999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

APPROXIMATIONS OF THE IDENTITY ADAPTED TO CONTINUOUS ELLIPSOID COVER

2021-11-24 11:11:44YUAnkangLIBaode
數學雜志 2021年6期

YU An-kang,LI Bao-de

(School of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China)

Abstract:In this paper we develop some approximation of the identity results adapted to continuous multi-level ellipsoid cover.By using real-variable methods of harmonic analysis,we obtain two approximations of the identity results uniformly in some compact subset of Rnand in L1(Rn)norm,respectively.These results generalize the corresponding classical and anisotropic approximation of the identity results.

Keywords: approximation of the identity;ellipsoid cover;anisotropy

1 Introduction

As we all know,approximation of identity plays an important role in analysis,see[1-3].There are numerous approximations of identity results associated with the Euclidian balls in Rn.For example,let φ be an integrable function on Rnsuch thatRRnφ(x)dx=1,and for t>0 define φt(x)=t?nφ(t?1x).Then,if f ∈ L1(Rn),φt? f → f(t→ 0)in L1(Rn).

In 2010,the continuous multi-level ellipsoid cover Θ introduced by Dahmen,Dekel and Petrushev[4]consist of ellipsoids θx,t=Mx,t(Bn)+x,where Mx,tis an invertible matrix and Bnis the unit ball in Rn(see Definition 2.1).The flexible framework of continuous ellipsoid cover Θ introduced in this paper may have the ability to solve the following problems.For example,the formation of shocks results in jump discontinuities of solutions of hyperbolic conservation laws across lower dimensional manifolds.The case such jumps cause a serious obstruction to appropriate regularity theorems,since the available regularity scales are either inherently isotropic or coordinate biased or are subject to an uncontrollable restricted regularity range.For more development of continuous ellipsoid cover,see[5-7].

Inspired by the above work,for any θx,t=Mx,t(Rn)+x ∈ Θ,let φ be an integrable function on Rnsuch thatRRnφdx=1,we can define

And then a question arises:Is it possible to obtain some approximations of the identity results adapted to ellipsoid cover Θ such as f?φx,t(x)→ f(x)(t→ ∞)in various senses?This article gives some affirmative answers for the question.It is worth pointing out that the approximation of the identity in this paper is done in Cc(Rn),which is a dense subset of L1(Rn),and the approximation of the identity in L1(Rn)is difficult for us,which is still open at the moment.

The organization of this article is as follows.In Section 2,we first present some notation and notions used in this article including continuous ellipsoid cover Θ and describe our main theorem.In Section 3,we show the proof details of the main theorem.

2 Preliminaries and Main Results

In this section we recall the properties of ellipsoid cover which was originally introduced by Dahmen,Dekel,and Petruschev[4].An ellipsoid ξ in Rnis an image of the Euclidean unit ball Bn:={x∈Rn:|x|<1}under an affine transform,i.e.,

3 Proof of Theorem 2.4

Proof(i)By f∈Cc(Rn),we know that there exists a positive constant N and M such that suppf?NBnand|f(x)|≤M for any x∈Rn,and f is a uniformly continuous function on Rn.By this,we obtain that,for any ε>0,there exists δ>0 such that,for all x∈Rn,y∈Rnwith|y|<δ,

主站蜘蛛池模板: 青草视频网站在线观看| 国产精品大尺度尺度视频| 91成人在线观看视频| 国产丰满成熟女性性满足视频 | 国产在线八区| 亚洲日产2021三区在线| 久久免费精品琪琪| 草草影院国产第一页| 亚洲制服丝袜第一页| 91无码人妻精品一区二区蜜桃| 青青草原国产精品啪啪视频| 久久99精品久久久久纯品| 国产波多野结衣中文在线播放| 成人福利一区二区视频在线| 久久成人国产精品免费软件| 国产91高清视频| 为你提供最新久久精品久久综合| 亚洲妓女综合网995久久| 波多野结衣一区二区三区AV| 国产精品19p| 日韩大片免费观看视频播放| 高清大学生毛片一级| 久久久久久久97| 久久特级毛片| 在线视频亚洲色图| 又爽又大又黄a级毛片在线视频| 一级毛片免费观看久| 免费观看成人久久网免费观看| 成人福利在线视频| 精品国产免费第一区二区三区日韩| 一级毛片在线免费看| 国产精品男人的天堂| 国产精品一线天| 国产精品人成在线播放| 国产在线一二三区| 精品无码日韩国产不卡av| 亚洲精品成人片在线播放| 一本大道视频精品人妻 | 日韩无码黄色| 99re在线视频观看| 亚洲国产成人综合精品2020| 久久91精品牛牛| 重口调教一区二区视频| 免费xxxxx在线观看网站| 波多野结衣视频一区二区| 亚洲欧洲国产成人综合不卡| 蜜臀AV在线播放| 麻豆国产精品视频| 国产精品免费p区| 久久a毛片| 亚洲水蜜桃久久综合网站 | 婷婷激情五月网| 精品国产网| 亚洲侵犯无码网址在线观看| 青青青国产免费线在| a毛片基地免费大全| 亚洲精品无码日韩国产不卡| 成人综合久久综合| 秘书高跟黑色丝袜国产91在线| 18禁色诱爆乳网站| 人妻无码中文字幕一区二区三区| 亚洲精品第五页| 欧美在线视频a| 老司机久久99久久精品播放| 国产乱子伦视频在线播放 | 成人国产小视频| 1级黄色毛片| 国产亚洲精品91| 一本大道香蕉久中文在线播放| 欧美成人一级| 欧美色图久久| 久久成人免费| 在线国产你懂的| 天天躁夜夜躁狠狠躁躁88| 91国内外精品自在线播放| 高清免费毛片| 九色在线观看视频| 美女被狂躁www在线观看| 无码日韩视频| 亚洲国产精品日韩av专区| 久久精品91麻豆| 日韩无码视频播放|