金慧, 謝中杰, 張麗娜, 龔開政, 張振剛, 李如君△
TGF-β1/Smad3信號軸的氧連糖基化修飾對小鼠心臟成纖維細胞活力和分化的影響*
金慧1, 謝中杰2, 張麗娜1, 龔開政1, 張振剛1, 李如君1△
(1揚州大學附屬醫(yī)院心內科,江蘇 揚州 225001;2臺州市第一人民醫(yī)院心內科,浙江 臺州 318020)
探討TGF-β1/Smad3信號軸的氧連糖基化修飾(-連接的-乙酰葡萄糖胺修飾)對體外培養(yǎng)的小鼠心臟成纖維細胞(MCFs)在缺氧/復氧(H/R)后活力和分化的影響及機制。原代培養(yǎng)的MCFs缺氧6 h再恢復常氧24 h建立細胞H/R模型,通過感染-連接的-乙酰葡萄糖胺轉移酶(OGT)重組腺病毒提高MCFs氧連糖基化水平,將MCFs隨機分組為空載腺病毒預處理+常氧(Ad.Null+Ctrl)組、空載腺病毒預處理+H/R(Ad.Null+H/R)組、OGT腺病毒預處理+常氧(Ad.OGT+Ctrl)組和OGT腺病毒預處理+H/R(Ad.OGT+H/R)組。RT-qPCR檢測結締組織生長因子(CTGF)、α-平滑肌肌動蛋白(α-SMA)、白細胞介素1β(IL-1β)和IL-18 mRNA水平;Western blot檢測p-Smad3、Smad3、OGT和炎癥介質蛋白水平;免疫共沉淀實驗檢測Smad3修飾狀態(tài)及蛋白間相互結合;CCK-8法檢測細胞活力;免疫熒光共聚焦顯示Smad3亞細胞定位。H/R致使MCFs氧連糖基化水平下降,過表達OGT顯著緩解了H/R誘導的細胞氧連糖基化水平降低(<0.05)。提高氧連糖基化水平抑制H/R誘導的MCFs活力和向肌成纖維細胞分化,減少I型膠原合成和炎癥介質IL-1β/IL-18表達(<0.05);TGF-β1信號軸胞內關鍵分子Smad3氧連糖基化水平升高,并且Smad3磷酸化及核轉位受阻(<0.05)。氧連糖基化修飾競爭性抑制Smad3 Ser423/425磷酸化并使Smad3滯留于胞質,負向調控TGF-β1/Smad3信號軸,抑制H/R對體外培養(yǎng)的小鼠心臟成纖維細胞功能變化的誘導。
心肌缺血再灌注損傷;心肌纖維化;心臟成纖維細胞;TGF-β1/Smad3信號通路;-連接的-乙酰葡萄糖胺修飾
心肌梗死患者接受以冠脈內支架植入術為代表的血管再通治療后,仍舊出現(xiàn)心臟收舒功能低下,心律失常以及心力衰竭的現(xiàn)象,這與心梗后心臟病理性重構密切相關。研究證實,心臟缺血梗死后經典促纖維化通路——轉化生長因子β1(transforming growth factor β1,TGF-β1)信號軸活化并誘導小鼠心臟成纖維細胞(mouse cardiac fibroblasts,MCFs)增殖,分泌多種細胞外基質(如Ⅰ型膠原),分化成肌成纖維細胞(myofibroblasts,MFBs)偶聯(lián)心肌細胞形成縫隙連接,表達炎癥細胞因子[如白細胞介素1β(interleukin-1β,IL-1β)/IL-18]參與炎癥反應,最終形成以心肌纖維化為特征的心臟病理性重構,是介導心肌梗死后心臟功能異常的重要病理學基礎。本課題組前期實驗表明,-連接的-乙酰葡萄糖胺(-linked-acetylglucosamine,-GlcNAc)轉移酶(-GlcNAc transferase,OGT)通過提高細胞氧連糖基化修飾(-GlcNAc修飾,-GlcNAcylation)水平能夠顯著抑制應激條件下MCFs增殖,但具體作用靶點不清。因而本項工作利用MCFs缺氧/復氧(hypoxia/reoxygenation,H/R)建立心肌梗死血管再通治療的細胞模型,探討氧連糖基化修飾對H/R介導的MCFs損傷效應的影響及可能機制。
