洪紫薇, 張帥帥, 劉金成
G蛋白偶聯受體30的特點及其在纖維化疾病中的作用機制*
洪紫薇, 張帥帥, 劉金成△
(空軍軍醫大學第一附屬醫院心血管外科,陜西 西安 710032)
纖維化;雌激素受體;G蛋白偶聯受體30
纖維化是一種組織受到破壞后的修復反應,主要由于炎癥因子過度刺激引發實質細胞壞死、細胞外基質(extracellular matrix,ECM)分泌過剩,大量沉積于細胞間質,形成膠原蛋白排列紊亂的病理表現,嚴重者導致器官結構紊亂和功能障礙,甚至發生器官衰竭[1]。據報道,纖維化是一種不可逆的病理過程[2],目前臨床上對纖維化疾病以干預和對癥治療為主[3],尚無特定的治療藥物。腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)和白細胞介素1β(interleukin-1β,IL-1β)[4-5]已被確定為多種纖維化疾病治療的關鍵靶點。那么,阻斷炎癥因子的信號途徑是否可控制纖維化的發生、發展?G蛋白偶聯受體30(G-protein-coupled receptor 30,GPR30)是一種7次跨膜雌激素受體蛋白,借助非基因組信號路徑工作,相比較于傳統的核受體,傳導速度更快[6]。雌激素具有抗氧化、抗凋亡和抗炎作用[7],在維持女性的身體健康中發揮重要的調節作用。當GPR30被激活后亦可發揮類雌激素作用,通過調控細胞增殖對抗凋亡和炎癥反應,進而維持機體正常運轉。本文對GPR30的特點及其在心肌纖維化、肝纖維化和腎纖維化病變發展的作用機制進行綜述。
GPR30最早于1997年由Carmeci等[8]在乳腺癌細胞研究中發現,并鑒定為是一種7次跨膜的G蛋白偶聯孤兒受體(orphan receptor)蛋白。隨著研究的深入,研究者們在多種細胞中發現該蛋白的存在,根據文獻報道的順序編號,將其命名為GPR30[9]。2007年國際基礎和臨床藥理學聯合會將該雌激素膜受體更名為G蛋白偶聯雌激素受體(G-protein-coupled estrogen receptor,GPER)[10-11],但目前廣泛使用的名稱仍然是GPR30。
控制GPR30表達的基因定位于7p22.3,借助對375個氨基酸的編碼,形成具有高度保守區域的7次跨膜蛋白[12],是G蛋白偶聯受體家族(G-protein-coupled receptors,GPCRs)中的一員。GPR30在體內的分布[13]也是廣泛的,如大腦、心臟、肝臟、腎臟、骨骼、血管、皮膚、子宮、卵巢等組織器官均檢測到有GPR30表達;在細胞學水平研究表明,GPR30主要定位于細胞膜、內質網膜、線粒體膜[14-15];Cheng等[16]的研究結果表明,在網格蛋白的介導作用下,細胞膜上的GPR30可轉移至高爾基體膜等細胞器膜上,說明在不同條件下,GPR30在細胞膜和細胞內存在一個動態再分布過程。盡管目前對于GPR30明確的定位還有爭論,但也為進一步研究提供了新的參照依據。
研究顯示,GPR30通過與配體結合后參與調節機體多種生理活動,如調節細胞生長、糖脂質蛋白質代謝、免疫功能等。GPR30常見的激動性配體有17β-雌二醇(17β-estradiol,17β-E2)、G1和他莫昔芬,拮抗性配體有G15和G36。在腦組織研究中,當GPR30被G1激活后,由腦缺血引起的神經元損傷癥狀減輕,認知能力提高,學習記憶和心境情緒調節能力增強;相反,當GPR30與G36結合后,上述神經元損傷癥狀加劇,認知障礙明顯[17],表明GPR30被激活后發揮神經保護作用。同樣在小動物心肌缺血再灌注損傷模型研究[18-19]顯示,給予G1處理后GPR30表達水平上升,心肌梗死面積減少,左心室壓力負荷明顯緩解,損傷的心肌功能在一定程度上得以修復。此外,GPR30也能通過調控細胞周期相關蛋白的表達[20],促進或抑制不同種類細胞的增殖。
