999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制及相應(yīng)新劑型研究進(jìn)展

2021-12-16 16:24:18滕舒慧周夢(mèng)婕于冰清楊文婷
中國(guó)藥房 2021年23期

滕舒慧 周夢(mèng)婕 于冰清 楊文婷

中圖分類號(hào) R944;R285 文獻(xiàn)標(biāo)志碼 A 文章編號(hào) 1001-0408(2021)23-2934-07

DOI 10.6039/j.issn.1001-0408.2021.23.21

摘 要 目的:總結(jié)中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制及相應(yīng)新劑型的研究進(jìn)展,以期為抗腦膠質(zhì)瘤的新劑型開(kāi)發(fā)提供參考。方法:以 “腦膠質(zhì)瘤”“機(jī)制”“中藥活性成分”“劑型”“glioma”“mechanism”“active components of traditional Chinese medicine”? “dosage form”等為關(guān)鍵詞在中國(guó)知網(wǎng)、維普網(wǎng)、萬(wàn)方數(shù)據(jù)庫(kù)、Web of Science中組合檢索2010年1月-2021年4月發(fā)表的相關(guān)文獻(xiàn),對(duì)中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制及相應(yīng)新劑型進(jìn)行歸納總結(jié)。結(jié)果與結(jié)論:中藥活性成分(如木犀草素、沒(méi)食子酸、黃芩苷元、槲皮素、山柰素等)可通過(guò)誘導(dǎo)自噬、調(diào)控細(xì)胞周期、抑制腫瘤相關(guān)細(xì)胞因子活性等作用機(jī)制,發(fā)揮抗腦膠質(zhì)瘤的作用。目前中藥活性成分已被設(shè)計(jì)成多種靶向制劑,如基于生物特異性的靶向制劑(包括納米粒靶向制劑、微乳制劑、水凝膠制劑、以內(nèi)源性細(xì)胞為載體的靶向制劑等)、基于腫瘤微環(huán)境的靶向制劑(包括靶向腫瘤細(xì)胞內(nèi)活性氧升高效應(yīng)的制劑、靶向腫瘤內(nèi)環(huán)境谷胱甘肽過(guò)表達(dá)的制劑、靶向腫瘤弱酸性環(huán)境的制劑等)等,提高了藥物的滯留時(shí)間以及生物利用度,增強(qiáng)了藥物的靶向性,延遲了藥物的多藥耐藥,進(jìn)而提高了藥物療效。目前中藥活性成分抗腦膠質(zhì)瘤的劑型研究多是基于紫杉醇、山柰素等常規(guī)藥物成分,較為單一,后續(xù)應(yīng)開(kāi)發(fā)更多中藥活性成分抗腦膠質(zhì)瘤的新劑型。

關(guān)鍵詞 中藥活性成分;劑型;腦膠質(zhì)瘤;靶向遞藥

腦膠質(zhì)瘤是原發(fā)性腦腫瘤中發(fā)病率最高且預(yù)后最差的腫瘤,手術(shù)難以完全切除,且患者復(fù)發(fā)率高、生存期短[1]。現(xiàn)階段,臨床上治療腦膠質(zhì)瘤以手術(shù)切除為主,并結(jié)合化學(xué)療法、靶向治療及免疫治療等措施延長(zhǎng)患者的生存時(shí)間,但由于術(shù)后復(fù)發(fā)率、致殘率和病死率高,以及化療藥物靶向性不明顯或難以透過(guò)血腦屏障或生物有效利用度較低,難以在病灶部位形成有效的藥物濃度,且長(zhǎng)期用藥易產(chǎn)生多藥耐藥等問(wèn)題,從而使腦膠質(zhì)瘤的治療難以取得理想效果[2-3]。

近年來(lái),中藥活性成分在抗腦膠質(zhì)瘤方向取得了較大的突破,其可通過(guò)調(diào)整多種生物機(jī)制來(lái)抑制腦膠質(zhì)瘤的發(fā)生[4]。盡管中藥活性成分對(duì)腦膠質(zhì)瘤的治療作用良好,但是仍存在生物利用度低、副作用大等現(xiàn)狀[5]。因此,為了起到有效的治療作用,研究人員結(jié)合腦膠質(zhì)瘤的機(jī)制以及中藥活性成分的特點(diǎn),設(shè)計(jì)了多種劑型藥物進(jìn)行靶向遞藥,以針對(duì)腦膠質(zhì)瘤發(fā)病部位進(jìn)行治療。

基于此,筆者以 “腦膠質(zhì)瘤”“機(jī)制”“中藥活性成分”“劑型”“glioma” “mechanism”“active components of traditional Chinese medicine” “dosage form”等為關(guān)鍵詞在中國(guó)知網(wǎng)、維普網(wǎng)、萬(wàn)方數(shù)據(jù)庫(kù)、Web of Science中組合檢索2010年1月-2021年4月發(fā)表的相關(guān)文獻(xiàn),對(duì)中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制及相應(yīng)新劑型進(jìn)行歸納總結(jié),以期為抗腦膠質(zhì)瘤的新劑型開(kāi)發(fā)提供參考。

1 中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制

中藥中存在多種抗腦膠質(zhì)瘤的活性成分,大多為黃酮類、醌類、三萜類、甾體類、生物堿類,少數(shù)為苯丙素類、多糖類,主要可通過(guò)誘導(dǎo)自噬、調(diào)控細(xì)胞周期、抑制腫瘤相關(guān)細(xì)胞因子活性等發(fā)揮作用。基于此,筆者對(duì)不同中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制進(jìn)行詳細(xì)介紹。

1.1 誘導(dǎo)自噬

自噬是一種普遍存在于各種細(xì)胞的生理活動(dòng),可將損傷的蛋白質(zhì)以及細(xì)胞器包入細(xì)胞產(chǎn)生囊泡,然后與溶酶體結(jié)合并將包入的物質(zhì)降解,是一種細(xì)胞的自我保護(hù)機(jī)制[6]。研究發(fā)現(xiàn),木犀草素、丹參酮ⅡA、姜黃素、異甘草素以及雷公藤甲素可以通過(guò)作用于凋亡信號(hào)通路,調(diào)控蛋白激酶B(Akt)、LC3-Ⅰ/LC3-Ⅱ等相關(guān)信號(hào)通路以增強(qiáng)膠質(zhì)瘤細(xì)胞的自噬活動(dòng),從而抑制膠質(zhì)瘤細(xì)胞的生長(zhǎng)與增殖[7-11]。木犀草素和黃芩苷元還可通過(guò)磷酸化腺苷一磷酸活化蛋白激酶(AMPK)來(lái)誘導(dǎo)自噬,從而抑制細(xì)胞的增殖,促進(jìn)細(xì)胞的凋亡,進(jìn)而發(fā)揮抗腦膠質(zhì)瘤的作用[7,12]。