清潔級雄性成年(8~10周齡,20~25 g)C57BL/6小鼠購自揚州大學實驗動物中心,許可證號為SYXK(蘇)2017-0044;OGT過表達腺病毒(Ad-eGFP.OGT)和空載對照腺病毒(Ad-eGFP.Null)為本實驗室保存;胰蛋白酶和Ⅰ型膠原酶購自Sigma-Aldrich;Trizol和RIPA裂解液購自中國北京普利萊基因技術有限公司;鼠氧連糖基化(-GlcNAc)抗體(CTD110.6)、鼠OGT抗體、鼠β-actin抗體、normal mouse IgG和Protein A/G plus agarose購自Santa Cruz;兔IL-1β、兔IL-18抗體、兔磷酸化Smad3(Ser423/425)抗體、HRP標記抗兔IgG、HRP標記抗鼠IgG和Alexa Fluor 555標記抗兔IgG購自Cell Signaling Technology;兔Smad3抗體、兔Smad4抗體、鼠collagen I抗體、鼠α-SMA抗體和兔caspase-1抗體購自Abcam;蛋白酶磷酸酶抑制劑、DAPI染液、BCA蛋白定量試劑盒、CCK-8試劑盒購自中國上海碧云天生物技術有限公司;增強型ECL化學發(fā)光液、反轉錄cDNA合成試劑盒、SYBR Green熒光定量試劑盒、DMEM培養(yǎng)液和胎牛血清購自Thermo;PCR引物由中國上海生工生物工程有限公司合成。熒光倒置顯微鏡(Nikon);RT-PCR擴增儀(BIO-RAD,CFX96);免疫印跡成像系統(tǒng)(iBright,CL1500)。
2.1MCFs細胞原代培養(yǎng)參考已有文獻[1],取5只小鼠在無菌條件下取出心臟并剪成組織塊后用預冷PBS洗凈血跡,混合酶液(胰酶+Ⅰ型膠原酶)充分消化后200目過濾并離心,取細胞沉淀重懸于含有10%胎牛血清的DMEM培養(yǎng)液中置于體積分數(shù)5% CO2、常氧培養(yǎng)箱中37 ℃絕對靜置培養(yǎng)90 min,利用差速貼壁法純化MCFs,棄去未貼壁細胞并繼續(xù)靜置培養(yǎng),每3 d更換新鮮培養(yǎng)液。待細胞融合度達80%左右時用0.25%胰酶消化液消化傳代,選用P1代對數(shù)生長期的MCFs行相關實驗。
2.2細胞預處理P1代MCFs生長融合至60%左右時,更換新鮮培養(yǎng)液并加入感染復數(shù)為10(MOI=10)劑量的Ad-eGFP.OGT繼續(xù)培養(yǎng)細胞48 h以提高細胞內氧連糖基化水平,并設置Ad-eGFP.Null感染作為對照。
2.3實驗分組將MCFs隨機分為4組:Ad-eGFP.Null預處理+常氧組(Ad.Null+Ctrl組)、Ad-eGFP.Null預處理+H/R組(Ad.Null+H/R組)、Ad-eGFP.OGT預處理+常氧組(Ad.OGT+Ctrl組)和Ad-eGFP.OGT預處理+H/R組(Ad.OGT+H/R組)。通過將預處理后的MCFs更換無血清培養(yǎng)液饑餓過夜后放置于5% CO2、95% N2、37 ℃培養(yǎng)箱中缺氧6 h,隨后移置于5% CO2、常氧、37 ℃培養(yǎng)箱中復氧24 h建立H/R細胞模型[2]。
2.4RT-qPCR檢測MCFs增殖、表型轉化和炎癥反應相關因子的mRNA表達Trizol試劑抽提各分組細胞內總RNA,經過定量后各取600 ng總RNA為模板逆轉錄后進行RT-qPCR檢測。引物設計來源于PCR引物公共數(shù)據(jù)庫PrimerBank。結締組織生長因子(connective tissue growth factor,CTGF/CCN2)的上游引物序列為5'-GGCCTCTTCTGCGATTTCG-3',下游引物序列為5'-GCAGCTTGACCCTTCTCGG-3';α-平滑肌肌動蛋白(α-smooth muscle actin,α-SMA/ACTA2)的上游引物序列為5'-CCCAGACATCAGGGAGTAATGG-3',下游引物序列為5'-TCTATCGGATACTTCAGCGTCA-3';IL-1β的上游引物序列為5'-GGCGGTTCAAGGCATAACAGGCT-3',下游引物序列為5'-CAGCCCAAGTCAAGGGCTTGGA-3';IL-18的上游引物序列為5'-AAGAACAAGATCATTTCCTTTGAGGA-3',下游引物序列為5'-GGAACACGTTTCTGAAAGAATATGAG-3';18S(內參照)的上游引物序列為5'-GAAACGGCTACCACATCC-3',下游引物序列為5'-CACCAGACTTGCCCTCCA-3'。PCR結果采用2-ΔΔCt法進行分析。