GPR30與配體結合后,啟動快速信號轉導通路調節細胞的增殖或凋亡等生長代謝活動[21]。目前研究認可的主要的信號轉導途徑[22]有:環磷酸腺苷(cyclic adenosine monophosphate,cAMP)產生、MEK/ERK1/2通路、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB/Akt)信號激活和Ca2+途徑等。GPR30被活化后,G蛋白的主要成分α、β和γ亞基分別發揮相應效應,其中α亞基能夠使腺苷酸環化酶(adenylyl cyclase,AC)激活并發揮其關鍵作用,提高AMP生成cAMP的功效,伴隨細胞內cAMP生成數量的增加,蛋白激酶A(protein kinase A,PKA)被激活,同時激發PKA下游的多種激酶[23],確保其功能的及時調節。其他2種游離的β、γ亞基可以使非受體酪氨酸蛋白激酶磷酸化,加快基質金屬蛋白酶(matrix metalloproteinases,MMPs)產生,進而保障游離的肝素結合表皮生長因子被釋放[24],并與其特異性受體結合,引發絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)、PI3K、Akt和細胞外調節通路被激活,激活的PI3K促使3,4,5-三磷酸磷脂酰肌醇積聚于細胞膜,并募集Akt在膜磷脂上完成磷酸化,從而加快一氧化氮合酶的活化[25],促使L-精氨酸轉變為一氧化氮(nitric oxide,NO),從而維持機體器官血流量的相對穩定作用,所以NO被視為GPR30保護心腦血管健康的核心因子。還有研究認為,GPR30通過MAPK/ERK途徑[26]啟動下游c-、c-基因轉錄,調節周期蛋白的表達。Hernández-Silva等[27]在體外細胞模型研究中也證實,當GPR30被G1激活后,處于細胞周期S期的細胞數量增加,cyclin D1和表達水平升高,促進了細胞增殖和遷徙。同時,α亞基還能夠激活磷脂酶C(phospholipase C,PLC),加快三磷酸肌醇的生成和內質網Ca2+路徑的打開[28],有利于通過細胞內Ca2+含量的改變來調節生理活動的穩態。
心肌組織是維持心功能正常運轉的重要組成部分。生理情況下,心肌成纖維細胞分泌合成ECM蛋白、MMPs、各種生長因子等成分,維持心肌的組織結構和功能正常。但當心室處于壓力超負荷狀態時,心肌細胞過度肥大,炎癥因子分泌增多,間質膠原蛋白堆積[29],形成心肌纖維化,引發心室舒縮功能異常、電信號傳導阻滯等,嚴重者甚至發生心律失常、心肌梗死和心源性猝死等[30-31]。因此,如何阻止成纖維化細胞異常增殖和ECM蛋白的分泌過多,成為預防和治療纖維化心臟疾病的關注熱點。
流行病學調查表明,相比同年齡段的男性,女性在絕經前發生心血管疾病的概率有所降低,間接反映出雌激素對女性身體健康的保護效應。根據流調結果,研究人員考慮通過補充外源性雌激素來降低絕經后女性心血管疾病的發生風險,但結果并不如人意,甚至還升高了深靜脈血栓、卒中等[32]疾病的發病風險,這就亟待更加深入探討雌激素在心血管疾病發生中的作用機制。雌激素對心肌的保護作用除了經典的核受體(ERα和ERβ)發揮作用外,新型雌激素膜受體GPR30在心肌中也有表達且對心肌有保護作用。研究表明,當GPR30被G1激活后,患有高血壓性心肌病和充血性心力衰竭動物的心功能明顯改善[33-34],心肌梗死面積減少,從而緩解了心肌缺血/再灌注損傷后的心臟重構[35],說明激活GPR30對心肌組織有保護作用。
GPR30發揮心肌保護作用的機理有:當GPR30被激活后,通過絲裂原激活MAP/ERK/GSK-3β路徑[36]降低線粒體通透性轉換孔活性,減少炎癥因子TNF-α、ILs等分泌,使心臟細胞周期蛋白依賴性激酶1(cyclin-dependent kinase 1,CDK1)的表達水平下降,cyclin B1含量減少,阻礙成纖維細胞的增殖[37],最終抑制纖維瘢痕組織的產生,緩解因雌激素流失所造成的心室重構與舒張功能減退。Wang等[38]的研究表明,GPR30被G1激活通過抑制ERK介導的MMP-9和TGF-β1表達來抑制心肌纖維化并保持心臟功能。因此,選用GPR30激動劑進行替代治療不僅可避免激素替代療法誘發的生殖系統腫瘤發病風險,未來在預防和治療心血管疾病還可以選擇GPR30作為新藥開發的靶點。
肝纖維化可見于多種慢性肝臟疾病,主要表現為肝細胞外基質蛋白分泌過多,伴有肝細胞增生、炎癥等一系列不可逆的修復過程[39],嚴重者可發展為肝硬化,甚至肝癌。研究顯示,排除患者自身原因的免疫性肝炎,在大部分肝硬化患者中,男性所占比例較高,而且纖維化病情發展速度更快、個體生存壽命縮短;而發生肝纖維化的女性患者有明顯的年齡特點,集中表現在絕經期后的年齡段,育齡期患者較少[40-41]。這些資料提示雌激素可能在肝纖維化發展中發揮抑制效應。
