999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

APPROXIMATIONS OF THE IDENTITY ADAPTED TO CONTINUOUS ELLIPSOID COVER

2021-11-24 11:11:44YUAnkangLIBaode
數學雜志 2021年6期

YU An-kang,LI Bao-de

(School of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China)

Abstract:In this paper we develop some approximation of the identity results adapted to continuous multi-level ellipsoid cover.By using real-variable methods of harmonic analysis,we obtain two approximations of the identity results uniformly in some compact subset of Rnand in L1(Rn)norm,respectively.These results generalize the corresponding classical and anisotropic approximation of the identity results.

Keywords: approximation of the identity;ellipsoid cover;anisotropy

1 Introduction

As we all know,approximation of identity plays an important role in analysis,see[1-3].There are numerous approximations of identity results associated with the Euclidian balls in Rn.For example,let φ be an integrable function on Rnsuch thatRRnφ(x)dx=1,and for t>0 define φt(x)=t?nφ(t?1x).Then,if f ∈ L1(Rn),φt? f → f(t→ 0)in L1(Rn).

In 2010,the continuous multi-level ellipsoid cover Θ introduced by Dahmen,Dekel and Petrushev[4]consist of ellipsoids θx,t=Mx,t(Bn)+x,where Mx,tis an invertible matrix and Bnis the unit ball in Rn(see Definition 2.1).The flexible framework of continuous ellipsoid cover Θ introduced in this paper may have the ability to solve the following problems.For example,the formation of shocks results in jump discontinuities of solutions of hyperbolic conservation laws across lower dimensional manifolds.The case such jumps cause a serious obstruction to appropriate regularity theorems,since the available regularity scales are either inherently isotropic or coordinate biased or are subject to an uncontrollable restricted regularity range.For more development of continuous ellipsoid cover,see[5-7].

Inspired by the above work,for any θx,t=Mx,t(Rn)+x ∈ Θ,let φ be an integrable function on Rnsuch thatRRnφdx=1,we can define

And then a question arises:Is it possible to obtain some approximations of the identity results adapted to ellipsoid cover Θ such as f?φx,t(x)→ f(x)(t→ ∞)in various senses?This article gives some affirmative answers for the question.It is worth pointing out that the approximation of the identity in this paper is done in Cc(Rn),which is a dense subset of L1(Rn),and the approximation of the identity in L1(Rn)is difficult for us,which is still open at the moment.

The organization of this article is as follows.In Section 2,we first present some notation and notions used in this article including continuous ellipsoid cover Θ and describe our main theorem.In Section 3,we show the proof details of the main theorem.

2 Preliminaries and Main Results

In this section we recall the properties of ellipsoid cover which was originally introduced by Dahmen,Dekel,and Petruschev[4].An ellipsoid ξ in Rnis an image of the Euclidean unit ball Bn:={x∈Rn:|x|<1}under an affine transform,i.e.,

3 Proof of Theorem 2.4

Proof(i)By f∈Cc(Rn),we know that there exists a positive constant N and M such that suppf?NBnand|f(x)|≤M for any x∈Rn,and f is a uniformly continuous function on Rn.By this,we obtain that,for any ε>0,there exists δ>0 such that,for all x∈Rn,y∈Rnwith|y|<δ,

主站蜘蛛池模板: 国产成人无码综合亚洲日韩不卡| 久久精品无码中文字幕| 最近最新中文字幕在线第一页| 婷婷午夜天| 国产一级精品毛片基地| 成人在线亚洲| 最新国语自产精品视频在| 国产黄网永久免费| 亚洲精品自产拍在线观看APP| 人妻91无码色偷偷色噜噜噜| 欧美日韩在线成人| 国产福利一区二区在线观看| 99999久久久久久亚洲| 综合网天天| 久久久四虎成人永久免费网站| 九九九久久国产精品| 亚洲一区二区三区国产精华液| 国产日本一线在线观看免费| 毛片免费高清免费| 日韩福利在线观看| 青青网在线国产| 嫩草国产在线| 日韩无码一二三区| 国产欧美日本在线观看| 精品中文字幕一区在线| 国产欧美日韩另类精彩视频| 国产一级毛片在线| 国产精品网址在线观看你懂的| 國產尤物AV尤物在線觀看| 精品欧美日韩国产日漫一区不卡| 天堂成人在线| 国产视频一区二区在线观看| 国产色婷婷| 一区二区三区四区日韩| 日韩a在线观看免费观看| 91国内在线观看| 色综合久久综合网| 重口调教一区二区视频| 成年人国产视频| 欧美一级高清免费a| 午夜色综合| 高清色本在线www| 99免费视频观看| 最新国产你懂的在线网址| 亚洲AV人人澡人人双人| AV片亚洲国产男人的天堂| 一级爆乳无码av| 国产激情在线视频| 日韩在线视频网| 久久永久视频| 国产91无毒不卡在线观看| 国产黄色免费看| 久热精品免费| 97色伦色在线综合视频| 国产区成人精品视频| 一级毛片免费观看久| 国产人前露出系列视频| 亚洲VA中文字幕| 自拍偷拍一区| 首页亚洲国产丝袜长腿综合| 国产自在线拍| 日本午夜视频在线观看| 亚洲一区二区约美女探花| 亚洲国产综合自在线另类| 国产精品久久久久久久久kt| 日韩精品高清自在线| 亚洲成人高清在线观看| 国产美女无遮挡免费视频网站| 精品无码一区二区三区在线视频| 久久中文字幕不卡一二区| 久久semm亚洲国产| 四虎成人在线视频| 无码免费试看| 欧美日韩北条麻妃一区二区| 欧美一区二区三区香蕉视| 精品自拍视频在线观看| 国产男女XX00免费观看| 刘亦菲一区二区在线观看| 欧美色香蕉| 98精品全国免费观看视频| 欧美日韩高清在线| 欧美激情视频在线观看一区|