2.5Western blot檢測關鍵蛋白水平RIPA裂解液抽取細胞總蛋白后BCA方法定量,經100 ℃變性后各樣品取20 μg行電泳并濕轉至PVDF膜,5%脫脂奶粉TBST室溫封閉1 h后分別加入相應I抗4 ℃結合過夜,經TBST洗膜3次后常溫孵育HRP標記相應Ⅱ抗2 h,洗膜后ECL化學發(fā)光并在iBright CL1500顯影;條帶經ImageJ軟件分析灰度值,結果以目的條帶與內參條帶比值顯示。
2.6細胞形態(tài)觀察利用重組腺病毒感染細胞后表達eGFP蛋白,可在熒光倒置顯微鏡下488 nm激發(fā)波長發(fā)射綠色熒光,借此觀察細胞形態(tài)變化。
2.7CCK-8法檢測細胞活力P0代MCFs消化后調整細胞濃度為5×107/L后傳代至96孔板中各100 μL,按實驗分組(設置復孔)后在觀察終點加入每孔10 μL CCK-8反應液并繼續(xù)培養(yǎng)箱孵育1 h,酶標儀檢測每孔在450 nm波長吸光度()值并統(tǒng)計分析。
2.8MCFs免疫熒光共聚焦MCFs經PBS洗滌后用4%多聚甲醛固定15 min,再次洗滌后經0.5% Triton X-100破膜5 min,隨后用5%山羊血清常溫封閉1 h,加入稀釋的Smad3抗體4 ℃結合過夜,用TBST洗滌3次后加入稀釋的Alexa Fluor 555標記抗兔IgG常溫避光孵育2 h,TBST洗滌3次后用DAPI染液復染細胞核,熒光倒置顯微鏡下觀察細胞熒光分布及共定位。
2.9免疫共沉淀實驗檢測蛋白相互作用免疫共沉淀裂解液抽取細胞總蛋白后BCA方法定量,每樣品取600 μg總蛋白使用Smad3/Smad4抗體+Protein A/G plus agarose結合后離心共沉淀,吸取上清作為Input,沉淀物反復清洗離心后吸凈上清,加20 μL上樣緩沖液100 ℃變性后離心,取上清經Western blot檢測目的蛋白表達。

Western blot結果顯示,與Ad.Null+Ctrl組相比,缺氧6 h復氧24 h的H/R過程導致Ad.Null+H/R組氧連糖基化程度顯著下降,OGT原生表達減弱(<0.05);過表達OGT提高常氧狀態(tài)下即Ad.OGT+Ctrl組氧連糖基化水平(<0.05),并對抗H/R誘導的氧連糖基化水平下降(<0.05),見圖1。

Figure 1.Over-expression of OGT increased global O-GlcNAc level of MCFs at baseline and H/R. The levels of O-GlcNAc on whole protein and OGT were detected by Western blot. Mean±SD. n=3. *P<0.05 vs Ad.Null+Ctrl group; #P<0.05 vs Ad.Null+H/R group.
RT-qPCR結果顯示,與Ad.Null+Ctrl組相比,Ad.Null+H/R組與促細胞增殖相關的CCN2轉錄水平顯著升高,CCK-8測定細胞活力增強,Western blot結果顯示collagen I表達增多(<0.05);與Ad.Null+H/R組相比,Ad.OGT+H/R組由于氧連糖基化水平的回升能夠顯著抑制H/R誘導的促增殖和促膠原合成作用(<0.05),見圖2。

Figure 2.Increase in O-GlcNAc level inhibited H/R-induced collagen isynthesis (A),CCN2 mRNA expression (B) and viability of MCFs (C). Mean±SD. n=5. *P<0.05 vs Ad.Null+Ctrl group; #P<0.05 vs Ad.Null+H/R group.