Gong等[42]的研究表明,處于活動期的肝星狀細胞(hepatic stellate cells,HSC)可加快肝纖維化發生;而靜息狀態的HSC通過調節血流量、儲存維生素A等作用維持肝功能正常運轉。當肝臟受到損傷時,原本處于靜息狀態的HSC被炎癥因子等激活[43],轉變為具有生理活性的肌成纖維細胞(myofibroblast,MFB),同時在病變部位附近釋放α-平滑肌肌動蛋白,形成以Ⅰ、Ⅲ型膠原蛋白為主要成份的ECM,過量的ECM堆積、無法被降解代謝,形成肝纖維化。
雌激素及其衍生物作為有效的內源性抗氧化劑,能減少肝臟和血液中脂質過氧化物的含量。Cortes等[44]的研究觀察到,GPR30激動劑他莫昔芬可抑制HSC向MFB轉化并保持靜息狀態,通過GPR30/RhoA/肌球蛋白信號轉導作用抑制HSC中YAP(Yes-associated protein)活化,誘導HSC機械失活,降低肌球蛋白收縮力,減少ECM蛋白的產生,對抗纖維化進展。還有研究顯示,對丙型肝炎細胞予以外源性雌激素刺激,GPR30表達水平升高,機體病毒含量降低,而且MMPs通過對下游信號調節促進ECM降解,參與細胞增殖、組織修復過程[45]。肝損傷后的正常愈合過程涉及膠原蛋白的積累、沉積(瘢痕形成)和基質重組(瘢痕重塑),涉及MMPs和TIMPs(tissue inhibitors of MMPs)的動態轉化過程。以上研究表明GPR30信號通路的激活可以抑制肝纖維化的進展。
腎纖維化是慢性腎臟病(chronic kidney disease,CKD)深入發展至晚期的必經之路,也是腎臟疾病發展的終末結局。研究表明,絕經前女性的CKD發展比男性慢,而且多種實驗動物模型(如糖尿病腎病、腎小球腎炎和單側腎切除術)研究均表明內源性雌激素對CKD的保護作用[46-47]。在切除卵巢的情況下,雌激素保護效果消失,予以外源性雌激素補充后部分癥狀得以緩解[48]。Sun等[49]觀察到,對出現腎組織缺血損傷的大鼠進行雌激素補充治療,實驗體間質TGF-β1的表達水平降低,腎小管纖維化癥狀也有一定程度減輕,表明雌激素能夠對腎臟起到有效的保護作用。
目前,有關腎纖維化的研究通路中,TGF-β1/Smads家族啟動的信號轉導通路被公認與腎臟疾病進展的密切相關。通過阻斷TGF-β1/Smads信號轉導通路,可以明顯降低腎纖維化病變和改善腎功能損害程度,這也意味著通過靶向調控該信號通路可以為預防腎纖維化疾病帶來全新的靶點和方向。雖然已有研究證明了雌激素對腎臟的保護作用,但激素療法對女性生殖系統的副作用也同樣存在,那么激活雌激素受體GPR30是否也可以同樣產生類雌激素樣作用而避免補充外源性雌激素的不良反應,目前還沒有明確的研究證明兩者之間的相關作用機制,仍需要進一步探討研究。
此外,GPR30在機體神經系統也發揮一定的積極作用。研究顯示[50],GPR30借助控制星形膠質細胞內谷氨酸轉運體1的表達水平,能夠緩解由谷氨酸在突觸間隙或細胞外大量蓄積而引發的神經中毒反應;當予以GPR30激動劑G1治療后,腦組織中促炎癥因子(TNF-α、IL-1、IL-6等)的含量降低[51],Toll樣受體4參與的小膠質細胞炎癥受到遏制[52],最終避免腦部動脈閉塞引發的功能缺損,降低了神經元的潛在風險,發揮神經系統保護作用。
綜上所述,雌激素對絕經前女性的保護作用,可通過GPR30的非基因組信號快速調節。在纖維化疾病中,GPR30激活后阻礙了炎癥因子的釋放,降低成纖維細胞中相關蛋白合成,從而抑制成纖維細胞異常增殖,減少ECM過量沉積,控制纖維化疾病的發展進程。但目前臨床上對于纖維化病變的治療主要是對癥治療和緩解病情進展,并沒有特效治療藥物。TGF-β1/Smads作為影響纖維化發展的傳統信號通路,在纖維化的過程中發揮至關重要的調控效應,那么GPR30是否與該途徑存在交互作用進而調節纖維化疾病的發展,可作為今后研究重點關注對象。盡管GPR30在抗纖維化方面已經有初步探索,但其證據尚不豐富,且還有很多理論實驗研究仍處于動物實驗階段,將其應用于臨床還需要進一步探討。
[1] Urban ML,Manenti L,Vaglio A. Fibrosis: a common pathway to organ injury and failure[J]. N Engl J Med,2015,373(1):95-96.