1.2 調(diào)控細(xì)胞周期

細(xì)胞有絲分裂是細(xì)胞不斷更新的過(guò)程,包含分裂間期以及分裂期兩個(gè)階段;分裂間期又分為DNA合成前期(G1期)、DNA合成期(S期)、DNA合成后期(G2)[13]。研究發(fā)現(xiàn),楊梅素可通過(guò)升高活性氧水平使線粒體發(fā)生損傷,導(dǎo)致細(xì)胞復(fù)制停滯于G2/M期,從而影響細(xì)胞的周期性復(fù)制[14]。沒(méi)食子酸、蛇床子素、芹菜素、蘆丁、紫杉醇、白藜蘆醇、柴胡皂苷D、番木鱉堿、粉防己堿、槐定堿、青藤堿、甘草查爾酮A、苦參堿、喜樹(shù)堿和烏索酸等可通過(guò)下調(diào)細(xì)胞周期蛋白、細(xì)胞周期蛋白依賴激酶(CDKs)、胱天蛋白酶(caspases)以及腫瘤抑制基因(p53)等的表達(dá),使多數(shù)細(xì)胞停滯于G2期,從而抑制細(xì)胞的增殖與遷移,進(jìn)而發(fā)揮抗腦膠質(zhì)瘤的作用[15-29]。

1.3 抑制腫瘤相關(guān)細(xì)胞因子活性

細(xì)胞因子是由一些免疫細(xì)胞和某些非免疫細(xì)胞被刺激后所產(chǎn)生的一類具備生物活性的小分子蛋白質(zhì),常見(jiàn)的有白細(xì)胞介素(ILs)、缺氧誘導(dǎo)因子1(HIF-1)、腫瘤壞死因子(TNF)、趨化因子(CXCR4)以及生長(zhǎng)因子[如表皮生長(zhǎng)因子(EGF)、轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)、血管內(nèi)皮生長(zhǎng)因子(VEGF)]等[13]。研究發(fā)現(xiàn),黃芩苷元、人參皂苷Rg3、蟾毒靈、槐定堿、雷公藤甲素、淫羊藿苷可通過(guò)下調(diào)TNF、核因子κB(NF-κB)表達(dá),抑制腦膠質(zhì)瘤的生長(zhǎng)[30-34]。

生長(zhǎng)因子受體是腫瘤生長(zhǎng)時(shí)過(guò)表達(dá)的一種受體,其在受到生長(zhǎng)因子的刺激時(shí)會(huì)促進(jìn)腫瘤相關(guān)新血管的生成以及腫瘤的生長(zhǎng)。研究發(fā)現(xiàn),黃芩苷元、長(zhǎng)春新堿、和厚樸酚、大黃素、當(dāng)歸多糖、雷公藤紅素可通過(guò)阻斷生長(zhǎng)因子與其相關(guān)受體的結(jié)合,抑制腫瘤相關(guān)新血管的生成,從而發(fā)揮抑制腦膠質(zhì)瘤生長(zhǎng)的作用[35-40]。

腫瘤生長(zhǎng)過(guò)程中常伴隨炎癥因子過(guò)表達(dá)的現(xiàn)象,這也為腫瘤的生長(zhǎng)與轉(zhuǎn)移提供了內(nèi)環(huán)境[41]。和厚樸酚可通過(guò)抑制ILs類炎癥因子,發(fā)揮抗腦膠質(zhì)瘤的作用[42]。橙皮素可通過(guò)抑制HIF-α,發(fā)揮抗腦膠質(zhì)瘤的作用[43]。

腫瘤的轉(zhuǎn)移是惡性腫瘤的一個(gè)標(biāo)志性演變,趨化因子的大量表達(dá)與腫瘤的轉(zhuǎn)移息息相關(guān),而其中CXCR4、CXCL12是目前最常見(jiàn)的趨化因子[44-45]。研究發(fā)現(xiàn),川芎嗪可以通過(guò)抑制CXCR4,進(jìn)而抑制腦膠質(zhì)瘤的生長(zhǎng)與轉(zhuǎn)移[46]。

1.4 其他

腫瘤的發(fā)生、轉(zhuǎn)移與一氧化氮(NO)、活性氧、谷胱甘肽(GSH)以及基質(zhì)金屬蛋白酶(MMPs)、環(huán)氧合酶2(COX-2)、雌激素受體β(ESRβ)、CD44抗原(CD44)等的表達(dá)密切相關(guān)[47-48]。研究發(fā)現(xiàn),葛根素、柚皮苷可通過(guò)抑制腫瘤細(xì)胞MMPs的過(guò)表達(dá)來(lái)抑制腦膠質(zhì)瘤細(xì)胞的轉(zhuǎn)移和侵襲[49-50]。小檗堿、山柰素、槲皮素可通過(guò)抑制活性氧的產(chǎn)生[51-53],異甘草素和番木鱉堿可通過(guò)抑制COX-2的表達(dá)[22,54],甘草素可通過(guò)抑制ESRβ的過(guò)表達(dá)[55],從而發(fā)揮抑制腦膠質(zhì)瘤細(xì)胞增殖的作用。銀杏內(nèi)酯A可通過(guò)促進(jìn)NO的產(chǎn)生,發(fā)揮抑制腦膠質(zhì)瘤細(xì)胞增殖的作用[56]。透明質(zhì)酸可通過(guò)靶向作用于CD44,減少內(nèi)源性透明質(zhì)酸與CD44的結(jié)合,從而減弱腦膠質(zhì)瘤細(xì)胞間的信號(hào)傳遞,進(jìn)而抑制腦膠質(zhì)瘤的發(fā)展[57]。

腫瘤細(xì)胞間信號(hào)傳遞強(qiáng)烈且迅速,通常以第二信使為紐帶,因此阻斷細(xì)胞間的信號(hào)傳遞對(duì)抗腦膠質(zhì)瘤具有一定作用。Yulyana等[58]研究發(fā)現(xiàn),甘草次酸可通過(guò)抑制細(xì)胞間縫隙連接,阻斷細(xì)胞間信號(hào)的傳遞,從而抑制腦膠質(zhì)瘤細(xì)胞的增殖。