與Ad.Null+Ctrl組相比,標志MCFs向MFBs轉化的特征表型ACTA2 mRNA及α-SMA蛋白表達在Ad.Null+H/R組均顯著升高(<0.05)。借助eGFP蛋白熒光觀察MCFs細胞形態(tài),Ad.Null+Ctrl組MCFs多呈不規(guī)則三角形或長梭形,細胞輪廓清晰,胞核呈橢圓形,染色質疏松著色淺;Ad.Null+H/R組MCFs胞體顯著增大呈扁平狀且缺乏極性,邊界不清,核仁大且胞質細胞器代謝活躍。與Ad.Null+HIR組相比,Ad.OGT+H/R組ACTA2轉錄和α-SMA表達均受到抑制(<0.05),MCFs形態(tài)較基礎狀態(tài)變化不顯著,細胞面積半定量分析顯示與Ad.Null+H/R組有顯著差異(<0.05)。見圖3。

Figure 3.Increase in O-GlcNAc level inhibited H/R-induced phenotypic transformation of MCFs characterized by ACTA2/α-SMA expression (A and B) and morphological changes (C). The scale bar=100 μm. Mean±SD. n=5. *P<0.05 vs Ad.Null+Ctrl group; #P<0.05 vs Ad.Null+H/R group.
與Ad.Null+Ctrl組相比,Ad.Null+H/R組炎癥細胞因子IL-1β和IL-18的mRNA和蛋白表達顯著升高(<0.05);而Ad.OGT+H/R組IL-1β和IL-18的mRNA和蛋白表達則顯著低于Ad.Null+H/R組(<0.05),見圖4A~C。

Figure 4.Increase in O-GlcNAc level inhibited H/R-induced inflammatory mediator (IL-1β and IL-18) expression (A,B and C) and Smad3 phosphorylation (D). Mean±SD. n=5. *P<0.05 vs Ad.Null+Ctrl group; #P<0.05 vs Ad.Null+H/R group.
與Ad.Null+Ctrl組相比,Ad.Null+H/R組的TGF-β1信號軸關鍵信號分子Smad3磷酸化水平(p-Smad3/Smad3)顯著升高(<0.05),免疫熒光染色顯示Smad3核內移顯著,提示TGF-β1/Smad3信號軸激活;與Ad.Null+H/R組相比,Ad.OGT+H/R組Smad3磷酸化水平(p-Smad3/Smad3)顯著降低(<0.05),免疫熒光染色顯示Smad3滯留于胞漿內,核轉位受阻,見圖4D及圖5。

Figure 5.Increase in O-GlcNAc level inhibited H/R-induced Smad3 nuclear accumulation (observed by confocal fluorescence,scale bar=25 μm). Infected MCFs were visualized by eGFP fluorescence (green),subcellular localization of Smad3 were stained with Smad3 antibody (red),and nuclei were stained with DAPI (blue).
與Ad.Null+H/R組相比,Ad.OGT+H/R組細胞內與Smad3相結合的OGT顯著增多(<0.05),Smad3抗體免疫沉淀物氧連糖基化水平增強(<0.05);采用-GlcNAc抗體反向免疫沉淀,Smad3條帶信號趨勢與前一致,見圖6。

Figure 6.Increasing OGT directly enhanced the O-GlcNAc level of Smad3. The binding degree with Smad3 and modified status of Smad3 were detected by co-immunoprecipitation. Mean±SD. n=3. *P<0.05 vs Ad.Null+H/R group.
