of complex numbers).Algebras may or may not have units,but always should be non-degenerate,i.e.,the multiplication maps(viewed as bilinear forms)are non-degenerate.Recalling from the appendix in[6],the multiplier algebra M(A)of an algebra A is defined as the largest algebra with unit in which A is a dense ideal.

2.1 Multiplier Hopf Algebras

Now,we recall the definition of a multiplier Hopf algebra(see[6]for details).A comultiplication on an algebra A is a homomorphism Δ :A ?→ M(A?A)such that Δ(a)(1?b)and(a? 1)Δ(b)belong to A? A for all a,b ∈ A.We require Δ to be coassociative in the sense that

for all a,b,c ∈ A(where ι denotes the identity map).

A pair(A,Δ)of an algebra A with non-degenerate product and a comultiplication Δ on A is called a multiplier Hopf algebra,if the maps T1,T2:A?A?→M(A?A)defined by

have range in A?A and are bijective.

A multiplier Hopf algebra(A,Δ)is called regular if(A,Δcop)is also a multiplier Hopf algebra,where Δcopdenotes the co-opposite comultiplication defined as Δcop= τ?Δ with τ the usual flip map from A?A to itself(and extended to M(A?A)).In this case,Δ(a)(b?1)and(1?a)Δ(b)∈A?A for all a,b∈A.

Multiplier Hopf algebra(A,Δ)is regular if and only if the antipode S is bijective from A to A(see[7],Proposition 2.9).In this situation,the comultiplication is also determined by the bijective maps T3,T4:A?A?→A?A defined as follows

2.2 Diagonal Crossed Product of an Infinite Dimensional coFrobenius Hopf Algebra

3 Representation Category of the Diagonal Crossed Product

主站蜘蛛池模板: 老色鬼欧美精品| 日韩不卡高清视频| 欧美色综合网站| 午夜国产精品视频| 亚洲中文制服丝袜欧美精品| 一级毛片视频免费| 亚洲最新网址| 四虎亚洲国产成人久久精品| 福利一区三区| 啪啪啪亚洲无码| 91小视频在线播放| 亚洲天堂视频网站| 2019年国产精品自拍不卡| 国产在线观看91精品| 色婷婷视频在线| 国产成人精品免费av| 国产综合欧美| 99精品伊人久久久大香线蕉| 国产性精品| 国产精品香蕉在线| 一级在线毛片| 久久这里只有精品23| 永久在线精品免费视频观看| 亚洲三级色| 91网红精品在线观看| 99国产精品一区二区| 久久久久中文字幕精品视频| 精品免费在线视频| 67194亚洲无码| 成人福利免费在线观看| 狠狠色丁香婷婷| 91麻豆国产在线| 午夜爽爽视频| 欧美黑人欧美精品刺激| 2021天堂在线亚洲精品专区| 国产在线观看第二页| 成人韩免费网站| 亚洲天天更新| 高清码无在线看| 99草精品视频| 又粗又硬又大又爽免费视频播放| 日本成人精品视频| 欧美性天天| 在线观看国产精美视频| 在线观看无码av免费不卡网站 | 亚洲人成网站观看在线观看| 午夜日韩久久影院| a级毛片免费在线观看| 国产精品女同一区三区五区| 色哟哟国产精品| 亚洲免费成人网| 国产无码制服丝袜| 青青热久免费精品视频6| 精品欧美一区二区三区久久久| 欧类av怡春院| 天天躁夜夜躁狠狠躁图片| 在线色国产| 欧美成人精品高清在线下载| 丁香亚洲综合五月天婷婷| 88av在线| 国产三级精品三级在线观看| 欧美午夜在线观看| 亚洲AV永久无码精品古装片| 一本大道香蕉中文日本不卡高清二区| 欧美a级在线| 97综合久久| 国产美女视频黄a视频全免费网站| 999国内精品久久免费视频| 日韩经典精品无码一区二区| 欧美在线三级| 新SSS无码手机在线观看| 欧美第二区| 中国精品久久| 久久国产精品夜色| 国产日本欧美在线观看| 国产九九精品视频| 综合色在线| 国产成人综合日韩精品无码不卡| 老司机午夜精品视频你懂的| 国产精品久久自在自2021| 日本免费a视频| 人人看人人鲁狠狠高清|