2 中藥活性成分抗腦膠質(zhì)瘤的新劑型

2.1 基于生物特異性的靶向制劑

腫瘤的發(fā)生、生長(zhǎng)、轉(zhuǎn)移伴隨著一定的形態(tài)改變以及一些特定蛋白的差異性表達(dá),如P-糖蛋白(P-gp)、CD44、5-脂氧合酶(ALOX5)、MMP2、骨橋蛋白(SPP1)、透明質(zhì)酸酶(HYAL2)、含鐵硫結(jié)構(gòu)域蛋白(CISD1)等的過(guò)表達(dá)[59-60],而這些特定蛋白以及其獨(dú)特的生理特性是抗腫瘤靶向劑型研究的關(guān)鍵。針對(duì)以上生物特異性,研究人員設(shè)計(jì)了多種靶向納米制劑(圖1)。筆者從常見(jiàn)的納米粒、微乳、水凝膠、細(xì)胞制劑等4個(gè)方面進(jìn)行分類闡述。

2.1.1 納米粒靶向制劑 Hu等[61]研究并制備了一種抗腦膠質(zhì)瘤的新型低水溶性靶向聚合物脂質(zhì)體。細(xì)胞實(shí)驗(yàn)顯示,此聚合物脂質(zhì)體可將槲皮素和替莫唑胺遞送至人神經(jīng)膠質(zhì)瘤U87細(xì)胞內(nèi);進(jìn)一步的大鼠實(shí)驗(yàn)顯示,槲皮素和替莫唑胺可在大鼠腦內(nèi)顯著積累,從而使藥物在血漿中的濃度升高。Zhang等[36]設(shè)計(jì)了可被轉(zhuǎn)鐵蛋白受體(TF-R)識(shí)別的七肽配體(T7)脂質(zhì)體、可被VEGF受體2(VEGFR2)識(shí)別的(D)A7R脂質(zhì)體,以及T7與(D)A7R雙肽修飾的脂質(zhì)體,并以這3種脂質(zhì)體分別負(fù)載阿霉素和長(zhǎng)春新堿,然后遞送至小鼠體內(nèi)。結(jié)果顯示,雙肽修飾后的脂質(zhì)體比單配體修飾的脂質(zhì)體或者游離藥物具有更好的腦膠質(zhì)瘤靶向性。Hayward等[62]研究發(fā)現(xiàn),透明質(zhì)酸能較好地靶向至在腦膠質(zhì)瘤細(xì)胞中過(guò)表達(dá)的蛋白CD44上;基于此,該研究者設(shè)計(jì)并合成了表面修飾有透明質(zhì)酸并負(fù)載阿霉素的脂質(zhì)體,結(jié)果發(fā)現(xiàn)該脂質(zhì)體可通過(guò)作用于CD44受體在腦膠質(zhì)瘤細(xì)胞中的介導(dǎo)位點(diǎn)進(jìn)行藥物傳遞。相關(guān)研究還發(fā)現(xiàn),通過(guò)抑制P-gp的表達(dá)可抑制腫瘤的生長(zhǎng),并延緩患者出現(xiàn)多藥耐藥性[63-64]。Priya等[65]以聚乙烯亞胺、巰基琥珀酸為偶聯(lián)劑,合成了具備良好緩沖能力和氧化還原敏感性的普魯蘭多糖納米粒,可靶向遞送阿霉素至大鼠腦膠質(zhì)瘤C6細(xì)胞;動(dòng)物實(shí)驗(yàn)結(jié)果顯示,該制劑可靶向抑制P-gp的過(guò)表達(dá),從而抑制大鼠腦膠質(zhì)瘤細(xì)胞的增殖。

一些具備揮發(fā)特性的芳香類中藥小分子物質(zhì)(如麝香酮、冰片),雖自身抗腦膠質(zhì)瘤效果不明顯,但因其具備芳香透皮特性而對(duì)血腦屏障具有較強(qiáng)的穿透性,因此在藥物劑型研究中常用其作為“引導(dǎo)”,將其修飾到載體上或者同時(shí)與藥物負(fù)載于新劑型上,使得載體能夠更大程度地透過(guò)血腦屏障,達(dá)到病灶部位[66]。Kang等[67]將麝香酮與小鼠單克隆抗體RI7217共同修飾于脂質(zhì)體表面,同時(shí)負(fù)載紫杉醇,制成新型紫杉醇脂質(zhì)體,進(jìn)行抗腦膠質(zhì)瘤劑型的研究。結(jié)果發(fā)現(xiàn),經(jīng)過(guò)修飾的新型紫杉醇脂質(zhì)體穿透細(xì)胞和血腦屏障的能力更強(qiáng),延長(zhǎng)了藥物滯留時(shí)間,且靶向性更強(qiáng),延長(zhǎng)了腦膠質(zhì)瘤模型小鼠的存活時(shí)間。Lv等[68]利用膠質(zhì)瘤細(xì)胞上硫酸肝素過(guò)表達(dá)的特點(diǎn),將冰片與硫酸肝素配體CGKRK肽修飾于DSPE- PEG2000表面而制成新型納米粒,并負(fù)載紫杉醇前體藥物進(jìn)行小鼠體內(nèi)給藥。結(jié)果發(fā)現(xiàn),該納米粒相較于游離藥物在小鼠腦部的積累量更高,且可延長(zhǎng)小鼠的中位生存時(shí)間至39 d,表明基于冰片特性設(shè)計(jì)的新型納米粒可更好地抑制腦膠質(zhì)瘤生長(zhǎng)。

Jing等[15]將沒(méi)食子酸負(fù)載至經(jīng)檸檬酸鈉還原的納米金顆粒上,結(jié)果該制劑可顯著抑制腦膠質(zhì)瘤細(xì)胞的生長(zhǎng)。Mohanty等[69]基于白藜蘆醇的抗氧化性能,將其修飾至納米金上并負(fù)載阿霉素,結(jié)果發(fā)現(xiàn)該制劑可抑制腦膠質(zhì)瘤細(xì)胞的增殖。