本項體外研究結果顯示,過表達OGT提高MCFs整體氧連糖基化修飾水平,能夠阻礙Smad3磷酸化及后續(xù)核轉位,從而負性調控TGF-β1/Smad3信號軸,進而減緩H/R損傷后MCFs的增殖分化、膠原分泌和炎癥介質的表達。進一步檢測顯示,過表達OGT使得與Smad3相結合的OGT顯著增多,Smad3氧連糖基化水平直接得到增強,且發(fā)生氧連糖基化修飾的Smad3能夠競爭性抑制其磷酸化并阻礙其入核發(fā)揮作用。我們的研究表明,除熟知的磷酸化修飾和泛素化修飾外,氧連糖基化修飾作為細胞內另一種廣泛發(fā)生的翻譯后修飾(post-translational modifications,PTMs),是TGF-β1/Smad3信號軸的另一種快速而重要的調節(jié)形式。
MCFs是構成心臟的主要細胞類型,雖體積小但數(shù)量占心臟細胞總數(shù)的60%~70%,在維系心臟的形態(tài)、功能以及損傷修復過程中均與心肌細胞聯(lián)系密切,是心肌重構的重要執(zhí)行者[3]。以TGF-β1/Smad3為代表的經典促纖維化信號軸在心肌梗死及再灌注治療后的炎癥反應期、增殖修復期和基質沉積期均發(fā)揮多重生物學效應[4],但過度活化引發(fā)的MCFs功能性紊亂也是導致心梗患者以及血管再通治療后出現(xiàn)心肌順應性下降、惡性心律失常甚至心衰的重要發(fā)病基礎。TGF-β1引發(fā)的信號內傳是典型的激酶信號通路,研究證實該信號軸中多環(huán)節(jié)均受到磷酸化修飾調節(jié),如Smad2/3可被激酶GSK3β、CDK[5-6]和磷酸酶PPM1A、MTMR4[7-8]等修飾調控。此外,Smad3的泛素化修飾-蛋白酶體降解調控也被廣泛報道[9-10]。然而Smad3能否被氧連糖基化修飾尚未見明確報道。
氧連糖基化修飾由OGT催化GlcNAc的供體二磷酸尿嘧啶GlcNAc(uridine diphosphate-acetylglucosamine,UDP-GlcNAc)以氧-糖苷鍵的形式共價結合到底物蛋白Ser/Thr側鏈羥基上,并由-乙酰氨基葡萄糖苷酶(-GlcNAcase,OGA)特異性水解氧-糖苷鍵從而降低底物氧連糖基化水平[11]。資料顯示,當機體發(fā)生急性應激損傷時可導致氧連糖基化水平的快速波動,是公認的應激壓力和細胞代謝感受器,而在應激損傷階段迅速提高組織的氧連糖基化水平被證實具有組織保護作用,能夠增強抗損傷能力[12]。如葡萄糖胺通過提高腎組織氧連糖基化水平可緩解急性缺氧導致的腎功能障礙[13];氧連糖基化修飾化學增強劑Thiamet-G可顯著減少大腦缺血再灌注損傷后的腦梗死面積,這與NF-κB p65亞基被氧連糖基化修飾后無法核內移發(fā)揮轉錄調節(jié)作用,減少組織中IL-1β和TNF-α的表達密切相關[14];我們課題組前期研究也證實p65亞基發(fā)生氧連糖基化修飾能夠干擾其磷酸化激活[15]。在本項研究中,Smad3發(fā)生氧連糖基化修飾能夠競爭性抑制其磷酸化,從而無法形成功能異聚體近而阻礙其核內移,但是否與氧連糖基化直接相關,還需要更多的實驗證據(jù)。以上結果表明,Smad3的氧連糖基化修飾與磷酸化修飾存在串擾(crosstalk)現(xiàn)象,進一步深入研究有助于更好地理解Smad3的調節(jié)機制。
生化特征顯示,氧連糖基化修飾與磷酸化修飾的作用靶點均以Ser/Thr為主,因而存在大量底物蛋白上兩種PTMs發(fā)生串擾的證據(jù),不僅在相同或相近位點存在競爭或協(xié)同修飾效應,甚至在相距較遠的氨基酸之間因空間構象的接近仍會互相影響[16-18]。Smad3作為TGF-β1經典信號軸中的關鍵胞內蛋白,其C端SSXS基序內Ser423/425被磷酸化是信號內傳的重要標志,并且其Thr179、Ser204/208/213甚至可以在不依賴胞外配體的情況下發(fā)生磷酸化修飾,在胚胎發(fā)育、腫瘤形成、組織纖維化等病理生理過程中發(fā)揮作用[19]。我們通過查詢糖基化修飾位點預測數(shù)據(jù)庫YinOYang 1.2[20],顯示人類Smad3的Ser78/418/423發(fā)生氧連糖基化修飾的可能性超過80%,提示Ser423位點極有可能發(fā)生兩種PTMs的串擾,因而接下來我們將進一步明確Smad3發(fā)生氧連糖基化修飾的具體位點及生物學效應。
綜上所述,在本研究中我們首次獲得Smad3被氧連糖基化修飾的依據(jù),證實快速提高氧連糖基化修飾水平對抑制MCFs增殖分化具有重要意義。由于采用免疫共沉淀除Smad3外還包含了與其相結合的其它蛋白,且尚未開發(fā)出直接檢測Smad3發(fā)生氧連糖基化修飾的抗體,我們后續(xù)將驗證Smad3發(fā)生氧連糖基化修飾的可能位點,期望為更好地理解心肌梗死的病理生理機制提供參考資料。
[1]李如君,龔開政,張振剛. 成年小鼠心臟成纖維細胞的分離、純化和原代培養(yǎng)[J]. 細胞與分子免疫學雜志,2017,33(1):67-71.