[2] Ramani K,Biswas PS. Interleukin-17: friend or foe in organ fibrosis[J]. Cytokine,2019,120:282-288.
[3] Rosenbloom J,Macarak E,Piera-Velazquez S,et al. Human fibrotic diseases: current challenges in fibrosis research[J]. Methods MolBiol,2017,1627:1-23.
[4] Pardali E,Sanchez-Duffhues G,Gomez-Puerto MC,et al. TGF-β-induced endothelial-mesenchymal transition in fibrotic diseases[J]. Int J MolSci,2017,18(10):2157.
[5]曹杰,趙永忠. IL-1與肝纖維化研究進展[J]. 世界最新醫學信息文摘,2017,17(81):12-13.
Cao J,Zhao YZ. Research progress of IL-1 and liver fibrosis[J]. World Latest Med Inf,2017,17(81):12-13.
[6] Prossnitz ER,Barton M. Estrogen biology: new insights into GPER function and clinical opportunities[J]. Mol Cell Endocrinol,2014,389(1/2):71-83.
[7] Klinge CM. Estrogens regulate life and death in mitochondria[J]. J Bioenerg Biomembr,2017,49(4):307-324.
[8] Carmeci C,Thompson DA,Ring HZ,et al. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer[J]. Genomics,1997,45(3):607-617.
[9] O'Dowd BF,Nguyen T,Marchese A,et al. Discovery of three novel G-protein-coupled receptor genes[J]. Genomics,1998,47(2):310-313.
[10] Barton M,Filardo EJ,Lolait SJ,et al. Twenty years of the G protein-coupled estrogen receptor GPER: historical and personal perspective[J]. J Steroid Biochem Mol Biol,2018,176:4-15.
[11] Prossnitz ER,Arterburn JB. International union of basic and clinical pharmacology. XCVII. G protein-coupled estrogen receptorand its pharmacologic modulators[J]. Pharmacol Rev,2015,67(3):505-540.
[12] Molina L,Figueroa CD,Bhoola KD,et al. GPER-1/GPR30 a novel estrogen receptor sited in the cell membrane: therapeutic coupling to breast cancer[J]. Expert Opin Ther Targets,2017,21(8):755-766.
[13] Zimmerman MA,Budish RA,Kashyap S,et al. GPER-novel membrane oestrogen receptor[J]. ClinSci (Lond),2016,130(12):1005-1016.
[14] Hutson DD,Gurrala R,Ogola BO,et al. Estrogen receptor profiles across tissues from male and female[J]. Biol Sex Differ,2019,10(1):4.
[15] Ronda AC,Boland RL. Intracellular distribution and involvement of GPR30 in the actions of E2on C2C12 cells[J]. J Cell Biochem,2016,117(3):793-805.
[16] Cheng SB,Dong J,Pang Y,et al. Anatomical location and redistribution of G protein-coupled estrogen receptor-1 during the estrus cycle in mouse kidney and specific binding to estrogens but not aldosterone[J]. Mol Cell Endocrinol,2014,382(2):950-959.