2.1.2 微乳制劑 微乳是指粒徑為0.01~0.1 μm的乳劑,常采用W/O或者O/W的方式在不同的分散相中形成微乳顆粒[70]。Colombo等[52]采用高壓均質(zhì)法制備了山柰素微乳,并經(jīng)大鼠鼻腔給藥后發(fā)現(xiàn),該微乳進(jìn)入大鼠腦組織內(nèi)的藥物量比游離藥物高出5倍;此外,與游離山柰素相比,山柰素微乳能更好地誘導(dǎo)大鼠腦膠質(zhì)瘤C6細(xì)胞死亡。Kumar等[71]制備了姜黃素微乳,其對(duì)人U87MG膠質(zhì)瘤細(xì)胞株的半數(shù)抑制濃度(IC50)為16.41? ? μmol/L,遠(yuǎn)低于單獨(dú)使用姜黃素的IC50(24.23 μmol/L)。

2.1.3 水凝膠載體制劑 水凝膠具有極為親水的三維結(jié)構(gòu),可在水中迅速溶脹并在溶脹狀態(tài)下保持大量體積的水而不溶解[72]。水凝膠材料多為親水高分子物質(zhì),如多糖(纖維素、透明質(zhì)酸、海藻酸等)、多肽(膠原、聚L-賴氨酸等),因而具備極高的生物相容性[73]。其中,水凝膠材料應(yīng)用最廣泛的是透明質(zhì)酸,其可靶向至在腦膠質(zhì)瘤細(xì)胞中過(guò)表達(dá)的蛋白CD44上,從而將所載藥物靶向腦膠質(zhì)瘤,進(jìn)而抑制其生長(zhǎng)與轉(zhuǎn)移[57]。Zhang等[74]將經(jīng)修飾的乳鐵蛋白和透明質(zhì)酸以二硫鍵交聯(lián)劑交聯(lián),形成納米水凝膠并負(fù)載阿霉素,進(jìn)行抗腦膠質(zhì)瘤藥物遞送研究。結(jié)果發(fā)現(xiàn),該納米水凝膠遞送的阿霉素在大鼠腦部的蓄積量是單用阿霉素的12.37倍,由此推測(cè)其抗腦膠質(zhì)瘤的效果更好。

Schiapparelli等[28]基于多肽C16-Gly-Val-Val-Gln- Gln-His-Lys-OH(C16-HK)的結(jié)構(gòu),在C末端修飾2個(gè)羧基,使其在磷酸鹽緩沖鹽液(pH 7.0)中形成自支撐水凝膠,再與被二硫鍵修飾的喜樹(shù)堿結(jié)合。結(jié)果發(fā)現(xiàn),該水凝膠可在腦膠質(zhì)瘤模型小鼠的患病部位穩(wěn)定長(zhǎng)效地釋放喜樹(shù)堿,從而延長(zhǎng)小鼠的生存期。Babaei等[75]將聚(ε-己內(nèi)酯-丙交酯)-b-聚(乙二醇)-b-聚(ε-己內(nèi)酯-丙交酯)(PCLA-PEG-PCLA)加入載姜黃素的聚乙二醇-b-聚丙交酯(mPEG-PLA)中形成一種可降解的水凝膠,結(jié)果發(fā)現(xiàn)該水凝膠可增強(qiáng)姜黃素對(duì)腦膠質(zhì)瘤的抑制作用。

2.1.4 以內(nèi)源性細(xì)胞為載體的靶向制劑 細(xì)胞介導(dǎo)的藥物遞送以生物內(nèi)源性細(xì)胞為載體,借助其較好的生物相容性來(lái)達(dá)到藥物遞送的目的,該類細(xì)胞制劑常常以免疫細(xì)胞、單核吞噬細(xì)胞(包括單核細(xì)胞、巨噬細(xì)胞、樹(shù)突細(xì)胞等)、淋巴細(xì)胞、中性粒細(xì)胞和干細(xì)胞等為藥物載體[76]。

小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)的常駐巨噬細(xì)胞,可以被腦膠質(zhì)瘤吸收。Du等[77]利用薄膜水化法制備了紫杉醇脂質(zhì)體(PTX-LP),再與小膠質(zhì)細(xì)胞(BV2)共培養(yǎng),得到富含紫杉醇脂質(zhì)體的小膠質(zhì)細(xì)胞(PTX-LP/BV2);進(jìn)一步在小鼠體內(nèi)的研究發(fā)現(xiàn),與單純地注射PTX-LP相比,PTX-LP/BV2在小鼠腦內(nèi)可更多地累積,且能更好地抑制腦膠質(zhì)瘤的生長(zhǎng)。

外泌體是指包含了復(fù)雜RNA和蛋白質(zhì)的小膜泡,廣泛存在于體液中,因其具有低毒性、低免疫原性和生物相容性而受到廣泛關(guān)注[78]。基于此,Jia等[79]利用電穿孔法將超順磁氧化鐵納米粒與姜黃素導(dǎo)入外泌體膜中,形成負(fù)載納米粒和姜黃素的外泌體制劑,并研究其對(duì)腦膠質(zhì)瘤模型小鼠的作用。結(jié)果發(fā)現(xiàn),該外泌體制劑可顯著延長(zhǎng)腦膠質(zhì)瘤模型小鼠的生存期。

Xue等[80]制備了以中性粒細(xì)胞為載體的紫杉醇陽(yáng)離子脂質(zhì)體(PTX-LP/NEs),并將其注射在小鼠體內(nèi)。結(jié)果顯示,該脂質(zhì)體可以有效抑制小鼠惡性腦膠質(zhì)瘤的復(fù)發(fā)性生長(zhǎng),且顯著提高了小鼠的生存率。

2.2 基于腫瘤微環(huán)境的靶向制劑

腫瘤在發(fā)生、生長(zhǎng)和轉(zhuǎn)移過(guò)程中始終與內(nèi)環(huán)境保持一定的穩(wěn)態(tài),這種穩(wěn)態(tài)為腫瘤的生長(zhǎng)提供了最佳的生長(zhǎng)環(huán)境,例如腫瘤周邊表現(xiàn)出活性氧升高、GSH表達(dá)量升高、環(huán)境pH呈弱酸性等微環(huán)境的改變[47]。這也為腫瘤靶向制劑的研發(fā)提供了一定的啟示。基于此,下文對(duì)根據(jù)腫瘤微環(huán)境的相關(guān)特征所設(shè)計(jì)的靶向劑型進(jìn)行概述。