Li R,Gong K,Zhang Z. Isolation,purification and primary culture of adult mouse cardiac fibroblasts[J]. Chin J Cell Mol Immunol,2017,33(1):67-71.
[2] Zhang J,Huang L,Shi X,et al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway[J]. Aging (Albany NY),2020,12(23):24270-24287.
[3] Pinto AR,Ilinykh A,Ivey MJ,et al. Revisiting cardiac cellular composition[J]. Circ Res,2016,118(3):400-409.
[4]柴大軍,徐軍霞,許昌聲,等. 視黃醇X受體激動劑通過調控Smad2通路抑制TGF-β1誘導的心肌成纖維細胞膠原合成[J]. 中國病理生理雜志,2016,32(12):2228-2232.
Chai D,Xu J,Xu C,et al. Retinoid X receptor agonist inhibits TGF-β1-induced collagen synthesis incardiac fibroblasts by repressing Smad2 activation[J]. Chin J Pathophysiol,2016,32(12):2228-2232.
[5] Tang LY,Yamashita M,Coussens NP,et al. Ablation of Smurf2 reveals an inhibition in TGF-β signalling through multiple mono-ubiquitination of Smad3[J]. EMBO J,2011,30(23):4777-4789.
[6] Alarcon C,Zaromytidou AI,Xi Q,et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways[J]. Cell,2009,139(4):757-769.
[7] Lin X,Duan X,Liang YY,et al. PPM1A functions as a Smad phosphatase to terminate TGFβ signaling[J]. Cell,2006,125(5):915-928.
[8] Yu J,Pan L,Qin X,et al. MTMR4 attenuates transforming growth factor β (TGFβ) signaling by dephosphorylating R-Smads in endosomes[J]. J Biol Chem,2010,285(11):8454-8462.
[9] Hilt ZT,Maurya P,Tesoro L,et al. β2M signals monocytes through non-canonical TGFβ receptor signal transduction[J]. Circ Res,2021,128(5):655-669.
[10] Galant C,Marchandise J,Stoenoiu MS,et al. Overexpression of ubiquitin-specific peptidase 15 in systemic sclerosis fibroblasts increases response to transforming growth factor β[J]. Rheumatology,2019,58(4):708-718.
[11] 趙培,張佳佳,龔開政. 蛋白質-GlcNAc糖基化與心血管疾?。跩]. 中國病理生理雜志,2021,37(9):1712-1718.
Zhao P,Zhang J,Gong K,et al. Protein-GlcNAcylation and cardiovascular diseases[J]. Chin J Pathophysiol,2021,37(9):1712-1718.
[12] Chen Y,Zhao X,Wu H. Metabolic stress and cardiovascular disease in diabetes mellitus: the role of protein-GlcNAc modification[J]. Arterioscler Thromb Vasc Biol,2019,39(10):1911-1924.
[13] Suh HN,Lee YJ,Kim MO,et al. Glucosamine-induced Sp1-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells[J]. J Cell Physiol,2014,229(10):1557-1568.
[14] He Y,Ma X,Li D,et al. Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling[J]. J Cereb Blood Flow Metab,2017,37(8):2938-2951.
[15] Xing D,Gong K,F(xiàn)eng W,et al. O-GlcNAc modification of NFκB p65 inhibits TNF-α-induced inflammatory mediator expression in rat aortic smooth muscle cells[J]. PLoS One,2011,6(8):e24021.
