999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

APPROXIMATIONS OF THE IDENTITY ADAPTED TO CONTINUOUS ELLIPSOID COVER

2021-11-24 11:11:44YUAnkangLIBaode
數學雜志 2021年6期

YU An-kang,LI Bao-de

(School of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China)

Abstract:In this paper we develop some approximation of the identity results adapted to continuous multi-level ellipsoid cover.By using real-variable methods of harmonic analysis,we obtain two approximations of the identity results uniformly in some compact subset of Rnand in L1(Rn)norm,respectively.These results generalize the corresponding classical and anisotropic approximation of the identity results.

Keywords: approximation of the identity;ellipsoid cover;anisotropy

1 Introduction

As we all know,approximation of identity plays an important role in analysis,see[1-3].There are numerous approximations of identity results associated with the Euclidian balls in Rn.For example,let φ be an integrable function on Rnsuch thatRRnφ(x)dx=1,and for t>0 define φt(x)=t?nφ(t?1x).Then,if f ∈ L1(Rn),φt? f → f(t→ 0)in L1(Rn).

In 2010,the continuous multi-level ellipsoid cover Θ introduced by Dahmen,Dekel and Petrushev[4]consist of ellipsoids θx,t=Mx,t(Bn)+x,where Mx,tis an invertible matrix and Bnis the unit ball in Rn(see Definition 2.1).The flexible framework of continuous ellipsoid cover Θ introduced in this paper may have the ability to solve the following problems.For example,the formation of shocks results in jump discontinuities of solutions of hyperbolic conservation laws across lower dimensional manifolds.The case such jumps cause a serious obstruction to appropriate regularity theorems,since the available regularity scales are either inherently isotropic or coordinate biased or are subject to an uncontrollable restricted regularity range.For more development of continuous ellipsoid cover,see[5-7].

Inspired by the above work,for any θx,t=Mx,t(Rn)+x ∈ Θ,let φ be an integrable function on Rnsuch thatRRnφdx=1,we can define

And then a question arises:Is it possible to obtain some approximations of the identity results adapted to ellipsoid cover Θ such as f?φx,t(x)→ f(x)(t→ ∞)in various senses?This article gives some affirmative answers for the question.It is worth pointing out that the approximation of the identity in this paper is done in Cc(Rn),which is a dense subset of L1(Rn),and the approximation of the identity in L1(Rn)is difficult for us,which is still open at the moment.

The organization of this article is as follows.In Section 2,we first present some notation and notions used in this article including continuous ellipsoid cover Θ and describe our main theorem.In Section 3,we show the proof details of the main theorem.

2 Preliminaries and Main Results

In this section we recall the properties of ellipsoid cover which was originally introduced by Dahmen,Dekel,and Petruschev[4].An ellipsoid ξ in Rnis an image of the Euclidean unit ball Bn:={x∈Rn:|x|<1}under an affine transform,i.e.,

3 Proof of Theorem 2.4

Proof(i)By f∈Cc(Rn),we know that there exists a positive constant N and M such that suppf?NBnand|f(x)|≤M for any x∈Rn,and f is a uniformly continuous function on Rn.By this,we obtain that,for any ε>0,there exists δ>0 such that,for all x∈Rn,y∈Rnwith|y|<δ,

主站蜘蛛池模板: 日本人妻丰满熟妇区| 天堂岛国av无码免费无禁网站| 欧美国产在线看| 欧美亚洲激情| 国产乱人伦AV在线A| 日本免费新一区视频| 国外欧美一区另类中文字幕| 免费高清毛片| 国产黄网站在线观看| a毛片免费在线观看| 欧美三级日韩三级| 中文字幕日韩视频欧美一区| 国产H片无码不卡在线视频| 最新亚洲人成无码网站欣赏网| aⅴ免费在线观看| 三区在线视频| 成人午夜天| 亚洲区第一页| 成人在线亚洲| 久久男人资源站| 在线视频一区二区三区不卡| 国产91丝袜| 国产清纯在线一区二区WWW| 国产喷水视频| 性色一区| 国产在线精彩视频论坛| 中文字幕 日韩 欧美| 久久精品国产国语对白| 日韩中文字幕免费在线观看| 欧美日韩理论| 久热99这里只有精品视频6| 成人欧美日韩| 真实国产乱子伦高清| 国内精品视频| 国产日本视频91| 国产素人在线| 国产视频一二三区| 2019年国产精品自拍不卡| 亚洲中文字幕久久无码精品A| 国产尹人香蕉综合在线电影| 在线国产三级| 青青草a国产免费观看| 国产在线高清一级毛片| 伊在人亞洲香蕉精品區| 国产精品三级专区| 福利在线免费视频| 在线观看精品国产入口| 视频二区亚洲精品| 国产在线自在拍91精品黑人| 国产丝袜精品| 国产无码在线调教| 性视频一区| 中文字幕亚洲乱码熟女1区2区| 在线看片中文字幕| 精品人妻一区无码视频| 伊人精品成人久久综合| 一级爆乳无码av| 中文无码精品a∨在线观看| 亚洲欧洲日韩综合| 欧美国产三级| 九月婷婷亚洲综合在线| 欧洲欧美人成免费全部视频| 亚洲色欲色欲www在线观看| 好吊日免费视频| 99这里只有精品在线| 色综合天天娱乐综合网| 丁香五月婷婷激情基地| 日韩亚洲综合在线| 国产成人永久免费视频| 亚洲无线国产观看| 老司国产精品视频91| 国产亚洲美日韩AV中文字幕无码成人| 久久人人97超碰人人澡爱香蕉 | 伊人久综合| 国产在线一二三区| 亚洲中文在线看视频一区| 亚洲精品天堂自在久久77| 久久人妻xunleige无码| 久久福利网| 国产91丝袜在线播放动漫 | 亚洲人成网站色7777| 无码高清专区|