2.2.1 靶向腫瘤細(xì)胞內(nèi)活性氧升高效應(yīng)的制劑 Dong等[81]以硼酯為紐帶,兩端分別外接聚乙二醇、紫杉醇形成具備兩親性的長(zhǎng)鏈物質(zhì),進(jìn)而自組裝形成膠束。進(jìn)一步的體外研究結(jié)果顯示,該膠束在人膠質(zhì)瘤細(xì)胞內(nèi)活性氧水平較高時(shí)可快速分解,進(jìn)而釋放出紫杉醇,從而抑制該細(xì)胞的增殖。Wu等[82]設(shè)計(jì)了一種可響應(yīng)活性氧升高的紫杉醇納米粒,其可借助超聲準(zhǔn)確釋放出紫杉醇,從而使藥物在小鼠腦膠質(zhì)瘤的病灶區(qū)有效蓄積,達(dá)到了更好的治療效果。

2.2.2 靶向腫瘤內(nèi)環(huán)境GSH過(guò)表達(dá)的制劑 Xiang等[83]制備了負(fù)載姜黃素的GSH響應(yīng)型膠束,結(jié)果發(fā)現(xiàn)該膠束可靶向治療腦膠質(zhì)瘤,且比單獨(dú)使用姜黃素的效果更好。Tian等[84]設(shè)計(jì)了低分子量(50 kDa)、中分子量(200~500 kDa)以及高分子量(1 000~2 000 kDa)的透明質(zhì)酸膠束,并分別負(fù)載姜黃素,然后將載藥透明質(zhì)酸膠束作用于小鼠神經(jīng)膠質(zhì)瘤G422細(xì)胞。結(jié)果發(fā)現(xiàn),低、中分子量的載藥透明質(zhì)酸膠束具備更好的GSH響應(yīng)效果。

2.2.3 靶向腫瘤弱酸性環(huán)境的制劑 翟美芳[85]采用酸堿度梯度法制備了硫酸長(zhǎng)春新堿鐵蛋白納米粒,進(jìn)一步經(jīng)體外藥物釋放研究發(fā)現(xiàn),該納米粒在pH7.4環(huán)境中的釋放速度顯著低于在pH5.0環(huán)境中;且在釋放36 h時(shí),該納米粒在pH5.0環(huán)境中的累積釋放量約為在pH7.4環(huán)境中的5倍,表明該納米粒可使藥物在腫瘤部位釋放,且能夠顯著提高藥物的滯留濃度,從而發(fā)揮更好的抗腦膠質(zhì)瘤作用。

3 結(jié)語(yǔ)

中藥活性成分在抗腦膠質(zhì)瘤治療方面具有重要作用,可通過(guò)誘導(dǎo)自噬、調(diào)控細(xì)胞周期、抑制腫瘤相關(guān)細(xì)胞因子活性等作用機(jī)制,發(fā)揮抗腦膠質(zhì)瘤的作用。為了達(dá)到更好的治療效果,研究人員基于腫瘤發(fā)生、發(fā)展的特點(diǎn),設(shè)計(jì)了多種靶向制劑,如基于生物特異性的靶向制劑(包括納米粒靶向制劑、微乳制劑、水凝膠制劑、以內(nèi)源性細(xì)胞為載體的靶向制劑等)、基于腫瘤微環(huán)境的靶向制劑(包括靶向腫瘤細(xì)胞內(nèi)活性氧升高效應(yīng)的制劑、靶向腫瘤內(nèi)環(huán)境GSH過(guò)表達(dá)的制劑、靶向腫瘤弱酸性環(huán)境的制劑等),從而提高了藥物的滯留時(shí)間以及生物利用度,增強(qiáng)了藥物的靶向性,延遲了藥物的多藥耐藥,進(jìn)而提高了藥物療效。但是,目前中藥活性成分抗腦膠質(zhì)瘤的劑型研究,多是基于紫杉醇、山柰素等常規(guī)藥物成分,較為單一,因此后續(xù)應(yīng)開(kāi)發(fā)更多中藥活性成分抗腦膠質(zhì)瘤的新劑型。

經(jīng)筆者歸納后發(fā)現(xiàn),當(dāng)前中藥活性成分抗腦膠質(zhì)瘤劑型的研究熱點(diǎn)是納米制劑。該制劑可改善藥物半衰期短、穩(wěn)定性差等實(shí)際臨床應(yīng)用中的問(wèn)題,且可在不破壞血腦屏障的情況下,穿透血腦屏障使藥物進(jìn)入病灶發(fā)揮治療作用,從而提高中藥活性成分的生物利用度[86]。因此,中藥活性成分靶向制劑尤其是納米制劑的開(kāi)發(fā),是治療腦膠質(zhì)瘤的有效途徑之一。

參考文獻(xiàn)

[ 1 ] 劉福生,金貴善.腦膠質(zhì)瘤基礎(chǔ)與臨床研究[M].北京:人民衛(wèi)生出版社,2016:43.

[ 2 ] FURNARI F B,F(xiàn)ENTON T,BACHOO R M,et al. Malignant astrocyticglioma:genetics,biology,and paths to treatment[J]. Genes Dev,2007,21(21):2683-2710.

[ 3 ] WEN P Y,KESARI S. Malignant gliomas in adults[J]. NEJM,2008,359(5):492-507.

[ 4 ] 白若冰,荔志云,任海軍.中醫(yī)中藥在腦膠質(zhì)瘤治療中的作用研究[J].西部中醫(yī)藥,2018,31(1):134-137.

[ 5 ] LUIZ M T,DELELLO DI FILIPPO L,TOFANI L B,et al. Highlights in targeted nanoparticles as a delivery strategy for gliomatreatment[J]. Int J Pharm,2021,604:120758.

[ 6 ] 宋強(qiáng),王志宏.醫(yī)學(xué)生物學(xué)[M]. 4版.上海:上海科學(xué)技術(shù)出版社,2019:25-30.

[ 7 ] YOU Y,WANG R,SHAO N,et al. Luteolin suppresses tumor proliferation through inducing apoptosis and autophagy via MAPK activation in glioma[J]. Onco Targets Ther,2019,12:2383-2395.

[ 8 ] DING L,WANG S,WANG W,et al. Tanshinone ⅡA affects autophagy and apoptosis of glioma cells by inhibi- ting phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway[J]. Pharmacology,2017,99(3/4):188-195.

[ 9 ] SHINOJIMA N,YOKOYAMA T,KONDO Y,et al. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy[J]. Autophagy,2007,3(6):635-637.