[17] Dennis MK,Field AS,Burai R,et al. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity[J]. J Steroid Biochem Mol Biol,2011,127(3/4/5):358-366.
[18] Wang X,Lu L,Tan Y,et al. GPR30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway[J]. Life Sci,2019,226:22-32.
[19] Feng Y,Madungwe NB,da Cruz Junho CV,et al. Activation of G protein-coupled estrogen receptor 1 at the onset of reperfusion protects themyocardium against ischemia/reperfusion injury by reducing mitochondrial dysfunction and mitophagy[J]. Br J Pharmacol,2017,174(23):4329-4344.
[20] Wang H,Zhao Z,Lin M,et al. Activation of GPR30 inhibits cardiac fibroblast proliferation[J]. Mol Cell Biochem,2015,405(1/2):135-148.
[21] Tang H,Zhang Q,Yang L,et al. GPR30 mediates estrogen rapid signaling and neuroprotection[J]. Mol Cell Endocrinol,2014,387(1/2):52-58.
[22] Iorga A,Cunningham CM,Moazeni S,et al.The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy[J]. Biol Sex Differ,2017,8(1):33.
[23] Takayasu S,Usutani M,Makita K,et al.The activation of G protein-coupled receptor 30 increases pro-opiomelanocortin gene expression through cAMP/PKA/NR4A pathway in mouse pituitary corticotroph AtT-20 cells[J]. Neurosci Lett,2020,739:135468.
[24] Prossnitz ER,Arterburn JB,Smith HO,et al. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30[J]. Annu Rev Physiol,2008,70:165-190.
[25] Wang X,Tan Y,Xu B,et al. GPR30 attenuates myocardial fibrosis in diabetic ovariectomized female rats: role of iNOS signaling[J]. DNA Cell Biol,2018,37(10):821-830.
[26] Luo J,Liu D. Does GPER really function as a G protein-coupled estrogen receptor?[J]. Front Endocrinol (Lausanne),2020,11:148.
[27] Hernández-Silva CD,Villegas-Pineda JC,Pereira-Suárez AL. Expression and role of the G protein-coupled estrogen receptor (GPR30/GPER) in the development and immune response in female reproductive cancers[J]. Front Endocrinol (Lausanne),2020,11:544.
[28] Meyer MR,Field AS,Kanagy NL,et al. GPER regulates endothelin-dependent vascular tone and intracellular calcium[J]. Life Sci,2012,91(13/14):623-627.
[29] Weber KT,Sun Y,Bhattacharya SK,et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart[J]. Nat Rev Cardiol,2013,10(1):15-26.
[30] Travers JG,Kamal FA,Robbins J,et al. Cardiac fibrosis: the fibroblast awakens[J]. Circ Res,2016,118(6):1021-1040.
[31] Centurión OA,Alderete JF,Torales JM,et al. Myocardial fibrosis as a pathway of prediction of ventricular arrhythmias and sudden cardiac death in patients with nonischemic dilated cardiomyopathy[J]. Crit Pathw Cardiol,2019,18(2):89-97.
[32] Boardman HM,Hartley L,Eisinga A,et al. Hormone therapy for preventing cardiovascular disease in post-menopausal women[J]. Cochrane Database Syst Rev,2015(3):CD002229.
[33] Wang H,Jessup JA,Lin MS,et al. Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats[J]. Cardiovasc Res,2012,94(1):96-104.
[34] Lenhart PM,Broselid S,Barrick CJ,et al. G-protein-coupled receptor 30 interacts with receptor activity-modifying protein 3 and confers sex-dependent cardioprotection[J]. J Mol Endocrinol,2013,51(1):191-202.
[35] Lee TM,Lin SZ,Chang NC. Both GPER and membrane oestrogen receptor-α activation protect ventricular remodelling in 17β oestradiol-treated ovariectomized infarcted rats[J]. J Cell Mol Med,2014,18(12):2454-2465.
[36] Kabir ME,Singh H,Lu R,et al. G protein-coupled estrogen receptor 1 mediates acute estrogen-induced cardioprotection via MEK/ERK/GSK-3β pathway after ischemia/reperfusion[J]. PLoS One,2015,10(9):e0135988.
[37] Wang H,Zhao Z,Lin M,et al. Activation of GPR30 inhibits cardiac fibroblast proliferation[J]. Mol Cell Biochem,2015,405(1/2):135-148.