[16] Kamemura K,Hayes BK,Comer FI,et al. Dynamic interplay between-glycosylation and-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58,a known mutational hot spot of c-Myc in lymphomas,is regulated by mitogens[J]. J Biol Chem,2002,277(21):19229-19235.
[17] Chen YX,Du JT,Zhou LX,et al. Alternative-GlcNAcylation/-phosphorylation of Ser16 induce different conformational disturbances to the N terminus of murine estrogen receptor β[J]. Chem Biol,2006,13(9):937-944.
[18] Laarse AM,Leney AC,Heck JR. Crosstalk between phosphorylation and‐GlcNAcylation: friend or foe[J]. FEBS J,2018,285(17):3152-3167.
[19] Ooshima A,Park J,Kim SJ. Phosphorylation status at Smad3 linker region modulates transforming growth factor‐β‐induced epithelial‐mesenchymal transition and cancer progression[J]. Cancer Sci,2018,110(2):481-488.
[20] Wang J,Torii M,Liu H,et al. dbOGAP-an integrated bioinformatics resource for protein-GlcNAcylation[J]. BMC Bioinformatics,2011,12(1):1-14.
Effects of-GlcNAcylation of TGF-β1/Smad3 signaling axis on viability and differentiation of cultured mouse cardiac fibroblasts
Jin Hui1,Xie Zhong-jie2,Zhang Li-na1,Gong Kai-zheng1,Zhang Zhen-gang1,Li Ru-jun1△
(1,,225001,;2,,318020,)
To investigate the effect of-linked-acetylglucosamine (-GlcNAc) modification (-GlcNAcylation) of TGF-β1/Smad3 signaling axis on viability and differentiation of cultured mouse cardiac fibroblasts (MCFs) after hypoxia/reoxygenation (H/R).Primarily cultured MCFs were incubated under hypoxic condition for 6 h and then exposed to normoxia for another 24 h to establish H/R cell model. Increased global-GlcNAcylation was achieved by infection with-GlcNAc transferase (OGT) adenovirus. The cells were randomly divided into null adenovirus preconditioning with normoxia (Ad.Null+Ctrl) and H/R (Ad.Null+H/R) groups,and OGT adenovirus preconditioning with normoxia (Ad.OGT+Ctrl) and H/R (Ad.OGT+H/R) groups. The mRNA levels of connective tissue growth factor (CTGF),α-smooth muscle actin (α-SMA),interleukin-1β (IL-1β) and IL-18 were detected by RT-qPCR. The protein levels of p-Smad3,Smad3,OGT,IL-1β and IL-18 were detected by Western blot.The-GlcNAcylation of Smad3 and interaction with OGT/Smad4 were detected by co-immunoprecipitation. The cell viability was measured by CCK-8 staining. Subcellular localization of Smad3 was revealed by confocal immunofluorescence.H/R caused a significant decrease in-GlcNAcylation of MCFs,while overexpression of OGT notably alleviated the reduction of-GlcNAcylation induced by H/R (<0.05). Increased-GlcNAcylation inhibited the viability and differentiation of MCFs into myofibroblasts,and decreased the synthesis of collagen type I and the expression of IL-1β and IL-18 induced by H/R (<0.05).-GlcNAcylation blocked the phosphorylation and nuclear accumulation of Smad3 which is the key component of TGF-β1 signaling axis.-GlcNAcylation inhibits the phosphorylation and nuclear translocation of Smad3,thus inhibiting TGF-β1/Smad3 signaling axis,and attenuates the functional changes of MCFs induced by H/R.
Myocardial ischemia-reperfusion injury; Myocardial fibrosis; Cardiac fibroblasts; TGF-β1/Smad3 signaling pathway;-GlcNAcylation
R542.2+2; R363.2
A
10.3969/j.issn.1000-4718.2022.02.005
1000-4718(2022)02-0222-08
2021-11-22
2022-01-26
[基金項目]江蘇省自然科學基金資助項目(No. BK20200937);揚州市科技計劃資助項目(No. YZ2019058);揚州市綠揚金鳳計劃資助項目(No. YZLYJFJH2017YB118)
Tel: 0514-82981199; E-mail: li-rujun@126.com
(責任編輯:盧萍,羅森)