[10] WU C,CHEN H,WANG C,et al. Isoliquiritigenin indu- ces apoptosis and autophagy and inhibits endometrial cancer growth in mice[J]. Oncotarget,2016,7(45):73432- 73447.

[11] LIU X,ZHAO P,WANG X,et al. Triptolide induces glioma cell autophagy and apoptosis via upregulating the ROS/JNK and downregulating the Akt/mTOR signaling pathways[J]. Front Oncol,2019,9:387.

[12] LIU B,DING L,ZHANG L,et al. Baicalein induces autophagy and apoptosis through AMPK pathway in human glioma cells[J]. Am J Chin Med,2019,47(6):1405-1418.

[13] 崔行,朱懷榮,侯建軍,等.醫(yī)用分子細(xì)胞生物學(xué)[M].北京:人民衛(wèi)生出版社,2000:40-45.

[14] LI H G,CHEN J X,XIONG J H,et al. Myricetin exhibits anti-glioma potential by inducing mitochondrial-mediated apoptosis,cell cycle arrest,inhibition of cell migration and ROS generation[J].? J BUON,2016,21(1):182-190.

[15] JING Z,LI M H,WANG H Y,et al. Gallic acid-gold nanoparticles enhance radiation-induced cell death of human glioma U251 cells[J]. IUBMB Life,2021,73(2):398-407.

[16] ZHU X,SONG X,XIE K,et al. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma[J]. Int J Mol Med,2017,40(4):1143-1151.

[17] WANG D,WANG Z,DAI X,et al. Apigenin and temozolomide synergistically inhibit glioma growth through the PI3K/Akt pathway[J/OL]. Cancer Biother Radio Pharm,2021[2021-08-12]. https://pubmed.ncbi.nlm.nih.gov/ 33471569/.DOI:10.1089/cbr.2020.4283.

[18] SANTOS B L,SILVA A R,PITANGA B P S,et al. Anti- proliferative,proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells[J]. Food Chem,2011,127(2):404-411.

[19] 史記,張燁,孫佩欣,等.紫杉醇聯(lián)合紫草素對(duì)U87腦膠質(zhì)瘤細(xì)胞的作用及機(jī)制初探[J].現(xiàn)代腫瘤醫(yī)學(xué),2020,28(5):691-698.

[20] CLARK P A,BHATTACHARYA S,ELMAYAN A,et al. Resveratrol targeting of Akt and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration[J]. J Neurosurg,2017,126(5):1448-1460.

[21] LI Y,CAI T,ZHANG W,et al. Effects of saikosaponin D on apoptosis in human U87 glioblastoma cells[J]. Mol Med Rep,2017,16(2):1459-1464.

[22] WANG R,MENG W,WANG Y,et al. Inhibition of glioblastoma cell growth in vitro and in vivo by brucine,a component of Chinese medicine[J]. Oncol Res,2015,22(5/6):275-281.

[23] CHEN J,HWANG J,CHIU W,et al. Tetrandrine and caffeine modulated cell cycle and increased glioma cell death via caspase-dependent and caspase-independent apoptosis pathways[J]. Nutr Cancer,2014,66(4):700-706.

[24] WANG W,SUN Z,CHEN H,et al. Role and mechanism of sophoridine on proliferation inhibition in human glioma U87MG cell line[J]. Int J Clin Exp Med,2015,8(1):464-471.

[25] HE X,MAIRNAITI M,JIAO Y,et al. Sinomenine indu- ces G1-phase cell cycle arrest and apoptosis in malignant glioma cells via downregulation of sirtuin 1 and induction of p53 acetylation[J]. Technol Cancer Res Treat,2018,17:1533034618770305.

[26] LU W J,WU G J,CHEN R J,et al. Licochalcone A attenuates glioma cell growth in vitro and in vivo through cell cycle arrest[J]. Food Funct,2018,9(8):4500-4507.

[27] HAN S,GONG H,WANG Y,et al. The preparation of matrine liposome and its antiglioma activity study[J]. J Chem,2014,1:1-5.

[28] SCHIAPPARELLI P,ZHANG P,LARA-VELAZQUEZ M,et al. Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model[J]. J Control Release,2020,319:311-321.

[29] BERGAMIN L S,F(xiàn)IGUEIRO F,DIETRICH F,et al. Interference of ursolic acid treatment with glioma growth:an in vitro and in vivo study[J]. Eur J Pharmacol,2017,811:268-275.

[30] JIANG G,ZHANG L,WANG J,et al. Baicalein induces the apoptosis of U251 glioblastoma cell lines via the NF-? κB-p65-mediated mechanism[J]. Anim Cells Syst,2016,20(5):296-302.

[31] ZHU Y,LIANG J,GAO C,et al. Multifunctional ginseno- side Rg3-based liposomes for glioma targeting therapy[J]. J Control Release,2021,330:641-657.

[32] LINGHU H R,LUO H,GANG L. Bufalin induces glioma cell death by apoptosis or necroptosis[J]. Onco Targets Ther,2020,13:4767-4778.

[33] 蔡風(fēng)景,徐朝陽(yáng),陳峻嚴(yán),等.雷公藤甲素對(duì)C6膠質(zhì)瘤細(xì)胞凋亡及TNF-α、NF-κB和caspase-3表達(dá)的影響[J].中藥藥理與臨床,2013,29(6):14-17.

[34] YANG L,WANG Y,GUO H,et al. Synergistic anti-cancer effects of icariin and temozolomide in glioblastoma[J]. Cell Biochem Biophys,2015,71(3):1379-1385.

[35] 岳霖霖.黃芩素通過(guò)EGFR-Akt信號(hào)通路抑制由hEGF誘導(dǎo)的神經(jīng)膠質(zhì)瘤細(xì)胞的增殖和遷移[D].青島:青島大學(xué),2017.

[36] ZHANG Y,ZHAI M,CHEN Z,et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma[J]. Drug? ? ?Deliv,2017,24(1):1045-1055.

[37] FAN Y,XUE W,SCHACHNER M,et al. Honokiol eliminates glioma/glioblastoma stem cell-like cells via JAK- STAT3 signaling and inhibits tumor progression by targe- ting epidermal growth factor receptor[J]. Cancers (Basel),2019,11(1):22.