[38] Wang X,Ma J,Zhang S,et al. G protein-coupled estrogen receptor 30 reducestransverse aortic constriction-induced myocardial fibrosis in aged female mice by inhibiting the ERK1/2-MMP-9 signaling pathway[J]. Front Pharmacol,2021,12:31609.
[39] 徐列明,劉平,沈錫中,等. 肝纖維化中西醫結合診療指南(2019年版)[J]. 中國中西醫結合雜志,2019,39(11):1286-1295.
Xu LM,Liu P,Shen XZ,et al. Guidelines for the diagnosis and treatment of liver fibrosis with integrated traditional Chinese and Western medicine (2019 edition)[J]. Chin J Integr Tradit West Med,2019,39(11):1286-1295.
[40] Lonardo A,Nascimbeni F,Ballestri S,et al. Sex differences in nonalcoholic fattyliver disease: state of the art and identification of research gaps[J]. Hepatology,2019,70(4):1457-1469.
[41] Yang W,Lu Y,Xu Y,et al. Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor-associated macrophages (TAMs)[J]. J Biol Chem,2012,287(48):40140-40149.
[42] Gong W,Huang F,Sun L,et al. Toll-like receptor-2 regulates macrophage polarization induced by excretory-secretory antigens fromeggs and promotes liver pathology in murine schistosomiasis[J]. PLoS Negl Trop Dis,2018,12(12):e0007000.
[43] Everts B,Tussiwand R,Dreesen L,et al. Migratory CD103+dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12[J]. J Exp Med,2016,213(1):35-51.
[44] Cortes E,Lachowski D,Rice A,et al. Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor[J]. Oncogene,2019,38(16):2910-2922.
[45] Ulitzky L,Lafer MM,KuKuruga MA,et al. A new signaling pathway for HCV inhibition by estrogen: GPR30 activation leads to cleavage of occludin by MMP-9[J]. PLoS One,2016,11(1):e0145212.
[46] Cattran DC,Reich HN,Beanlands HJ,et al. The impact of sex in primary glomerulonephritis[J]. Nephrol Dial Transplant,2008,23(7):2247-2253.
[47] Neugarten J,Golestaneh L. Gender and the prevalence and progression of renal disease[J]. Adv Chronic Kidney Dis,2013,20(5):390-395.
[48] Ulas M,Cay M. 17β-Estradiol and vitamin E modulates oxidative stress-induced kidney toxicity in diabetic ovariectomized rat[J]. Biol Trace Elem Res,2011,144(1/2/3):821-831.
[49] Sun YB,Qu X,Caruana G,et al. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis[J]. Differentiation,2016,92(3):102-107.
[50] Lee E,Sidoryk-Wêgrzynowicz M,Wang N,et al. GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes[J]. J Biol Chem,2012,287(32):26817-26828.
[51] Pan MX,Li J,Ma C,et al. Sex-dependent effects of GPER activation on neuroinflammation in a rat model of traumatic brain injury[J]. Brain Behav Immun,2020,88:421-431.
[52] Zhang Z,Qin P,Deng Y,et al. The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation[J]. J Neuroinflammation,2018,15(1):206.
Characteristics of G-protein-coupled receptor 30 and its mechanism in fibrotic diseases
HONG Zi-wei,ZHANG Shuai-shuai,LIU Jin-cheng△
(,,,710032,)
Fibrotic lesions of all organs show similar histological abnormalities such as decreased parenchymal cells and increased interstitial fibrous connective tissue. Fibrotic lesions may lead to structural abnormalities and functional disorders of organs,and even organ failure. Inflammatory response is the initiating factor of the occurrence and development of fibrotic diseases. Activation of G-protein-coupled receptor 30 (GPR30) can exert the anti-inflammatory effect,but the mechanism of GPR30 in fibrotic diseases is still unclear. Here we reviewed the research progress of GPR30 in regulating myocardial fibrosis,liver fibrosis and renal fibrosis.
Fibrosis; Estrogen receptors; G-protein-coupled receptor 30
R329.2; R363
A
10.3969/j.issn.1000-4718.2022.02.023
1000-4718(2022)02-0370-05
2021-12-09
2022-02-05
[基金項目]國家自然科學基金資助項目(No. 82070264);陜西省創新人才推進計劃(No. 2017KJXX-05);陜西省科技資源開放共享平臺(No. 2019PT-24)
Tel: 029-84775314; E-mail: liujch@fmmu.edu.cn
(責任編輯:林白霜,羅森)