[38] KIM J,LEE J,JUNG J,et al. Emodin suppresses maintenance of stemness by augmenting proteosomal degradation of epidermal growth factor receptor/epidermal growth factor receptor variant Ⅲ in gliomastem cells[J].? Stem Cells Dev,2015,24(3):284-295.

[39] ZHANG W F,YAN Y,XIN L,et al. Angelica polysaccharides inhibit the growth and promote the apoptosis of U251 glioma cells in vitro and in vivo[J]. Phytomedicine,2017,33:21-27.

[40] ZHU Y,LIU X,ZHAO P,et al. Celastrol suppresses gliomavasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway[J]. Front Pharmacol,2020,11:25.

[41] HUAKAN Z,WU L,YAN G,et al. Inflammation and tumor progression:signaling pathways and targeted intervention[J]. Signal Transduct Target Ther,2021,6(1):263.

[42] CRANE C,PANNER A,PIEPER R O,et al. Honokiol-mediated inhibition of PI3K/mTOR pathway a potential stra- tegy to overcome immunoresistance in glioma,breast,and prostate carcinoma without impacting T cell function[J]. J Immunother,2009,32(6):585-592.

[43] ZHANG X,ZHANG N,MENG X,et al. Hesperetin inhi- bits the proliferation of cerebrally implanted C6 glioma and involves suppression of HIF-1 alpha/VEGF pathway in rats[J]. Bio Res,2017,28(3):1205-1211.

[44] MOUSESSIAN A S,SILVA C,OBA-SHINJO S M,et al. CXCR7,CXCR4 and their ligands expression profile in traumatic brain injury[J]. World Neurosurg,2020,147:e16-e24.

[45] SHI Y,RIESE D J,SHEN J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer[J]. Front Pharmacol,2020,11:574667.

[46] CHEN Z,PAN X,GEORGAKILAS A G,et al. Tetrame- thylpyrazine (TMP) protects cerebral neurocytes and? ? ?inhibits glioma by down regulating chemokine receptor? ? ?CXCR4 expression[J]. Cancer Lett,2013,336(2):281- 289.

[47] 呂程亮,張帆,魏煒,等.基于腫瘤微環(huán)境構(gòu)建納米藥物的研究進(jìn)展[J].生物加工過(guò)程,2020,18(6):799-805.

[48] WARD J A,HUANG L,GUO H M,et al. Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells[J]. Am J Pathol,2003,162(5):1403-1409.

[49] 岳雙柱,袁國(guó)艷,金保哲,等.葛根素對(duì)膠質(zhì)瘤細(xì)胞遷移侵襲能力影響研究[J].中國(guó)免疫學(xué)雜志,2013,29(3):309-311.

[50] AROUI S,AOUEY B,CHTOUROU Y,et al. Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-p38-JNK signaling pathway in human glioblastoma[J]. Chem Biol Interact,2016,244:195-203.

[51] PALMA T V,LENZ L S,BOTTARI N B,et al. Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity

[J]. Mol Biol Rep,2020,47(6):4393-4400.

[52] COLOMBO M,F(xiàn)IGUEIRó F,AMANDA D F D,et al. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro[J]. Int J Pharm,2018,543(1/2):214-223.

[53] CHEN T,JENG J,LIN C,et al. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells[J]. Toxicology,2006,223(1/2):113-126.

[54] WANG C,CHEN Y,WANG Y,et al. Inhibition of COX- 2,mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1[J]. J Exp Clin Cancer Res,2019,38(1):371.

[55] LIU X,WANG L,CHEN J,et al. Estrogen receptor beta agonist enhances temozolomide sensitivity of glioma cells by inhibiting PI3K/AKT/mTOR pathway[J]. Mol Med Rep,2015,11(2):1516-1522.

[56] ZHAO H W,LI X Y. Ginkgolide A,B,and huperzine A inhibit nitric oxide production from rat C6 and human BT325 glioma cells[J]. Zhongguo Yao Li Xue Bao,1999,20(10):941-943.

[57] LESLEY J,ENGLISH N,CHARLES C,et al. The role of the CD44 cytoplasmic and transmembrane domains in constitutive and inducible hyaluronan binding[J]. Eur J Immunol,2015,30(1):245-253.

[58] YULYANA Y,ENDAYA B B,NG W H,et al. Carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma[J].Stem Cells Dev,2013,22(13):1870-1882.

[59] LIU Y,XU Z,JIN T,et al. Ferroptosis in low-grade glioma:a new marker for diagnosis and prognosis[J]. Med Sci Monit,2020,26:e921947.

[60] XIAO Y,CUI G,REN X,et al. A novel four-gene signature associated with immune checkpoint for predicting prognosis in lower-grade glioma[J]. Front Oncol,2020,10:605737.

[61] HU J,WANG J,WANG G,et al. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide:analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells[J]. Int J Mol Med,2016,37(3):690-702.

[62] HAYWARD S L,WILSON C L,KIDAMBI S. Hyaluro- nic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells[J]. Oncotarget,2016,7(23):34158-34171.

[63] FALLACARA A L,ZAMPERINI C,PODOLSKI-RENI A,et al. A new strategy for glioblastoma treatment:in vitro and in vivo preclinical characterization of Si306,a pyrazolo

[3,4-d]pyrimidine dual Src/P-glycoprotein inhibitor[J].

Cancers,2019,11(6):848.

[64] WU Y H,YAO Y,YUN Y L,et al. MicroRNA-302c enhances the chemosensitivity of human glioma cells to temozolomide by suppressing P-gp expression[J]. Biosci Rep,2019,39(9):BSR20190421.

[65] PRIYA S S,REKHA M R. Redox sensitive cationic pullulan for efficient gene transfection and drug retention in C6 glioma cells[J]. Int J Pharm,2017,530(1/2):401-414.

[66] 王南卜,張芹欣,寧百樂(lè),等. 4種開(kāi)竅藥促進(jìn)替莫唑胺進(jìn)入U(xiǎn)251細(xì)胞及減低耐藥性的對(duì)比研究[J].中華中醫(yī)藥雜志,2017,32(5):2206-2209.

[67] KANG S,DUAN W,ZHANG S,et al. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma[J]. Theranostics,2020,10(10):4308-4322.

[68] LV L,LI X,QIAN W,et al. Enhanced anti-glioma efficacy by borneol combined with CGKRK-modified paclitaxel self-assembled redox-sensitive nanoparticles[J]. Front Pharmacol,2020,11:558.

[69] MOHANTY R K,THENNARASU S,MANDAL A B. Resveratrol stabilized gold nanoparticles enable surface loading of doxorubicin and anticancer activity[J]. Colloids Surf B Biointerfaces,2013,114:138-143.

[70] 趙振國(guó).膠束催化與微乳催化[M].北京:化學(xué)工業(yè)出版社,2006:86-90.

[71] KUMAR A,AHUJA A,ALI J,et al. Curcumin-loaded li- pid nanocarrier for improving bioavailability,stability and cytotoxicity against malignant glioma cells[J]. Drug Deli- very,2014,23(1):214-229.

[72] 梁飛.新型水凝膠的結(jié)構(gòu)和性能研究[M].長(zhǎng)春:吉林科學(xué)技術(shù)出版社,2020:45-47.

[73] 李子怡,顧麗莉,佟振浩,等.水凝膠功能改性研究與應(yīng)用進(jìn)展[J].高分子通報(bào),2019,8:7-13.

[74] ZHANG M,ASGHAR S,TIAN C,et al. Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for targeting glioma

[J]. Carbohydr Polym,2021,253(4):117194.

[75] BABAEI M,DAVOUDI J,DEHGHAN R,et al. Thermosensitive composite hydrogel incorporated with curcumin- loaded nanopolymersomes for prolonged and localized treatment of glioma[J]. J Drug Deliv Sci Tec,2020,59:6.

[76] BATRAKOVA E V,KABANOV A V. Cell-mediated drug delivery to the brain[J]. J Drug Deliv Sci Tec,2013,23(5):419-433.

[77] DU Y,YANG Z,SUN Q,et al. Engineered microglia potentiate the action of drugs against glioma through extracellular vesicles and tunneling nanotubes[J]. Adv Healthc Mater,2021,10(9):e2002200.

[78] 談胤求,陳謙學(xué).外泌體在腦膠質(zhì)瘤中的研究進(jìn)展[J].疑難病雜志,2021,20(7):731-735.

[79] JIA G,HAN Y,AN Y,et al. NRP-1 targeted and cargo- loaded exosomes facilitate simultaneous imaging and? therapy of glioma in vitro and in vivo[J]. Biomaterials,2018,178:302-316.

[80] XUE J,ZHAO Z,ZHANG L,et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol,2017,12(7):692-700.

[81] DONG C,ZHOU Q,XIANG J,et al. Self-assembly of oxidation-responsive polyethylene glycol-paclitaxel prodrug for cancer chemotherapy[J]. J Control Release,2020,321:529-539.

[82] WU P Y,DONG W,GUO X Y,et al. ROS-responsive blended nanoparticles:cascade-amplifying synergistic effects of sonochemotherapy with on-demand boosted drug release during SDT process[J]. Adv Healthc Mater,2019,8(18):e1900720.

[83] XIANG Y,DUAN X,F(xiàn)ENG L,et al. tLyp-1-conjugated GSH-sensitive biodegradable micelles mediate enhanced pUNO1-hTRAILa/curcumin co-delivery to gliomas[J].Chem Eng J,2019,374:392-404.

[84] TIAN C,ASGHAR S,XU Y,et al. The effect of the molecular weight of hyaluronic acid on the physicochemical characterization of hyaluronic acid-curcumin conjugates and in vitro evaluation in glioma cells[J]. Colloids Surf B Biointerfaces,2018,165:45-55.

[85] 翟美芳.硫酸長(zhǎng)春新堿鐵蛋白納米粒的制備及治療腦膠質(zhì)瘤研究[D].佳木斯:佳木斯大學(xué),2018.

[86] 高彩芳,夏加璇,朱穎,等.納米技術(shù)在改善中藥有效成分成藥性中的應(yīng)用[J].中草藥,2018,49(12):2754-2762.

(收稿日期:2021-05-19 修回日期:2021-10-13)

(編輯:唐曉蓮)

主站蜘蛛池模板: 亚洲男人天堂2020| 99无码熟妇丰满人妻啪啪 | 国产精品视频系列专区| 亚洲成a人片在线观看88| 国产午夜一级淫片| 青草视频在线观看国产| 亚洲一级毛片免费观看| 久久www视频| 九九热视频精品在线| 91成人免费观看在线观看| 久久国产乱子| 无码内射在线| jijzzizz老师出水喷水喷出| 真实国产乱子伦视频| 无码精品一区二区久久久| 99热亚洲精品6码| 亚洲精品大秀视频| 色老二精品视频在线观看| 亚洲成人网在线播放| 欧美三级日韩三级| 国产欧美日韩另类| 五月婷婷综合网| 成人亚洲国产| 久久夜色撩人精品国产| 成人精品免费视频| 欧洲在线免费视频| 国产乱子伦一区二区=| 久久综合婷婷| 国产精品制服| 欧洲极品无码一区二区三区| 无码中文字幕精品推荐| 国内精品视频区在线2021| 一级全免费视频播放| 欧美a在线| 国产精品成人一区二区| 久久精品一卡日本电影 | 亚洲系列无码专区偷窥无码| 在线观看无码av五月花| 波多野结衣的av一区二区三区| 5555国产在线观看| 91精品国产综合久久香蕉922| 国产欧美成人不卡视频| 国产乱人免费视频| 手机看片1024久久精品你懂的| 欧美精品高清| 亚洲男人在线| 永久毛片在线播| 亚洲精品手机在线| 亚洲精品第五页| 午夜免费小视频| 999精品色在线观看| 五月婷婷伊人网| 国内精品自在自线视频香蕉| 99在线观看免费视频| 亚洲欧美成aⅴ人在线观看| 伦精品一区二区三区视频| 亚洲一级毛片在线观播放| 亚洲欧美在线综合一区二区三区| 热思思久久免费视频| 国产成人高清在线精品| 一级香蕉人体视频| 亚洲综合18p| 国产国产人在线成免费视频狼人色| 欧美一级一级做性视频| 日本AⅤ精品一区二区三区日| 日韩色图在线观看| 欧洲极品无码一区二区三区| 亚洲第一黄片大全| 国产精品极品美女自在线| 夜夜操国产| 日韩天堂视频| 日本午夜影院| 亚洲av综合网| 亚洲三级视频在线观看| 国产精品久久精品| 亚洲人成影视在线观看| 国产麻豆福利av在线播放| av午夜福利一片免费看| 国产精品一老牛影视频| A级毛片高清免费视频就| 亚洲精品高清视频| 91网址在线播放|